微波辅助水热条件下形貌可控二氧化锰的合成及其电化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对燃气排放量的控制和化石燃料的加速消耗,人们迫切希望找到新的替代能源和相应的能量转化设备。电化学电容器和电池具有功率密度高,充/放电速度快和循环寿命长等特点,因此引起了人们的广泛关注。由于锰具有多种氧化态,二氧化锰纳米材料的结构丰富且可调,使其在电容器的电极材料、电池的电极材料以及电催化剂等领域有着广泛的应用。
     近年来,人们在结构可调和形貌可控的二氧化锰纳米材料的合成上投入了大量的精力,这是由于二氧化锰材料的物理和化学性质与其结构和形貌有着密切的关系。现已报道的二氧化锰的合成方法有很多种,如溶胶-凝胶法,水热法,热分解法,回流法,电沉积法和微波辅助法等。在上述这些方法中,微波辅助水热法为二氧化锰纳米材料的合成提供了一种相对有效、简单且较为绿色的途径。
     微波加热与水热相结合的合成方法可以增强产物的结晶动力学和促进新产物的生成。微波加热是基于偶极极化和电子传导机制来实现的。与传统的加热方法相比较,微波加热是一种具有高产率和可重复性的快速、简便且绿色的合成方法。迄今为止,微波辅助水热方法被广泛地用于无机纳米材料的合成中,如金属纳米材料,过渡金属的氧化物和硫化物以及磷酸盐等。这些利用微波辅助水热法合成的材料在光学、催化和荧光等领域有着潜在的应用。然而,本文致力于用微波辅助水热法合成结构可调和形貌可控的二氧化锰材料并且研究其在电化学领域的应用。
     水钾锰矿结构的二氧化锰(又称为δ-MnO_2)具有特殊的层状结构,可以被用作超级电容器的电极材料。水钾锰矿结构的二氧化锰微球,最早是通过水热方法合成的。在本论文中,利用微波辅助水热法,仅通过简单的改变反应温度,就可以调节产物从δ-MnO_2微米球到包含δ-MnO_2微米球和α-MnO_2纳米棒的混合物。前面所述的水热合成方法中,其反应时间至少需要一百分钟,而微波辅助水热法仅需要十分钟。比较而言,在这一反应过程中,微波辅助水热合成法特别适合用来缩短反应时间。利用粉末X射线衍射,场发射电子扫描电镜和高分辨透射电镜等来证实混合相中的纳米棒杂质为α-MnO_2,并且对产物的电化学性质进行了测试。研究结果表明,与δ-MnO_2微米球/α-MnO_2纳米棒的混合物相比较,δ-MnO_2微米球有较小的比表面积和较大的比电容。少量α-MnO_2纳米棒杂质相的出现增加了δ-MnO_2电极的比表面积却减小了其比电容。混合物电容低的原因主要有两点:其一,杂质的电化学活性低于δ-MnO_2;其二,杂质的出现导致材料的传导性降低。另外,其它条件下的电化学测试表明,δ-MnO_2具有较好的可逆性和较高的稳定性,因此其是一种有应用前景的超级电容器的电极材料。
     电化学活性的差异主要归因于晶体结构,氧吸附模式和接触晶面不同所带来的影响。本文利用微波辅助水热法合成了具有不同结构和形貌的二氧化锰。实验中,微波辐射起到了两种作用,即缩短反应时间和获得新的形貌。就反应时间而言,微波加热能够加快反应速率,将反应时间从数小时缩短至几分钟。同时,对于合成新形貌产物而言,微波加热不仅合成了δ-MnO_2微米球和α-MnO_2纳米棒,而且获得了γ-MnO_2纳米片和β-MnO_2八面体或空心的微米棒。更重要的是,首次以一步微波辅助法获得了γ-MnO_2纳米片和β-MnO_2八面体或空心的微米棒。因此,利用微波辅助水热法,通过调节盐酸的浓度,可以准确的调节和控制二氧化锰材料的结构和形貌。通过循环伏安法检测了样品在KOH水溶液中对于氧还原反应(ORR)的电催化性质。结果显示所有样品在碱性电解液中均可以催化氧还原反应,但是催化活性存在着一定的差异。实验结果表明,α-MnO_2的晶体结构和形貌都有利于氧的吸附,所以其具有较高的电催化活性。
     水钾锰矿结构的二氧化锰,通常情况下也被称为δ-MnO_2。δ-MnO_2是一种具有混合价态的二维层状结构的化合物。δ-MnO_2的层间距为0.73nm,层间可以插入钾,钠等离子或者水分子。这些插入离子或者分子可以起到两个作用,即保持结构稳定和维持电荷平衡。加入离子种类不同,δ-MnO_2层间距会发生一定的变化。δ-MnO_2通常被认为是合成隧道结构二氧化锰材料的中间体或前驱体。本文实验过程中,在不加入任何催化剂和表面活性剂的条件下,利用盐酸还原高锰酸钾获得了枝状α-MnO_2纳米棒。进行了时间控制的实验,以此可以研究枝状α-MnO_2纳米棒的形成过程。可以看出产物是通过δ-MnO_2转化而来。根据前人提出的一些理论,本文对枝状α-MnO_2纳米棒的生长机制进行了归纳,结果表明其生长主要是受导向生长和相卷曲两种机制控制。相变的起因是δ-MnO_2纳米片的晶体尺寸较小,在高温和高酸度的环境下不稳定。此外,还对产物的电化学性质进行了测试,表明比表面积和电解质的种类直接影响产物的比电容。
     简而言之,将微波辐射与水热相结合,可以快速将温度提升到纳米结构生长的目标温度。此方法可以增强结晶动力学和提高新产物的形成机会。本文通过微波辅助水热法成功的合成了可以精确调控结构和形貌的二氧化锰材料并对其晶体结构和形貌进行了系统的研究。另外,还从超级电容器的电极材料和电催化材料两个方面对产物的电化学性质进行了研究。
With the emission control and accelerated depletion of fossil fuel resourcescreate the urgent needs for seeking new alternative energies and the correspondingconversion devices. Electrochemical capacitors and batteries have been given everincreasing attention due to their high power density, rapid charging/discharging andlong cycle life. Nanostructured manganese dioxides are excellent electrode materialsfor capacitors/batteries and catalyst for batteries owing to their structural flexibilityand manganese valence variety.
     For recent years, much attention has been paid to rational design and control overthe structures and morphologies of manganese dioxides nanostructures, which willaffect the physical and chemical properties of manganese dioxides materials directly.Many routes for preparation of manganese dioxides have been reported, such assol-gel, hydrothermal, thermal decomposition, refluxing, electrodeposition methodsand microwave-assisted hydrothermal, etc. Among them, microwave-assistedhydrothermal method could provide a relatively simple, effective and green way togrow nanostructured manganese dioxides materials.
     The microwave-heating combining with hydrothermal can lead to enhancedkinetics of crystallization and promote the formation of new phase of product.Microwave heating is based on dipolar and electrical conductor mechanisms.Compared with the conventional heating procedure, it has been proved to be a fast and green method with high yields and reproducibility. Up to now,microwave-assisted hydrothermal is a popular route to synthesize inorganicnanostructured materials such as metallic nanostructures, transition metaloxide/chalcogenides and metal phosphates. The as-prepared materials have potentialapplications in optics, catalysis and luminescent. Here, this paper are committed tosynthesize the manganese dioxides with structure tuning and fine shape controlled bythe microwave-assisted hydrothermal method and study their application inelectrochemical fields.
     Birnessite-MnO_2(δ-MnO_2) is one kind of important electrode material forsupercapacitor due to their special layered structure. Birnessite-MnO_2microspherewas early synthesized via hydrothermal method. In this work, δ-MnO_2microspheresas well as δ-MnO_2microspheres/α-MnO_2nanorods mixture have been synthesizedusing microwave-assisted hydrothermal method by simply changing the reactiontemperature. The reaction time of the above hydrothermal methods is longer with100min while microwave-assisted hydrothermal only needs10min. Therefore, onevaluable advantage of microwave-assisted hydrothermal is shortening the reactiontime greatly. Powder X-ray diffraction, field-emission scanning electron microscopyand high-resolution transmission electron microscopy have been involved in provingthat the nanorod of mixture is α-MnO_2. Electrochemical performances of the sampleswere also examined. The results show that the δ-MnO_2microspheres possesses asmaller specific surface area while a higher specific capacitance than those of theδ-MnO_2micropheres/α-MnO_2nanorods mixture does. The presence of a few fractionα-MnO_2impurities increases the surface area but reduces the specific capacitance ofδ-MnO_2electrode. The lower capacitance of the mixture is very probably due to thelower electrochemical activity of the α-MnO_2, comparing to that of the layeredδ-MnO_2and the impurity leads to decrease of the conductivity of sample. In addition,the other electrochemical tests suggest that the δ-MnO_2microsphere is a promisingcandidate for electrochemical capacitor due to its good reversibility and high stability.
     Here, microwave-assisted hydrothermal is used to synthesize the MnO_2withdifferent structures and morphologies. It could be found that microwave irradiation played two roles here, that is, shorten the reaction time and get new shapes. In termsof reaction time, microwave heating can accelerate the reaction from hours to minutes.Meanwhile, in terms of new morphology, microwave heating not only obtain δ-MnO_2microspheres, α-MnO_2nanorods but also prepare γ-MnO_2nanosheets and β-MnO_2octahedrons or hollow microrods. More importantly, γ-MnO_2nanosheets and β-MnO_2octahedrons were prepared for the first time by a one-step microwave-assisted method.Therefore, exquisitely tuned and control over the structure and morphology ofmaterials can be easily obtained due to the concentration of HCl undermicrowave-assisted hydrothermal method. Electrocatalytic activities of thesynthesized MnO_2in KOH solution have been determined by cyclic voltammetrywhich show that all manganese dioxides can catalyze the oxygen reduction reaction(ORR) in alkaline medium with different catalytic activities. α-MnO_2nanorods appearto hold the highest catalytic activity due to their crystal phase and morphology withappropriate oxygen adsorption mode.
     Birnessite-type MnO_2has also been denoted as δ-MnO_2. It has a mixed-valencetwo-dimensional lamellar structure with an interlayer spacing of0.73nm and itscharacteristic of the birnessite is intercalated with Na+, K+or other cations and H2Omolecules. These cations in interlayer can maintain structural stability and balance ofchange. The interlayer spacing of birnessite-MnO_2can be tuned by species ofincorporation cations. The δ-MnO_2usually observed as the intermediate or precursorduring the format of tunnel structures. In our experimental conditions, branchedα-MnO_2nanorods were obtained by the reduction of potassium permanganate inhydrochloric acidic solution without using any catalysts and surfactants. To figure outthe formation mechanism of the branched α-MnO_2, time-dependent experiments wereperformed. The branched α-MnO_2was obtained by transformation of δ-MnO_2. Onbasis of the previous mechanism, the formation mechanism of the branch α-MnO_2nanorods can be concluded that “oriented attachment’’ and rolling-cum-phase process.Because of the δ-MnO_2nanosheets with the small size of crystalline domains aremetastable phase under high temperature and high acidity. In addition, theelectrochemical performances of the samples were examined by cyclic voltammetry tests. The results reveal that the specific surface area and the electrolyte will directlyimpact the specific capacitance.
     In short, combining the microwave irradiation with hydrothermal techniquerequired temperature for nanostructure growth can be rapidly achieved, which leads toenhanced kinetics of crystallization and promotes the formation of new phase ofproduct. The MnO_2with exquisitely tuned structures/morphologies have beensuccessfully synthesized by the microwave-assisted hydrothermal method. Theircrystal structures and morphologies were systematically studied. In addition, theelectrochemical properties of as-synthesized products were also studied in the area ofsupercapacitor and electrocatalysis.
引文
[1]曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1992.
    [2]谭柱中,梅光贵,李维健等.锰冶金学[M].湖南:中南大学出版社,2004.
    [3]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.
    [4]韩晓辉,张颖,刘开宇等.二氧化锰电容材料的制备及性能表征[J].电池工业,2008,13:30-34.
    [5]郑洪河.锂离子电池电解质[M].北京:化学工业出版社,2007.
    [6] Brock S L, Duan N, Tian Z R, et al. A review of porous manganese oxidematerials [J]. Chemistry of Materials,1998,10:2619-2628.
    [7] Zhu H T, Luo J, Yang H X, et al. Birnessite-type MnO2nanowalls and theirmagnetic properties [J]. The Journal of Physical Chemistry C,2008,112:17089-17094.
    [8] Espinal L, Suib S L, Rusling J F. Electrochemical catalysis of styreneepoxidation with films of MnO2nanoparticles and H2O2[J]. Journal of theAmerican Chemical Society,2004,126:7676-7682.
    [9] Hosono E, Matsuda H, Honma I, et al. Synthesis of single crystallineelectro-conductive Na0.44MnO2nanowires with high aspect ratio for the fastcharge-discharge Li ion battery [J]. Journal of Power Sources,2008,182:349-352.
    [10] Cheng F, Su Y, Liang J, et al. MnO2-based nanostructures as catalysts forelectrochemical oxygen reduction in alkaline media [J]. Chemistry ofMaterials,2009,22:898-905.
    [11] Jana S, Basu S, Pande S, et al. Shape-selective synthesis, magnetic properties,and catalytic activity of single crystalline β-MnO2nanoparticles [J]. TheJournal of Physical Chemistry C,2007,111:16272-16277.
    [12] Wu A J, Penner H, James E, et al. Structural, spectroscopic, and reactivitymodels for the manganese catalases [J]. Chemical Reviews,2004,104:903-938.
    [13] Lee G H, Huh S H, Jeong J W, et al. Anomalous magnetic properties of MnOnanoclusters [J]. Journal of the American Chemical Society,2002,124:12094-12095.
    [14]宋文顺.化学电源工艺学[M].北京:中国轻工业出版社,1998.
    [15]李景虹.先进电池材料[M].北京:化学工业出版社,2004.
    [16] Bénédicte P, Christiane P, Fabien T, et al. Structural-chemical disorder ofmanganese dioxides:1. Influence on surface properties at the solid-electrolyteinterface [J]. Journal of Colloid and Interface Science,2003,257:77-84.
    [17] Thackeray M M. Manganese oxides for lithium batteries [J]. Progress in SolidState Chemistry,1997,25:1-71.
    [18] Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals [J]. Journal ofMaterials Chemistry,1999,9:319-333.
    [19]努尔买买提,夏熙,阿依夏木. α-MnO2的研究进展[J].新疆化工,2002,3:5-9.
    [20]夏熙.二氧化锰及相关锰氧化物的晶体结构制备及放电性能[J].电池工业,2004,34:411-414.
    [21] Segal S R, Suib S L, Foland L. Decomposition of pinacyanol chloride dyeusing several manganese oxide catalysts [J]. Chemistry of Materials,1997,9:2526-2532.
    [22] Ohzuku T, Kitagawa M, Sawai K, et al. Topotactic reduction of Alpha-manganese (Di)oxide in nonaqueous lithium cells [J]. Journal of TheElectrochemical Society,1991,138:360-365.
    [23] Ghosh R, Shen X, Villegas J C, et al. Role of manganese oxide octahedralmolecular sieves in styrene epoxidation [J]. The Journal of Physical ChemistryB,2006,110:7592-7599.
    [24] Shen X F, Ding Y S, Liu J, et al. A magnetic route to measure the averageoxidation state of mixed-valent manganese in manganese oxide octahedralmolecular sieves (OMS)[J]. Journal of the American Chemical Society,2005,127:6166-6167.
    [25] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres:layer-by-layer synthesis and their application in lithium-ion battery [J]. TheJournal of Physical Chemistry B,2008,112:14836-14842.
    [26] Galindo H M, Carvajal Y, Njagi E, et al. Facile one-step template-freesynthesis of uniform hollow microstructures of cryptomelane-type manganeseoxide K-OMS-2[J]. Langmuir,2010,26:13677-13683.
    [27] Huang H, Sithambaram S, Chen C H, et al. Microwave-assisted hydrothermalsynthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and theircatalytic studies [J]. Chemistry of Materials,2010,22:3664-3669.
    [28] Xiao W, Wang D, Lou X W. Shape-controlled synthesis of MnO2nanostructures with enhanced electrocatalytic activity for oxygen reduction [J].The Journal of Physical Chemistry C,2009,114:1694-1700.
    [29] Wang G, Tang B, Zhuo L, et al. Facile and selected-control synthesis ofβ-MnO2nanorods and their magnetic properties [J]. European Journal ofInorganic Chemistry,2006,2006:2313-2317.
    [30] Zheng D, Sun S, Fan W, et al. One-step preparation of single-crystallineβ-MnO2nanotubes [J]. The Journal of Physical Chemistry B,2005,109:16439-16443.
    [31] Zhao J, Tao Z, Liang J, et al. Facile Synthesis of Nanoporous γ-MnO2structures and their application in rechargeable Li-ion batteries [J]. CrystalGrowth&Design,2008,8:2799-2805.
    [32] Ai Z, Zhang L, Kong F, et al. Microwave-assisted green synthesis of MnO2nanoplates with environmental catalytic activity [J]. Materials Chemistry andPhysics,2008,111:162-167.
    [33] Wu C, Xie W, Zhang M, et al. Environmentally friendly γ-MnO2hexagon-based nanoarchitectures: structural understanding and their energy-saving applications [J]. Chemistry–A European Journal,2009,15:492-500.
    [34] Rossouw M H, Liles D C, Thackeray M M. Synthesis and structuralcharacterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2,and Its lithiated derivative, Li1.09Mn0.91O2[J]. Journal of Solid State Chemistry,1993,104:464-466.
    [35] Strobel P, Charenton J C, Lenglet M. Structural chemistry of phyllomangana-tes: experimental evidence and structural models [J]. Revue de chimieminérale,1987,24:199-220.
    [36] Ma Y, Luo J, Suib S L. Syntheses of birnessites using alcohols as reducingreagents: effects of synthesis parameters on the formation of birnessites [J].Chemistry of Materials,1999,11:1972-1979.
    [37] Portehault D, Cassaignon S, Nassif N, et al. A Core–corona hierarchicalmanganese oxide and its formation by an aqueous soft chemistry mechanism[J]. Angewandte Chemie International Edition,2008,47:6441-6444.
    [38] Stouff P, Boulegue J. Synthetic10-Aa and7-Aa phyllomanganates; theirstructures as determined by EXAFS [J]. American Mineralogist,1988,73:1162-1169.
    [39] Ming B, Li J, Kang F, et al. Microwave-hydrothermal synthesis of birnessite-type MnO2nanospheres as supercapacitor electrode materials [J]. Journal ofPower Sources,2012,198:428-431.
    [40] Saratovsky I, Wightman P G, Pastén P A, et al. Manganese oxides: parallelsbetween abiotic and biotic structures [J]. Journal of the American ChemicalSociety,2006,128:11188-11198.
    [41] Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO2hierarchicalhollow nanostructures and their application in water treatment [J]. AdvancedMaterials,2008,20:452-456.
    [42] Gabriel C, Gabriel S, H. Grant E, et al. Dielectric parameters relevant tomicrowave dielectric heating [J]. Chemical Society Reviews,1998,27:213-224.
    [43] Stuerga D A C, Gaillard P. Microwave athermal effects in chemistry: a myth`sautopsy-pat I: historial background and fundamentals of wave-matterinteractio [J]. Journal of Microwave Power and Electromagnetic Energy,1996,31:87-100.
    [44] Nuchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis-acritical technology overview [J]. Green Chemistry,2004,6:128-141.
    [45] Kappe C O. Controlled microwave heating in modern organic synthesis [J].Angewandte Chemie International Edition,2004,43:6250-6284.
    [46] Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterialssynthesis [J]. Nanoscale,2010,2:1358-1374.
    [47] Kappe O, Dallnger D, Murphree S S. Practical microwave synthesis fororganic chemists [M]. Weinheim: Wiley-VCH,2009.
    [48] Mingos D M P, Baghurst D R. Tilden lecture. applications of microwavedielectric heating effects to synthetic problems in chemistry [J]. ChemicalSociety Reviews,1991,20:1-47.[49] Robinson J, Kingman S, Irvine D, etal. Understanding microwave heating effects in single mode typecavities-theory and experiment [J]. Physical Chemistry Chemical Physics,2010,12:4750-4758.
    [50] Schanche J S. Microwave synthesis solutions from personal chemistry [J].Molecular Diversity,2003,7:291-298.
    [51] Horikoshi S, Abe H, Torigoe K, et al. Access to small size distributions ofnanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticlesin aqueous carboxymethylcellulose solutions in batch and continuous-flowreactors [J]. Nanoscale,2010,2:1441-1447.
    [52] Kappe C O. The use of microwave irradiation in organic synthesis. fromlaboratory curiosity to standard practice in twenty years [J]. CHIMIAInternational Journal for Chemistry,2006,60:308-312.
    [53] Ondruschka B, Bonrath W. Microwave-assisted chemistry-a stock taking [J].CHIMIA International Journal for Chemistry,2006,60:326-329.
    [54] Jun Y W, Choi J S, Cheon J W. Shape control of semiconductor and metaloxide nanocrystals through nonhydrolytic colloidal routes [J]. AngewandteChemie International Edition,2006,45:3414-3439.
    [55] Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology [J]. Angewandte ChemieInternational Edition,2002,41:2446-2461.
    [56] Mutin P H, Vioux A. Nonhydrolytic processing of oxide-based materials:simple routes to control homogeneity, morphology, and nanostructure [J].Chemistry of Materials,2009,21:582-596.
    [57] Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles [J].Accounts of Chemical Research,2007,40:793-800.
    [58] Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology [J].Progress in Crystal Growth and Characterization of Materials,2007,53:117-166.
    [59] Gedanken A. Using sonochemistry for the fabrication of nanomaterials [J].Ultrasonics Sonochemistry,2004,11:47-55.
    [60] Bhushan B. Biomimetics:lessons from nature-an overview [J]. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and EngineeringSciences,2009,367:1445-1486.
    [61] Burda C, Chen X, Narayanan R, et al. Chemistry and properties ofnanocrystals of different shapes [J]. Chemical Reviews,2005,105:1025-1102.
    [62] Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides[J]. Progress in Solid State Chemistry,1988,18:259-341.
    [63] Kremsner J M, Kappe C O. Silicon carbide passive heating elements inmicrowave-assisted organic synthesis [J]. The Journal of Organic Chemistry,2006,71:4651-4658.
    [64] Obermayer D, Kappe C O. On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionicliquids [J]. Organic&Biomolecular Chemistry,2010,8:114-121.
    [65] Polshettiwar V, Varma R S. Aqueous microwave chemistry: a clean and greensynthetic tool for rapid drug discovery [J]. Chemical Society Reviews,2008,37:1546-1557.
    [66] Ai Z, Deng K, Wan Q, et al. Facile microwave-assisted synthesis andmagnetic and gas sensing properties of Fe3O4nanoroses [J]. The Journal ofPhysical Chemistry C,2010,114:6237-6242.
    [67] Schneider J J, Hoffmann R C, Engstler J, et al. Synthesis, characterization,defect chemistry, and FET properties of microwave-serived nanoscaled zincoxide [J]. Chemistry of Materials,2010,22:2203-2212.
    [68] Zhang H, Zhong X, Xu J J, et al. Fe3O4/polypyrrole/Au nanocomposites withcore/shell/shell structure: synthesis, characterization, and their electrochemicalproperties [J]. Langmuir,2008,24:13748-13752.
    [69] Bilecka I, Hintennach A, Djerdj I, et al. Efficient microwave-assisted synthesisof LiFePO4mesocrystals with high sycling stability [J]. Journal of MaterialsChemistry,2009,19:5125-5128.
    [70] Qiu G, Dharmarathna S, Zhang Y, et al. Facile microwave-assistedhydrothermal synthesis of CuO nanomaterials and their catalytic andelectrochemical properties [J]. The Journal of Physical Chemistry C,2012,116:468-477.
    [71] Cao C Y, Cui Z M, Chen C Q, et al. Ceria hollow nanospheres produced by atemplate-free microwave-assisted hydrothermal method for heavy metal ionremoval and catalysis [J]. The Journal of Physical Chemistry C,2010,114:9865-9870.
    [72] Katsuki H, Komarneni S. Microwave-hydrothermal synthesis of monodisp-ersed nanophase α-Fe2O3[J]. Journal of the American Ceramic Society,2001,84:2313-2317.
    [73] Sun W, Li J. Microwave-hydrothermal synthesis of tetragonal barium titanate[J]. Materials Letters,2006,60:1599-1602.
    [74] Yang L Y, Dong S Y, Sun J H, et al. Microwave-assisted preparation,characterization and photocatalytic properties of a dumbbell-shaped ZnOphotocatalyst [J]. Journal of Hazardous Materials,2010,179:438-443.
    [75] Qiu G, Huang H, Genuino H, et al. Microwave-assisted hydrothermalsynthesis of nanosized α-Fe2O3for satalysts and adsorbents [J]. The Journal ofPhysical Chemistry C,2011,115:19626-19631.
    [76] Wu L, Yao H, Hu B, et al. Unique lamellar sodium/potassium iron oxidenanosheets: facile microwave-assisted synthesis and magnetic andelectrochemical properties [J]. Chemistry of Materials,2011,23:3946-3952.
    [77] Chen S, Wang Y, Ahn H, et al. Microwave hydrothermal synthesis of highperformance tin-graphene nanocomposites for lithium ion batteries [J]. Journalof Power Sources,2012,216:22-27.
    [78] Zou Y, Kan J, Wang Y. Fe2O3-graphene rice-on-sheet nanocomposite for highand fast lithium ion storage [J]. The Journal of Physical Chemistry C,2011,115:20747-20753.
    [79] Yoon S, Lee E S, Manthiram A. Microwave-solvothermal synthesis of variouspolymorphs of nanostructured TiO2in different alcohol media and theirlithium ion storage properties [J]. Inorganic Chemistry,2012,51:3505-3512.
    [80] Ma Y L, Zhang L, Cao X F, et al. Microwave-assisted solvothermal synthesisand growth mechanism of WO3·(H2O)0.33hierarchical microstructures [J].CrystEngComm,2010,12:1153-1158.
    [81] Chen C, Sun L D, Li Z X, et al. Ionic liquid-based route to spherical NaYF4nanoclusters with the assistance of microwave radiation and their multicolorupconversion luminescence [J]. Langmuir,2010,26:8797-8803.
    [82] Wu C C, Shiau C Y, Ayele D W, et al. Rapid microwave-enhancedsolvothermal process for synthesis of CuInSe2particles and its morphologicmanipulation [J]. Chemistry of Materials,2010,22:4185-4190.
    [83] Baghbanzadeh M, Carbone L, Cozzoli P D, et al. Microwave-assistedsynthesis of colloidal inorganic nanocrystals [J]. Angewandte ChemieInternational Edition,2011,50:11312-11359.
    [84] Xia Y, Xiong Y, Lim B, et al. Formkontrolle bei der synthese vonmetallnanokristallen: einfache chemie, komplexe physik?[J]. AngewandteChemie,2009,121:62-108.
    [85] Park J, Joo J, Kwon S G, et al. Synthese monodisperser sph rischernanokristalle [J]. Angewandte Chemie,2007,119:4714-4745.
    [86] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse sphericalnanocrystals [J]. Angewandte Chemie International Edition,2007,46:4630-4660.
    [87] Cozzoli P D, Pellegrino T, Manna L. Synthesis, properties and perspectives ofhybrid nanocrystal structures [J]. Chemical Society Reviews,2006,35:1195-1208.
    [88] Viswanath B, Kundu P, Halder A, et al. Mechanistic aspects of shape selectionand symmetry breaking during nanostructure growth by wet chemical methods[J]. The Journal of Physical Chemistry C,2009,113:16866-16883.
    [89] Ganguli A K, Ganguly A, Vaidya S. Microemulsion-based synthesis ofnanocrystalline materials [J]. Chemical Society Reviews,2010,39:474-485.
    [90] Casavola M, Buonsanti R, Caputo G, et al. Colloidal strategies for preparingoxide-based hybrid nanocrystals [J]. European Journal of Inorganic Chemistry,2008,2008:837-854.
    [91] Carbone L, Cozzoli P D. Colloidal heterostructured nanocrystals: synthesisand growth mechanisms [J]. Nano Today,2010,5:449-493.
    [92] Opembe N N, King’ondu C K, Espinal A E, et al. Microwave-assistedsynthesis of manganese oxide octahedral molecular sieve (OMS-2)nanomaterials under continuous flow conditions [J]. The Journal of PhysicalChemistry C,2010,114:14417-14426.
    [93] Li Y, Wang J, Zhang Y, et al. Facile controlled synthesis and growthmechanisms of flower-like and tubular MnO2nanostructures bymicrowave-assisted hydrothermal method [J]. Journal of Colloid and InterfaceScience,2012,369:123-128.
    [94] Huang H, Sithambaram S, Chen C H, et al. Microwave-assisted hydrothermalsynthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and theircatalytic studies [J]. Chemistry of Materials,2010,22:3664-3669.
    [95] Long J W, Rhodes C P, Young A L, et al. Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates:making mesoporousMnO2nanoarchitectures stable in acid electrolytes [J]. Nano Letters,2003,3:1155-1161.
    [96] Li Z, Ding Y, Xiong Y, et al. Rational growth of various α-MnO2hierarchicalstructures and β-MnO2nanorods via a homogeneous catalytic route [J].Crystal Growth&Design,2005,5:1953-1958.
    [97] Li Q, Olson J B, Penner R M. Nanocrystalline α-MnO2nanowires byelectrochemical step-edge decoration [J]. Chemistry of Materials,2004,16:3402-3405.
    [98] Subramanian V, Zhu H, Vajtai R, et al. Hydrothermal synthesis andpseudocapacitance properties of MnO2nanostructures [J]. The Journal ofPhysical Chemistry B,2005,109:20207-20214.
    [99] Mathur A K, Majumder C B, Chatterjee S. Combined removal of BTEX in airstream by using mixture of sugarcane bagasse, compost and GAC as biofiltermedia [J]. Journal of Hazardous Materials,2007,148:64-74.
    [100] Gentner D R, Harley R A, Miller A M, et al. Diurnal and seasonal variabilityof gasoline-related volatile organic compound emissions in riverside,california [J]. Environmental Science&Technology,2009,43:4247-4252.
    [101] Padhy P K, Varshney C K. Isoprene emission from tropical tree species [J].Environmental Pollution,2005,135:101-109.
    [102] Aguero F N, Barbero B P, Gambaro L, et al. Catalytic combustion of volatileorganic compounds in binary mixtures over MnOx/Al2O3catalyst [J]. AppliedCatalysis B: Environmental,2009,91:108-112.
    [103] Rene E R, Murthy D V S, Swaminathan T. Performance evaluation of acompost biofilter treating toluene vapours [J]. Process Biochemistry,2005,40:2771-2779.
    [104] Morales M R, Barbero B P, Cadús L E. Evaluation and characterization ofMn-Cu mixed oxide catalysts for ethanol total oxidation: influence of coppercontent [J]. Fuel,2008,87:1177-1186.
    [105] Li W B, Chu W B, Zhuang M, et al. Catalytic oxidation of toluene onMn-containing mixed oxides prepared in reverse microemulsions [J]. CatalysisToday,2004,93-95:205-209.
    [106] Genuino H C, Dharmarathna S, Njagi E C, et al. Gas-phase total oxidation ofbenzene, toluene, ethylbenzene, and xylenes using shape-selective manganeseoxide and copper manganese oxide catalysts [J]. The Journal of PhysicalChemistry C,2012,116:12066-12078.
    [107] Liang S H, Teng F, Bulgan G, et al. Effect of phase structure of MnO2nanorodcatalyst on the activity for CO oxidation [J]. Journal of Physical Chemistry C,2008,112:5307-5315.
    [108] Iyer A, Del-Pilar J, King`ondu C K, et al. Water oxidation catalysis usingamorphous manganese oxides, octahedral molecular sieves (OMS-2), andoctahedral layered (OL-1) manganese oxide structures [J]. The Journal ofPhysical Chemistry C,2012,116:6474-6483.
    [109] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors:theoretical and experimental constraints [J]. Journal of The ElectrochemicalSociety,1996,143:3791-3799.
    [110] Chuang P Y, Hu C C. The electrochemical characteristics of binarymanganese-cobalt oxides prepared by anodic deposition [J]. MaterialsChemistry and Physics,2005,92:138-145.
    [111] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage ofenergy in capacitors [J]. Carbon,2001,39:937-950.
    [112] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advancedenergy conversion and storage devices [J]. Nature Materials,2005,4:366-377.
    [113] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte [J].Journal of Solid State Chemistry,1999,144:220-223.
    [114] Burke A. Ultracapacitors: why, how, and where is the technology [J]. Journalof Power Sources,2000,91:37-50.
    [115] Qu D, Shi H. Studies of activated carbons used in double-layer capacitors [J].Journal of Power Sources,1998,74:99-107.
    [116] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes frommultiwalled carbon nanotubes [J]. Applied Physics Letters,2000,77:2421-2423.
    [117] Yoon S, Lee J, Hyeon T, et al. Electric double-layer capacitor performance ofa new mesoporous carbon [J]. Journal of The Electrochemical Society,2000,147:2507-2512.
    [118] Park B O, Lokhande C D, Park H S, et al. Performance of supercapacitor withelectrodeposited ruthenium oxide film electrodes-effect of film thickness [J].Journal of Power Sources,2004,134:148-152.
    [119] Sugimoto W, Iwata H, Yasunaga Y, et al. Preparation of ruthenic acidnanosheets and utilization of its interlayer surface for electrochemical energystorage [J]. Angewandte Chemie International Edition,2003,42:4092-4096.
    [120] Kumaresa P S P, Dattatray S D, Thiripuranthagan S, et al. Fabrication andtextural characterization of nanoporous carbon electrodes embedded with CuOnanoparticles for supercapacitors [J]. Science and Technology of AdvancedMaterials,2011,12:044602.
    [121] Zhang F, Yuan C, Lu X, et al. Facile growth of mesoporous Co3O4nanowirearrays on Ni foam for high performance electrochemical capacitors [J].Journal of Power Sources,2012,203:250-256.
    [122] Zhu Z, Ping J, Huang X, et al. Hexagonal nickel oxide nanoplate-basedelectrochemical supercapacitor [J]. Journal of Materials Science,2012,47:503-507.
    [123] Xu C, Li B, Du H, et al. Electrochemical properties of nanosized hydrousmanganese dioxide synthesized by a self-reacting microemulsion method [J].Journal of Power Sources,2008,180:664-670.
    [124] Yuan C, Gao B, Su L, et al. Interface synthesis of mesoporous MnO2and itselectrochemical capacitive behaviors [J]. Journal of Colloid and InterfaceScience,2008,322:545-550.
    [125] Pang S C, Anderson M A, Chapman T W. Novel electrode materials forthin-film ultracapacitors: comparison of electrochemical properties ofsol-gel-derived and electrodeposited manganese dioxide [J]. Journal of TheElectrochemical Society,2000,147:444-450.
    [126]黄柏辉,杨萍,张宝宏.超级电容器材料MnO2在有机电解液中的电化学性能[J].应用科技,2006,33:59-62.
    [127] Tang N, Tian X, Yang C, et al. Facile synthesis of α-MnO2nanostructures forsupercapacitors [J]. Materials Research Bulletin,2009,44:2062-2067.
    [128] Zeng J H, Wang Y F, Yang Y, et al. Synthesis of sea-urchin shaped γ-MnO2nanostructures and their application in lithium batteries [J]. Journal ofMaterials Chemistry,2010,20:10915-10918.
    [129] Xiao W, Chen J S, Lu Q, et al. Porous spheres assembled from polythiophene(PTh)-coated ultrathin MnO2nanosheets with enhanced lithium storagecapabilities [J]. The Journal of Physical Chemistry C,2010,114:12048-12051.
    [130] West W C, Myung N V, Whitacre J F, et al. Electrodeposited amorphousmanganese oxide nanowire arrays for high energy and power densityelectrodes [J]. Journal of Power Sources,2004,126:203-206.
    [131] Kalubarme R S, Cho M S, Yun K S, et al. Catalytic characteristics of MnO2nanostructures for the O2reduction process [J]. Nanotechnology,2011,22:395402.
    [132] Gao T, Glerup M, Krumeich F, et al. Microstructures and spectroscopicproperties of cryptomelane-type manganese dioxide nanofibers [J]. TheJournal of Physical Chemistry C,2008,112:13134-13140.
    [133] Zhang L, Zhao X. Carbon-based materials as supercapacitor electrodes [J].Chemical Society Reviews,2009,38:2520-2531.
    [134] Liu J, Jiang J, Cheng C, et al. Co3O4nanowire@MnO2ultrathin nanosheetcore/shell arrays: a new class of high-performance pseudocapacitive materials[J]. Advanced Materials,2011,23:2076-2081.
    [135] Lee S, Gallant B, Byon H, et al. Nanostructured carbon-based electrodes:bridging the gap between thin-film lithium-ion batteries and electrochemicalcapacitors [J]. Energy&Environmental. Science.,2011,4:1972-1985.
    [136] Chen P, Shen G, Shi Y, et al. Preparation and characterization of flexibleasymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes [J]. ACS Nano,2010,4:4403-4411.
    [137] Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous α-MoO3withiso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. NatureMaterials,2010,9:146-151.
    [138] Wee G, Soh H Z, Cheah Y L, et al. Synthesis and electrochemical properties ofelectrospun V2O5nanofibers as supercapacitor electrodes [J]. Journal ofMaterials Chemistry,2010,20:6720-6725.
    [139] Xu J, Gao L, Cao J, et al. Preparation and electrochemical capacitance ofcobalt oxide (Co3O4) nanotubes as supercapacitor material [J]. ElectrochimicaActa,2010,56:732-736.
    [140] Hu C, Chang K, Lin M, et al. Design and tailoring of the nanotubular arrayedarchitecture of hydrous RuO2for next generation supercapacitors [J]. NanoLetters,2006,6:2690-2695.
    [141] Djurfors B, Broughton J N, Brett M J, et al. Microstructural characterizationof porous manganese thin films for electrochemical supercapacitorapplications [J]. Journal of Materials Science,2003,38:4817-4830.
    [142] Wang H, Yang G, Li Q, et al. Porous nano-MnO2: large scale synthesis via afacile quick-redox procedure and application in a supercapacitor [J]. NewJournal of Chemistry,2011,35:469-475.
    [143] Li H, Wang J, Chu Q, et al. Theoretical and experimental specific capacitanceof polyaniline in sulfuric acid [J]. Journal of Power Sources,2009,190:578-586.
    [144] Hyun T, Tuller H L, Youn D, et al. Facile synthesis and electrochemicalproperties of RuO2nanofibers with ionically conducting hydrous layer [J].Journal of Materials Chemistry,2010,20:9172-9179.
    [145] Prieto O, Arco M D, Rives V. Characterisation of K, Na, and Li birnessitesprepared by oxidation with H2O2in a basic medium. Ion exchange propertiesand study of the calcined products [J]. Journal of Materials Science,2003,38:2815-2824.
    [146] Beaudrouet E, Le Gal La Salle A, Guyomard D. Nanostructured manganesedioxides: synthesis and properties as supercapacitor electrode materials [J].Electrochimica Acta,2009,54:1240-1248.
    [147] Wang H, Qian D, Lu Z, et al. Facile synthesis of α-MnO2nanorods and theirelectrochemical performances [J]. Journal of Crystal Growth,2007,1:1-8.
    [148] Reddy R N, Reddy R G. Sol–gel MnO2as an electrode material forelectrochemical capacitors [J]. Journal of Power Sources,2003,124:330-337.
    [149] Villalobos M, Lanson B, Manceau A, et al. Structural model for the biogenicMn oxide produced by pseudomonas putida [J]. American Mineralogist,2006,91:489-502.
    [150] Post J, Veblen D. Crystal structure determinations of synthetic sodium,magnesium, and potassium birnessite using TEM and the rietveld method [J].American Mineralogist,1990,75:477-489.
    [151] Shen X F, Ding Y S, Hanson J C, et al. In situ synthesis of mixed-valentmanganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study[J]. Journal of the American Chemical Society,2006,128:4570-4571.
    [152] Wang X, Li Y. Synthesis and formation mechanism of manganese dioxidenanowires/nanorods [J]. Chemistry–A European Journal,2003,9:300-306.
    [153] Hsu Y, Chen Y C, Lin Y G, et al. Reversible phase transformation of MnO2nanosheets in an electrochemical capacitor investigated by in situ ramanspectroscopy [J]. Chemical Communications,2011,47:1252-1254.
    [154] Xu M, Jia W, Bao S, et al. Novel mesoporous MnO2for high-rateelectrochemical capacitive energy storage [J]. Electrochimica Acta,2010,55:5117-5122.
    [155] Li Y, Xie H Q, Wang J F, et al. Preparation and electrochemical performancesof α-MnO2nanorod for supercapacitor [J]. Materials Letters,2011,65:403-405.
    [156] Ragupathy P, Vasan H, Munichandraiah N. Synthesis and characterization ofnano-MnO2for electrochemical supercapacitor studies [J]. Journal of TheElectrochemical Society,2008,155: A34-A40.
    [157] Ngala J K, Alia S, Dobley A, et al. Characterization and electrocatalyticbehavior of layered Li2MnO3and its acid-treated form [J]. Chemistry ofMaterials,2006,19:229-234.
    [158] Hegde M S, Madras G, Patil K C. Combination of lightweight elements andnanostructured materials for batteries [J]. Accounts of Chemical Research,2009,42:704-712.
    [159] Zhang Z Y, Li M J, Wu Z L, et al. Ultra-thin PtFe-nanowires as durableelectrocatalysts for fuel cells [J]. Nanotechnology,2011,22:015602.
    [160] Kinoshita K. Electrochemical oxygen technology [M]. New York: Wiley,1992.
    [161] Feng Y J, He T, AlonsoVante N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4and CoSe2nanoparticles [J].Chemistry of Materials,2007,20:26-28.
    [162] Ming B S, Li J L, Kang F Y, et al. Microwave-hydrothermal synthesis ofbirnessite-type MnO2nanospheres as supercapacitor electrode materials [J].Journal of Power Sources,2012,198:428-431.
    [163] Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and amethanogen famine before the great oxidation event [J]. Nature,2009,458:750-753.
    [164] Rios E C, Rosario A V, Mello R M Q, et al. Poly(3-methylthiophene)/MnO2composite electrodes as electrochemical capacitors [J]. Journal of PowerSources,2007,163:1137-1142.
    [165] Ghaemi M, Ataherian F, Zolfaghari A, et al. Charge storage mechanism ofsonochemically prepared MnO2as supercapacitor electrode: effects ofphysisorbed water and proton conduction [J]. Electrochimica Acta,2008,53:4607-4614.
    [166] Truong T T, Liu Y, Ren Y, et al. Morphological and crystalline evolution ofnanostructured MnO2and its application in lithium–air batteries [J]. ACSNano,2012,6:8067-8077.
    [167] Ikeda H, Furukawa N, Ide M. Metal-air batteries [J]. Abstracts of Papers of theAmerican Chemical Society,1976,69.
    [168] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery [J]. Journal of The Electrochemical Society,1996,143:1-5.
    [169] Matsunaga M, Ito Y, Yoshizawa S. Studies on the alkali metal alloy-chlorinesecondary battery [J]. Journal of Power Sources,1976,1:159-167.
    [170] Armand M, Tarascon J M. Building better batteries [J]. Nature,2008,451:652-657.
    [171] Yu P, Zhang X, Wang D, et al. Shape-controlled synthesis of3D hierarchicalMnO2nanostructures for electrochemical supercapacitors [J]. Crystal Growthand Design,2008,9:528-533.
    [172] Post J E,Veblen D R. Crystal structure determinations of synthetic sodium,magnesium, and potassium birnessite using TEM and the rietveld method [J].American Mineralogist,1990,75:477-489.
    [173] Chu Q X, Wang X F, Zhang X H, et al. Buckled layers in K0.66Mn2O4·0.28H2Oand K0.99Mn3O6·1.25H2O synthesized at high pressure: implication for themechanism of layer-to-tunnel transformation in manganese oxides [J].Inorganic Chemistry,2011,50:2049-2051.
    [174] Zhang H T, Chen X H, Zhang J H, et al. Synthesis and characterization ofone-dimensional K0.27MnO2·0.5H2O [J]. Journal of Crystal Growth,2005,280:292-299.
    [175] Post J E. Manganese oxide minerals: crystal structures and economic andenvironmental significance [J]. Proceedings of the National Academy ofSciences of the United States of America,1999,96:3447-3454.
    [176] Shen X F, Ding Y S, Liu J, et al. Control of nanometer-scale tunnel sizes ofporous manganese oxide octahedral molecular sieve nanomaterials [J].Advanced Materials,2005,17:805-809.
    [177] Huang X, Lv D, Yue H, et al. Controllable synthesis of α-and β-MnO2:cationic effect on hydrothermal crystallization [J]. Nanotechnology,2008,19:225606.
    [178] C.M J. Local structure of lithiated manganese oxides [J]. Solid State Ionics,2006,177:11-19.
    [179] Foord J S, Jackman R B, Allen G C. An X-ray photoelectron spectroscopicinvestigation of the oxidation of manganese [J]. Philosophical Magazine A,1984,49:657-663.
    [180] Lee S J, Gavriilidis A, Pankhurst Q A, et al. Effect of drying conditions ofAu-Mn Co-precipitates for low-temperature CO oxidation [J]. Journal ofCatalysis,2001,200:298-308.
    [181] Oku M, Hirokawa K, Ikeda S. X-ray photoelectron spectroscopy ofmanganese-oxygen systems [J]. Journal of Electron Spectroscopy and RelatedPhenomena,1975,7:465-473.
    [182] Barr T L, Fries C G, Cariati F, et al. A spectroscopic investigation of ceriummolybdenum oxides [J]. Journal of the Chemical Society, Dalton Transactions,1983,1825-1829.
    [183] Roche I, Cha net E, Chatenet M, et al. Carbon-supported manganese oxidenanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) inalkaline medium: physical characterizations and ORR mechanism [J]. Journalof Physical Chemistry C,2006,111:1434-1443.
    [184] Lima F H B, Calegaro M L,Ticianelli E A. Electrocatalytic activity ofmanganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochimica Acta,2007,52:3732-3738.
    [185] Wang Y X, Balbuena P B. Roles of proton and electric field in theelectroreduction of O2on Pt(111) surfaces: results of an Ab-Initio moleculardynamics study [J]. The Journal of Physical Chemistry B,2004,108:4376-4384.
    [186] Cheng F Y, Shen J, Peng B, et al. Rapid room-temperature synthesis ofnanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].Nature Chemistry,2011,3:79-84.
    [187] Son D N, Takahashi K. Selectivity of palladium-cobalt surface alloy towardoxygen reduction reaction [J]. Journal of Physical Chemistry C,2012,116:6200-6207.
    [188] Zhou K B, Wang R P, Xu B Q, et al. Synthesis, characterization and catalyticproperties of CuO nanocrystals with various shapes [J]. Nanotechnology,2006,17:3939.
    [189] Manna S, Das K, De S K. Template-free synthesis of mesoporous CuOdandelion structures for optoelectronic applications [J]. ACS AppliedMaterials&Interfaces,2010,2:1536-1542.
    [190] Cao L, Fan P, Barnard E S, et al. Tuning the color of silicon nanostructures [J].Nano Letters,2010,10:2649-2654.
    [191] Kuiry S C, Patil S D, Deshpande S, et al. Spontaneous self-assembly ofcerium oxide nanoparticles to nanorods through supraaggregate formation [J].The Journal of Physical Chemistry B,2005,109:6936-6939.
    [192] Ding Y S, Shen X F, Gomez S, et al. Hydrothermal growth of manganesedioxide into three-dimensional hierarchical nanoarchitectures [J]. AdvancedFunctional Materials,2006,16:549-555.
    [193] Zhu J, Peng H, Chan C K, et al. Hyperbranched lead selenide nanowirenetworks [J]. Nano Letters,2007,7:1095-1099.
    [194] Nehl C L, Liao H, Hafner J H. Optical properties of star-shaped goldnanoparticles [J]. Nano Letters,2006,6:683-688.
    [195] Gerbec J A, Magana D, Washington A, et al. Microwave-enhanced reactionrates for nanoparticle synthesis [J]. Journal of the American Chemical Society,2005,127:15791-15800.
    [196] Meher S K, Rao G R. Effect of microwave on the nanowire morphology,optical, magnetic, and pseudocapacitance behavior of Co3O4[J]. The Journalof Physical Chemistry C,2011,115:25543-25556.
    [197] Ma Y, Zhang L, Cao X, et al. Microwave-assisted solvothermal synthesis andgrowth mechanism of WO3·(H2O)0.33hierarchical microstructures [J].CrystEngComm,2010,12:1153-1158.
    [198] Kumar R, Sithambaram S, Suib S L. Cyclohexane oxidation catalyzed bymanganese oxide octahedral molecular sieves-effect of acidity of the catalyst[J]. Journal of Catalysis,2009,262:304-313.
    [199] Cheng F, Zhao J, Song W, et al. Facile controlled synthesis of MnO2nanostructures of novel shapes and their application in batteries [J]. InorganicChemistry,2006,45:2038-2044.
    [200] Subramanian V, Zhu H, Wei B. Alcohol-assisted room temperature synthesisof different nanostructured manganese oxides and their pseudocapacitanceproperties in neutral electrolyte [J]. Chemical Physics Letters,2008,453:242-249.
    [201] Qiu G, Huang H, Dharmarathna S, et al. Hydrothermal synthesis of manganeseoxide nanomaterials and their catalytic and electrochemical properties [J].Chemistry of Materials,2011,23:3892-3901.
    [202] Zhu J, Li Q, Bai L, et al. Metastable tetragonal Cu2Se hyperbranchedstructures: large-scale preparation and tunable electrical and optical responseregulated by phase conversion [J]. Chemistry–A European Journal,2012,18:13213-13221.
    [203] Kang L, Zhang M, Liu Z, et al. IR spectra of manganese oxides with eitherlayered or tunnel structures [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2007,67:864-869.
    [204] Julien C M, Massot M, Poinsignon C. Lattice vibrations of manganese oxides:part I. periodic structures [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2004,60:689-700.
    [205] Tang N, Tian X, Yang C, et al. Facile synthesis of α-MnO2nanorods forhigh-performance alkaline batteries [J]. Journal of Physics and Chemistry ofSolids,2010,71:258-262.
    [206] Gao T, Fjellv g H, Norby P. A comparison study on Raman scatteringproperties of α-and β-MnO2[J]. Analytica Chimica Acta,2009,648:235-239.
    [207] Bernardi F, Distefano G, Mangini A, et al. Photoelectron spectra of substitutedanisoles and thioanisoles [J]. Journal of Electron Spectroscopy and RelatedPhenomena,1975,7:457-463.
    [208] King’ondu C K, Iyer A, Njagi E C, et al. Light-assisted synthesis of metaloxide heirarchical structures and their catalytic applications [J]. Journal of theAmerican Chemical Society,2011,133:4186-4189.
    [209] Cai W, Yu J, Gu S, et al. Facile hydrothermal synthesis of hierarchicalboehmite: sulfate-mediated transformation from nanoflakes to hollowmicrospheres [J]. Crystal Growth&Design,2010,10:3977-3982.
    [210] Chen J S, Zhu T, Li C M, et al. Building hematite nanostructures by orientedattachment [J]. Angewandte Chemie International Edition,2011,50:650-653.
    [211] Xu M, Zhao D, Bao S, et al. Mesoporous amorphous MnO2as electrodematerial for supercapacitor [J]. Journal of Solid State Electrochemistry,2007,11:1101-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700