生物油分离与精制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,由于化石能源的日益枯竭以及人类对能源需求的增加,可再生能源受到人们的重视。生物质就是一种洁净可再生能源,由于其自身氮、硫含量少,所以生物质在利用过程中所释放的SO2和NOx要比通常的化石能源要少得多。同时,生物质生长过程中光合作用所吸收的二氧化碳的量和利用过程中所释放的二氧化碳的量差不多是相当的,故生物质的利用也被称为二氧化碳零排放。
     从19世纪70中期年代石油危机开始,围绕生物质转化为液体燃料和化学品的研究从未停止。作为生物质热解产物,生物油在生产化学品方面具有很大的应用潜力,此外它也可以看作是具有前途的液体燃料。生物油的性质与汽油燃料油很大的不同,这也使得生物油的处理和应用出现很多的问题。
     1.无机盐及盐溶液有效分离生物油的研究
     生物油要想作为一种生产化学品的资源,必须发展有效的分离方法,以生成极性类似的组分并且使不稳定组分聚集。相分离是一种有效的实现生物油初步分离的方法,通过加入少量无机盐(生物油质量的6%)或者盐溶液(生物油质量的10%),生物油可以较快形成两相(其中上层占40–80 wt%,下层占20–60 wt%),这些盐包括氯化锂、氯化钙、氯化铁、硫酸铵、碳酸钾和硝酸铁。根据元素分析、定量碳谱和GC/MS分析,我们证实了生物油中的一些主要组分分别富集于上、下两层。上层具有高含量的水、乙酸和水溶性化合物,并且表现出低的密度、粘度以及热值,此外,上层的可蒸馏组分的含量很高,达到65%。下层的性质刚好和上层相反,具有低含量的水和高含量的木质素热解产物,表现出高的粘度和热值,同时可蒸馏组分很少,只有不到10%的含量。上、下层的比例取决于所加盐的类型以及其用量。
     2.利用碳酸二甲酯和离子液体对酚类O-甲基化的研究
     酚类O-甲基化是一种重要的有机反应,其产物芳基甲基醚是精细化工里有用的中间体,因此这种反应被人们所广泛研究。由于酚类是引起生物油不稳定的重要原因,故而对酚类O-甲基化有利于生物油的稳定。我们以碳酸二甲酯(DMC)为甲基化试剂,在离子液体1-丁基-3-甲基氯化咪唑([bmim]Cl)存在下,对木质素热解的三种酚(苯酚、愈创木酚和丁香酚)进行了O-甲基化反应,同时优化了反应条件。由于生物油通常含有大量的水和乙酸,我们也研究了它们对苯酚O-甲基化反应的影响。碳酸二甲酯的水解反应以及乙酸-碳酸二甲酯的酯化反应都能和苯酚O-甲基化反应竞争,并且乙酸对反应的影响要更大些。最后,我们对反应机理做了探讨,它可以用软硬酸碱理论来解释。
     3.利用酚类O-甲基化精制生物油的研究
     生物油由400多种有机化合物组成,主要包括羧酸、醇类、醛类、酯类、酮类、糖类、酚类和一些具有多官能团的化合物。生物油原油由于复杂的组成而表现出一些不需要的性质,例如高氧含量(35–40%)、低热值、腐蚀性、粘度大、低挥发性、高酸性以及热不稳定性,这些性质给生物油的利用造成困难,生物油要想成为车用油,必须改善这些性质。我们采用以碳酸二甲酯为甲基化试剂,离子液体催化的O-甲基化反应,对氯化锂溶液分离生物油所得下层进行精制。在反应过程中,酚全部转化为相应的芳基甲基醚,同时乙酸和其他羧酸转化为乙酸甲酯和其它相应甲基酯。这些数据都表明我们所采用的方法是一种潜在的精制生物油的方法。
Due to the diminishing supplies of fossil fuels and increasing energy demand worldwide, renewable energy has gained great concern in the past few decades. Biomass, which can be found abundantly in nature, is considered to be a clean resource because it gives lower emissions of SO2, NOx and soot than conventional fossil-based fuels. The most attractive advantage of biomass is that it has net zero CO2 emission, which can alleviate the greenhouse effect caused mostly by fossil fuels. Many efforts have been made to convert biomass to liquid fuels and chemicals since the oil crises in the mid-1970s. Fast-pyrolysis-derived bio-oils have potential as feed stocks for chemical production and as a promising route to liquid fuels. The composition and properties of the oils differ considerably from those of petroleum- based fuel oils. Because of some special properties of pyrolysis oils, many problems arise in their handing and utilization.
     1. Effective Phase Separation of Biomass Pyrolysis Oils by Adding Aqueous Salt Solutions
     Effective separation methods must be developed to generate fractions of similar polarity and to concentrate the undistillable compounds before bio-oils are to be a source of chemicals production. Phase separation is one effective pathway to realize initial separation of bio-oil. By adding a little salt (3 wt% of bio-oil) or aqueous salt solution (10 wt% of bio-oil) including LiCl, CaCl2, FeCl3, (NH4)SO4, K2CO3 and Fe(NO_3)_3, the pyrolysis bio-oil of rice husk would form fast two phases (40–80 wt% of the upper phase, 20–60 wt% of the bottom phase). On basis of elemental analysis, 13C NMR integrations and GC/MS analysis, it has been demonstrated that some major components in the bio-oil are concentrated in upper/bottom phases respectively. The upper layers exhibited high contents of water, acetic acid and water-soluble compounds, low density, viscosity, calorific values and high distillable substances (up to 65%). The bottom layer consists of low water content, high lignin-pyrolysis compounds, and low distillable substances (<10%), with high viscosity and calorific values. The physiochemical properties of two phases from the phase separation depend on the nature and dosage of salt added.
     2. O-Methylation of the Phenols with Dimethyl Carbonate Using [bmim]Cl
     O-methylation of phenols has been extensively studied as an important organic reaction, and its products, aryl methyl ethers, are valuable intermediates in fine chemicals. Phenols are responsible for the thermal instability of bio-oil.Thus, O-methylation of phenols is helpful for stability of bio-oil. Using dimethyl carbonate (DMC) as a methylation reagent, the O-methylation was performed for three phenols (phenol, guaiacol and eugenol) as lignin-pyrolysis compounds in an ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim]Cl), and the conditions was optimized. Because biomass pyrolysis oils usually contain large amount of water and acetic acid, their influences on the O-methylation reaction were investigated. Both hydrolysis of DMC and the esterification of acetic acid with DMC compete with the O-methylation of phenol. Acetic acid can lead to a more rapid decrease in the yield of O-methylation of phenol. The mechanism for O-methylation of phenol was also studied, and it can be rationalized by the Hard-Soft Acid-Base (HSAB) theory.
     3. Highly Efficient O-Methylation of the Phenolic Bio-Oil with Dimethyl Carbonate Using [bmim]Cl
     The bio-oil is made up of more than 400 organic compounds, mainly including acids, alcohols, aldehydes, esters, ketones, sugars, phenols, and components with multifunctional groups. The complexity of bio-oil make it appear some undesired properties, such as high oxygen content (35–40%), low heating value, corrosiveness, high viscosity, incomplete volatility, and chemical instability. These properties, however, limit the applications of bio-oil. The bio-oil couldn’t be used as transportation fuel until some upgrading methods was used to improved it’s properties. Hence, the O-methylation was performed for the bottom layer formed through phase separation of a biomass pyrolysis oil by adding salt solutions. GC/MS analysis showed that phenols in the bio-oil reacted with DMC efficiently and were converted into corresponding aryl methyl ethers, and acetic acid and other carboxylic acids were converted into methyl acetate and some other methyl esters. The O-methylation of phenolic bio-oil with DMC using [bmim]Cl would be a potential method for upgrading of bio-oil.
引文
(1) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manage. 2007, 48, 87–92.
    (2) Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass.Org. Geochem. 1999, 30, 1479–1493.
    (3) Bridgwater, A. V.; Peacocke, G. V. C. Fast pyrolysis processes for biomass. Renewable Sustainable Energy Rev. 2000, 4, 1–73.
    (4) Czernik, S.; Bridgwater, A. V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18, 590–598.
    (5) Elliott, D. C. Water, alkali and char in flash pyrolysis oils. Biomass Bioenergy 1994, 7, 179–185.
    (6) Gros, S. Pyrolysis liquid as diesel fuel. Wartsila Diesel International. In Seminar on power production from biomass II, 27.–28.3, Espoo, Finland, 1995.
    (7) Oasmaa, A.; Czernik, S. Fuel oil quality of biomass pyrolysis oils-State of the art for the end users. Energy Fuels 1999, 13, 914–921.
    (8) Shihadeh, A.; Hochgreb, S. Impact of biomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy Fuels 2002, 16, 552–561.
    (9) Scholze, B.; Meier, D. Characterization of the water–insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 2001, 60, 41–54.
    (10) Meier, D.; Oasmaa, A.; Peacocke, G. V. C. Properties of Fast Pyrolysis Liquids: Status of Test Methods. Characterization of Fast Pyrolysis Liquids. In Developments in Thermochemical Biomass Conversion; Bridgwater, A. V., Boocock, D. G. B., Eds.; Blackie Academic & Professional: London, 1997; pp 391–408.
    (11) Oasmaa, A.; Peacocke, C. A guide to physical characterization of biomass-derived fast pyrolysis liquids. Espoo: VTT Publications, 2001, 28–39.
    (12) Luo, Z. Y.; Wang, S. R.; Liao, Y. F.; Zhou, J. S.; Gu, Y. L.; Cen, K. F. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 2004, 26, 455–462.
    (13) He, R. H.; Philip Ye, X.; English, B. C.; Satrio, J. A. Influence of pyrolysis condition on switchgrass bio–oil yield and physicochemical properties. Bioresour. Technol. 2009, 100, 5305–5311.
    (14) Boucher, M. E.; Chaala, A.; Roy, C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 2000, 19,337–350.
    (15) Piskorz, J.; Scott, D. S.; Radlien, D. Composition of oils obtained by fast pyrolysis of different woods. In Pyrolysis Oils from Biomass: Producing Analyzing and Upgrading; American Chemical Society: Washington, DC, 1988; pp 167–178.
    (16) Zheng, J. L. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. J. Anal. Appl. Pyrolysis 2007, 80, 30–35.
    (17) Zheng, J. L.; Yi, W. M.; Wang, N. N. Bio-oil production from cotton stalk. Energy Convers. Manage. 2008, 49, 1724–1730.
    (18) Zheng, J. L. Pyrolysis oil from fast pyrolysis of maize stalk. J. Anal. Appl. Pyrol. 2008, 83, 205–212.
    (19) Polk, M. B.; Phingbodhippakkiya, M. Development of Methods for the Stabilization of Pyrolytic Oils, EPA-600/2-81-201, September 1981.
    (20) Czernik, S.; Johnson, D. K.; Black, S. Stability of wood fast pyrolysis oil. Biomass Bioenergy 1994, 7, 187–192.
    (21) Dieblod, J. P.; Czernik, S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 1997, 11, 1081–1091.
    (22) Oasmaa, A.; Kuoppala, E.; Selin, J. F.; Gust, S.; Solantausta, Y. Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition. Energy Fuel 2004, 18, 1578–1583.
    (23) Oasmaa, A.; Meier, D. Norms and standards for fast pyrolysis liquids 1. Round robin test. J. Anal. Appl. Pyrolysis 2005, 73, 323–334.
    (24) Chaala, A.; Ba, T.; Garcia-Perez, M.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark: Aging and thermal stability. Energy Fuels 2004, 18, 1535–1542.
    (25) Yu, F.; Deng, S. B.; Chen, P.; Liu, Y. H.; Wan, Y. Q.; Olson, A.; Kittelson, D.; Ruan, R. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl. Biochem. Biotechnol. 2007, 137, 957–970.
    (26) Lu, Q.; Yang, X. L.; Zhu, X. F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J. Anal. Appl. Pyrolysis 2008, 82, 191–198.
    (27) Oasmaa, A.; Kuoppala, E.; Gust, S.; Solantausta, Y. Fast pyrolysis of forestryresidue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy Fuel 2003, 17, 1–12.
    (28) Pérez, M. G.; Chaala, A.; Padel, H.; Kretschmer, D.; Roy, C. Vacuum pyrolysis of softwood and hardwood biomass: Comparison between product yields and bio-oil properties. J. Anal. Appl. Pyrol. 2007, 78, 104–16.
    (29) Pérez, M.G.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Rodrigue, D.; Roy, C. Multiphase Structure of Bio-oils. Energy Fuel 2006, 20, 364–75.
    (30) Fratini, E.; Bonini, M.; Oasmaa, A.; Solantausta, Y.; Teiseira, J.; Baglioni, P. SANS analysis of the microstructural evolution during the aging of pyrolysis oils from biomass. Langmuir 2006, 22, 306–12.
    (31) Tzanetakis, T.; Ashgriz, N.; James, D. F.; Thomson, M. J. Liquid fuel properties of hardwood derived bio-oil. Energy Fuels 2008, 22, 2725–2733.
    (32) Oasmaa, A.; Leppamaki, E.; Koponen, P.; Levander, J.; Tapola, E. Physical characterization of biomass-based pyrolysis liquids. In Application of standard fuel oil analyses. Espoo 1997, Technical Research Centre of Finland; 1997.
    (33) Sipila, K.; Keoppala, E.; Fagernas, L.; Oasmaa, A. Characterization of biomass- based flash pyrolysis oils. Biomass Bioenergy 1998, 14, 103–13.
    (34) Beis, S. H.; Onay, O.; Kockar, O. M. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew. Energy 2002, 26, 21–32.
    (35) Ozcimen, D.; Karaosmanoglu, F. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energy 2004, 29, 779–87.
    (36) Diebold, J. P. A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils; Report No. NREL/SR-570-27613; National Renewable Energy Laboratory: Golden, CO, 2000.
    (37) Elliot, D. C. Analysis and comparison of biomass pyrolysis/gasification condensates-Final Report, No. PNL-5943, Pacific Northwest Laboratory, Richland, WA, 1986.
    (38) Amen-Chen, C.; Pakdel, H.; Roy, C. Production of monomeric phenols by thermochemical conversion of biomass: a review Biomass Bioenergy 2001, 79,277–299.
    (39) Milne, T. A.; Agblevor, F.; Davis, M.; Deutch, S.; Johnson, D. In Developments in Thermal Biomass Conversion; Bridgwater, A. V., Boocock, D. G. B., Eds.; Blackie Academic and Professional: London, UK, 1997.
    (40) Branca, C.; Giudicianni, P.; Blasi, C. D. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind. Eng. Chem. Res. 2003, 42, 3190–3202.
    (41) Mohan, D.; Pittman, C. U., Jr.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889.
    (42) Murwanashyaka, J. N.; Pakdel, H.; Roy, C. Separation of syringol from beech wood derived vacuum pyrolysis oil. Sep. Purif. Technol. 2001, 24, 155–165.
    (43)郭祚刚,王树荣,朱颖颖,骆仲泱,岑可法.生物油酸性组分分离精制研究.燃料化学学报2009, 37, 49–52.
    (44) Wang, S. R.; Gu, Y. L.; Liu, Q.; Yao, Y.; Guo, Z. G.; Luo, Z. Y.; Cen. K. F. Separation of bio-oil by molecular distillation. Fuel Process. Technol. 2009, 90, 738–745.
    (45) Sandvig, E.; Walling, G.; Daugaard, D.E.; Pletka, R. J.; Radlein, D.; Johnson, W.; Brown, R.C. The prospect for integrating fast pyrolysis into biomass power systems. Int. J. Power Energy Sys. 2004, 24, 228–238.
    (46) Piskorz, J.; Scott, D. S.; Radlein, D. Composition of oils obtained by fast pyrolysis of different woods. In Pyrolysis Oils from Biomass: Producing, Analyzing, and Upgrading, eds E. Soltes and T. Milne, pp. 167–178. American Chemical Society, Symposium Series No. 376, 1988.
    (47) Scholze, B.; Meier, D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrol. 2001, 60, 41–54.
    (48) Ba, T.; Chaala, A.; Pérez, M. G.; Rodrigue, D.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water- soluble and water-insoluble fractions. Energy Fuel 2004, 18, 704–712.
    (49) Underwood, G. Commercialization of fast pyrolysis products. In BiomassThermal Processing; Hogan, E., Grassi, G., Bridgwater, A. V., Eds.; CPL Press: Newbury, U.K., 1992; pp 226–228.
    (50) Underwood, G. L.; Graham, R. G. Method of using fast pyrolysis liquids as liquid smoke. US Patent 4876108, 1989.
    (51) Underwood, G. L. High browning liquid smoke composition and method of making a high browning liquid smoke composition. US Patent 5039537, 1991.
    (52) Oehr, K. H.; Scott, D. S.; Czernik, S. Method of producing calcium salts from biomass. US Patent 5264623, 1993.
    (53) Chum, H. L.; Kreibich, R. E. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast pyrolysis oils. US Patent 5091499, 1993.
    (54) Kelly, S.; Wang, X.; Myers, M.; Johnson, D.; Scahill, J. Use of biomass pyrolysis oils for preparation of modified phenol formaldehyde resins. In Developments in Thermochemical Biomass Conversion; Bridgwater, A. V., Boocock, D. G. B., Eds.; Blackie Academic & Professional: London, 1997; pp 557–572.
    (55) Himmelblau, A. Method and apparatus for producing water-soluble resin and resin product made by that method. US Patent 5034498, 1991.
    (56) Giroux, R.; Freel, B.; Graham, R. Natural resin formulations. US Patent 6326461, 2001.
    (57) Roy, C.; Pakdel, H. Process for the production of phenolic-rich pyrolysis oils for use in making phenolic-formaldehyde resole resins. US Patent 6143856, 2000.
    (58) Tsiantzi, S.; Athanassiadou, E. Wood adhesives made with pyrolysis oil. PyNe Newsletter 2000, 10, 10–11.
    (59) Freel, B; Graham, R. G. Bio-oil preservatives. US Patent 6485841, 2002.
    (60) Barry, F.; Graham, R. G. Bio-oil preservatives. PCT/CA99/00984; WO 00/25996.
    (61) Mourant, D.; Yang, D.-Q.; Lu, X.; Roy, C. Anti-fungal properties of the pyrolign eous liquors from the pyrolysis of softwood bark. Wood Fiber Sci. 2005, 37, 542–548.
    (62) Murwanashyaka, J. N.; Pakdel, H.; Roy, C. Separation of syringol from beech wood derived vacuum pyrolysis oil. Sep. Purif. Technol. 2001, 24, 155–165.
    (63) Chum, H.; Deibold, J.; Scahill, J.; Johnson, D.; Black, S.; Schroeder, H.;Kreibich, R. E. Biomass pyrolysis oil feedstocks for phenolic adhesives. In Adhesives from Renewable Resources; Hemingway, R. W., Conner, A. H., Branham, S. J., Eds.; ACS Symposium Series No. 385; American Chemical Society: Washington, DC, 1989; pp 135–151.
    (64) Amen-Chen, C.; Pakdel, H.; Roy, C. Separation of phenols from Eucalyptus wood tar. Biomass Bioenergy 1997, 13, 25–37.
    (65) Oasmaa, A.; Kuoppala, E.; Solantausta, Y. Pyrolysis of forestry residue. 2. physicochemical composition of product liquid. Energy Fuels 2003, 17, 433–443.
    (66) Oasmaa, A.; Kuoppala, E. Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 2003, 17, 1075–1084.
    (67) Shriner, R. L.; Fuson, R. C.; Curtin, D. Y. The Synthetic Identification of Organic Compounds: A Laboratory Manual, 4th Edition; Wiley: New York, 1964
    (68) Mahfud, F. H.; van Geel, F. P.; Venderbosch, R. H.; Heeres, H. J. Acetic Acid Recovery from Fast Pyrolysis Oil. An Exploratory Study on Liquid-Liquid Reactive Extraction using Aliphatic Tertiary Amines. Sep. Sci. Technol. 2008, 43, 3056–3074.
    (69) Moens, L.; Lakewood, C. Isolation of levoglucosan from pyrolysis oil from cellulose. US Patent 5371212, 1994.
    (70)张洪勋,庄续亮,杨建州.自热解油中制备1, 6-脱水-β-D-吡喃葡萄糖的方法中国专利00107956, 2000.
    (71) Stradal, J. A.; Underwood, G. L. Process for producing hydroxyacetaldehyde. US Patent 5252188, 1993.
    (72) Stradal, J. A.; Underwood, G. L. Process for producing hydroxyacetaldehyde. US Patent 5393542, 1995.
    (73) Rout, P. K.; Naik, M. K.; Naik, S. N.; Goud, V. V.; Das, L. M.; Dalai, A. K. Supercritical CO2 fractionation of bio-oil produced from mixed biomass of wheat and wood sawdust. Energy Fuel 2009, 23, 6181–6188.
    (74) Ikura, M.; Stanciulescu, M.; Hogan, E. Emulsification of Pyrolysis Derived Bio-oil in Diesel Fuel. Biomass Bioenergy 2003, 24, 221–232.
    (75) Ba, T.; Chaala, A.; Pérez, M. G.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy Fuel 2004,18, 188– 201.
    (76) Fonts, I.; Kuoppala, E.; Oasmaa, A. Physicochemical Properties of Product Liquid from Pyrolysis of Sewage Sludge. Energy Fuels 2009, 23, 4121–4128.
    (77) Das, P.; Sreelatha, T.; Ganesh, A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass Bioenergy 2004, 27, 265–275.
    (78) Sensoz, S.; Kaynar, I. Bio-oil production from soybean (Glycine max L.); fuel properties of Bio-oil. Ind. Crops Prod. 2006, 23, 99–105.
    (79) Onay, O.; Gaines, A. F.; Kockar, O. M.; Adams, M.; Tyagi, T. R.; Snape, C. E. Comparison of the generation of oil by the extraction and the hydropyrolysis of biomass. Fuel 2006, 85, 382–392.
    (80)张素萍,颜涌捷,任铮伟,李庭琛.生物质快速裂解液体产物的分析.华东理工大学学报2001, 27, 666–668.
    (81)徐绍平,刘娟,李世光,刘淑琴,路庆花.杏核热解生物油萃取-柱层析分离分析和制备工艺.大连理工大学学报2005, 45, 505–510.
    (82)李世光,徐绍平,路庆花.快速热解生物油柱层析分离与分析.太阳能学报2005, 26, 449–555.
    (83) Juste, G. L.; Monfort, J. J. S. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass Bioenergy 2001, 19, 119–128.
    (84) Ikura, M.; Mirmiran, S.; Stanciulescu, M.; Sawatzky, H. Pyrolysis liquid-in-diesel oil microemulsions. US Patent 5820640, 1998.
    (85) Ikura, M.; Stanciulescu, M.; Hogan, E. Emulsifcation of pyrolysis derived bio-oil in diesel fuel. Biomass Bioenergy 2003, 24, 221–232.
    (86) Chiaramontia, D.; Boninia, M.; Fratinia, E.; Tondib, G.; Gartner, K.; Bridgwaterd, A.V.; Grimm, H. P.; Soldaini, I.; Webster, A.; Baglioni, P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1: emulsion production. Biomass Bioenergy 2003, 25, 85–99.
    (87) Chiaramontia, D.; Boninia, M.; Fratinia, E.; Tondib, G.; Gartner, K.; Bridgwaterd, A.V.; Grimm, H. P.; Soldaini, I.; Webster, A.; Baglioni, P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 2: tests in diesel engines. Biomass Bioenergy 2003, 25, 101–111.
    (88) Li, Y. P.; Wang, T. J.; Liang, W.; Wu, C. Z.; Ma, L. L.; Zhang, Q.; Zhang, X. H.; Jiang, T. Ultrasonic preparation of emulsions derived from aqueous bio-oil fraction and 0# diesel and combustion characteristics in diesel generator. Energy Fuels 2010, 24, 1987–1995.
    (89) Jiang, X. X.; Ellis, N. Upgrading bio-oil through emulsification with biodiesel: mixture production. Energy Fuels 2010, 24, 1358–1364.
    (90) Jiang, X. X.; Ellis, N. Upgrading bio-oil through emulsification with biodiesel: thermal stability. Energy Fuels 2010, 24, 2699–2706.
    (91) Sheu, Y. E.; Anthony, R. G. Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Process. Technol. 1988, 19, 31–50.
    (92) Zhang, S. P.; Yan, Y. J.; Li, T. C.; Ren, Z. W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005, 96, 545–550.
    (93) Tang, Z.; Lu, Q.; Zhang, Y.; Zhu, X. F.; Guo, Q. X. One step bio-oil upgrading through hydrotreatment, esterification, and cracking. Ind. Eng. Chem. Res. 2009, 48, 6923– 6929.
    (94) Tang, Z.; Zhang, Y.; Guo, Q. X. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Ind. Eng. Chem. Res. 2010, 49, 2040–2046
    (95) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X. B.; Lercher, J. A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem., Int. Ed. 2009, 48, 3987–3990.
    (96) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X. B.; Lercher, J. A. Hydrodeoxygen- ation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts. Chem. Commun. 2010, 46, 412–414.
    (97) Senol, O. I.; Viljava, T. R.; Krause, A. O. I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today 2005, 100, 331–335.
    (98) Tang, Y.; Yu, W. J.; Mo, L. Y.; Lou, H.; Zheng, X. M. One-step hydrogenation- esterification of aldehyde and acid to ester over bifunctional Pt catalysts: a model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil. Energy Fuels 2008, 22, 3484–3488.
    (88) Li, Y. P.; Wang, T. J.; Liang, W.; Wu, C. Z.; Ma, L. L.; Zhang, Q.; Zhang, X. H.; Jiang, T. Ultrasonic preparation of emulsions derived from aqueous bio-oil fraction and 0# diesel and combustion characteristics in diesel generator. Energy Fuels 2010, 24, 1987–1995.
    (89) Jiang, X. X.; Ellis, N. Upgrading bio-oil through emulsification with biodiesel: mixture production. Energy Fuels 2010, 24, 1358–1364.
    (90) Jiang, X. X.; Ellis, N. Upgrading bio-oil through emulsification with biodiesel: thermal stability. Energy Fuels 2010, 24, 2699–2706.
    (91) Sheu, Y. E.; Anthony, R. G. Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Process. Technol. 1988, 19, 31–50.
    (92) Zhang, S. P.; Yan, Y. J.; Li, T. C.; Ren, Z. W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005, 96, 545–550.
    (93) Tang, Z.; Lu, Q.; Zhang, Y.; Zhu, X. F.; Guo, Q. X. One step bio-oil upgrading through hydrotreatment, esterification, and cracking. Ind. Eng. Chem. Res. 2009, 48, 6923– 6929.
    (94) Tang, Z.; Zhang, Y.; Guo, Q. X. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Ind. Eng. Chem. Res. 2010, 49, 2040–2046
    (95) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X. B.; Lercher, J. A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem., Int. Ed. 2009, 48, 3987–3990.
    (96) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X. B.; Lercher, J. A. Hydrodeoxygen- ation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts. Chem. Commun. 2010, 46, 412–414.
    (97) Senol, O. I.; Viljava, T. R.; Krause, A. O. I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today 2005, 100, 331–335.
    (98) Tang, Y.; Yu, W. J.; Mo, L. Y.; Lou, H.; Zheng, X. M. One-step hydrogenation- esterification of aldehyde and acid to ester over bifunctional Pt catalysts: a model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil. Energy Fuels 2008, 22, 3484–3488.production by sequential catalytic cracking of acetic acid Part I. Investigation of reaction conditions and application to two parallel reactors operated cyclically. Appl. Catal., A 2008, 335, 64–73.
    (110) Davidian, T.; Guilhaume, N.; Provendier, H.; Mirodatos, C. Continuous hydrogen production by sequential catalytic cracking of acetic acid Part II. Mechanistic features and characterisation of catalysts under redox cycling. Appl. Catal., A 2008, 337, 111–120.
    (111) Iojoiu, E. E.; Domine, M. E.; Davidian, T.; Guilhaume, N.; Mirodatos, C. Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia. Appl. Catal., A 2007, 323, 147–161.
    (112) Deng, L.; Fu, Y.; Guo, Q. X. Upgraded acidic components of bio-oil through catalytic ketonic condensation. Energy Fuels 2009, 23, 564–568.
    (113) Williams, P. T.; Horne, P. A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J. Anal. Appl. Pyrol. 1995, 31, 39–61.
    (114) Iliopoulou, E. F.; Antonakou, E. V.; Karakoulia, S. A.; Vasalos, I. A.; Lappas, A. A.; Triantafyllidis, K. S. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chem. Eng. J. 2007, 134, 51–57.
    (115) Wang, D.; Montane, D.; Chornet, E. Catalytic steam reforming of biomass- derived oxygenates: acetic acid and hydroxyacetaldehyde. Appl. Catal., A 1996, 143, 245–270.
    (116) Garcia, L.; French, R.; Czernik, S.; Chornet, E. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl. Catal., A 2000, 201, 225–239.
    (117) Kechagiopoulos, P. N.; Voutetakis, S. S.; Lemonidou, A. A.; Vasalos, I. A. Hydrogen Production via Reforming of the Aqueous Phase of Bio-Oil over Ni/Olivine Catalysts in a Spouted Bed Reactor. Ind. Eng. Chem. Res. 2009, 48, 1400–1408.
    (118) Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl. Catal., A 2005, 61, 130–139.
    (119) Domine, M. E.; Iojoiu, E. E.; Davidian, T.; Guilhaume, N.; Mirodatos, C. Hydrogen production from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and sequential cracking processes. Catal. Today 2008, 133–135, 565–573.
    (120) Fisk, C. A.; Morgan, T.; Ji, Y. Y.; Crocker, M.; Crofcheck, C.; Lewis, S. A. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl. Catal., A 2009, 358, 150–156.
    (121) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Upgrading bio-oil over different solid catalysts. Energy Fuels 2006, 20, 2717–2720.
    (122) Mahfud, F. H.; Cabrera, I. M.; Heeres, H. J. Biomass to fuels: Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts. Process Saf. EnViron. Prot. 2007, 85, 466–472.
    (123) Xu, J. M.; Jiang, J. H.; Sun, Y. J.; Lu, Y. J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 2008, 32, 1056–1061.
    (124) Peng, J.; Chen, P.; Lou, H.; Zheng, X. M. Upgrading of bio-oil over aluminum silicate in supercritical ethanol. Energy Fuels 2008, 22, 3489–3492.
    (125) Peng, J.; Chen, P.; Lou, H.; Zheng, X. M. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol. Bioresour. Technol. 2009, 100, 3415– 3418.
    (126) Xiong, W. M.; Zhu, M. Z.; Deng, L.; Fu, Y.; Guo, Q. X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels 2009, 23, 2278–2283.
    (127) Wang, J. J.; Chang, J.; Fan, J. Upgrading of bio-oil by catalytic esterification and determination of acid number for evaluating esterification degree. Energy Fuels 2010, 24, 3251–3255.
    (128) Adjaye, J. D.; Sharma, R. K.; Bakhshi, N. N. Characterization and stability analysis of wood-derived bio-oil. Fuel Process. Technol. 1992, 31, 241–256.
    (129) Yang, X. L.; Chatterjee, S.; Zhang, Z. J.; Zhu, X. F.; Pittman, C. U., Jr. Reactions of Phenol, Water, Acetic Acid, Methanol, and 2-Hydroxymethylfuran withOlefins as Models for Bio-oil Upgrading. Ind. Eng. Chem. Res. 2010, 49, 2003–2013.
    (130) Zhang, Z. J.; Wang, Q. W.; Yang, X. L.; Chatterjee, S.; Pittman, C. U., Jr. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil. Bioresour. Technol. 2010, 101, 3685–3695.
    (131) Ba, T.; Chaala, A.; Garcia-Perez, M.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy Fuels 2004, 18, 188–201.
    (132) Shen, Z. L.; Jiang, X. Z.; Mo, W. M.; Hu, B. X.; Sun, N. Catalytic O-methylation of phenols with dimethyl carbonate to aryl methyl ethers using [BMIm]Cl. Green. Chem. 2005, 7, 97–99.
    (133) Ouk, S.; Thiébaud, S.; Borredon, E.; Gars, P. L. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal., A 2003, 241, 227–233.
    (134) Mei, F. M.; Pei, Z.; Li, G. X. The transesterification of dimethyl carbonate with phenol over Mg-Al-hydrotalcite catalyst. Org. Process Res. Dev. 2004, 8, 372–375.
    (135) Romero, M. D.; Ovejero, G.; Rodríguez, A.; Gómez, J. M.;águeda, I. O-methylation of phenol in liquid phase over basic zeolites. Ind. Eng. Chem. Res. 2004, 43, 8194–8199.
    (136) Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.
    (137) Adjaye, J. D.; Sharma, R. K.; Bakhshi, N. N. Characterization and stability analysis of a wood derived oil. Fuel Process. Technol. 1992, 31, 241–256.
    (1) Mohan, D.; Pittman, C. U., Jr.; Steele, P. H. Pyrolysis of wood/biomass for bio–oil: A critical review. Energy Fuels 2006, 20, 848–889.
    (2) Tsai, W. T.; Lee, M. K.; Chang, Y. M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction–heating reactor. J. Anal. Appl. Pyrolysis 2006, 76, 230–237.
    (3) Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Production of liquid alkanes by aqueous–phase processing of biomass–derived carbohydrates. Science 2005, 308, 1446–1450.
    (4) Sarma, A. K.; Konwer, D. Feasibility studies for conventional refinery distillation with a (1:1) w/w of a biocrude blend with petroleum crude oil. Energy Fuels 2005, 19, 1755–1758.
    (5) Stamatov, V.; Honnery, D.; Soria, J. Combustion properties of slow pyrolysis bio–oil produced from indigenous Australian species. Renewable Energy, 2006, 31, 2108–2121.
    (6) Luo, Z.; Wang, S.; Liao, Y.; Zhou, J.; Gu, Y.; Cen, K. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 2004, 26, 455–462.
    (7) Czernik, S.; Johnson, D. K.; Black, S. Stability of wood fast pyrolysis oil. Biomass Bioenergy 1994, 7, 187–192.
    (8) Bridgwater, A. V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal. Today 1996, 29, 285–295.
    (9) Bridgwater, A. V. Principles and practice of biomass fast pyrolysis processes forliquids. J. Anal. Appl. Pyrolysis 1999, 51, 3–22.
    (10) Bridgwater, A. V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102.
    (11) Bridgwater, A. V.; Peacocke, G. V. C. Fast pyrolysis processes for biomass. Renewable Sustainable Energy Rev. 2000, 4, 1–73.
    (12) Maggi, R.; Delmon, B. Characterization and upgrading of bio–oils produced by rapid thermal processing. Biomass Bioenergy 1994, 7, 245–249.
    (13) Ba, T.; Chaala, A.; Garcia–Perez, M.; Roy, C. Colloidal properties of bio–oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy Fuels 2004, 18, 188–201.
    (14) Czernik, S.; Bridgwater, A. V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18, 590–598.
    (15) Oasmaa, A.; Kuoppala, E.; Gust, S.; Solantausta, Y. Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy Fuels 2003, 17, 1–12.
    (16) Oasmaa, A.; Kuoppala, E.; Solantausta, Y. Pyrolysis of forestry residue. 2. physicochemical composition of product liquid. Energy Fuels 2003, 17, 433–443.
    (17) Oasmaa, A.; Kuoppala, E. Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 2003, 17, 1075–1084.
    (18) Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D.; Mitchell, B.; Mohammad, J. Cantrell, K.; Pittman, C. U. Jr. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio–oils. Energy Fuels 2008, 22, 614–625.
    (19) Faix, O; Fortmann, I; Meier, D. Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Holz. Roh. Werkst. 1991, 49, 213–219.
    (20) Faix, O, Fortmann I , and Meier D. Thermal degradation products of wood. A collection of electron–impact (EI) mass spectra of polysaccharide derived products. Holz. Roh. Werkst. 1991, 49, 299–301.
    (21) Faix, O, Fortmann I, and Meier D. Thermal degradation products of wood. Gaschromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz. Roh. Werkst. 1990, 48, 281–285.
    (22) Faix, O, Fortmann I, and Meier D. Thermal degradation products of wood. A collection of electron–impact (EI) mass spectra of monomeric lignin derived products. Holz. Roh. Werkst. 1990, 48, 351–354.
    (23) Garcia–Perez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Rodrigue, D.; Roy, C. Multiphase structure of bio–oils. Energy Fuels 2006, 20, 364–375.
    (24) Garcia–Perez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Rodrigue, D.; Roy, C. Evaluation of the influence of stainless steel and copper on the aging process of bio–oil. Energy Fuels, 2006, 20, 786–795.
    (1) Wiberg, K. B.; Saegebarth, K. A. Notes-An O~(18) Tracer study of the acid-catalyzed formation of enol ethers. J. Org. Chem. 1960, 25, 832–833.
    (2) Balsama, S.; Beltrame, P.; Beltrame, P. L.; Carniti, P.; Forni, L.; Zuretti, G. Alkylation of phenol with methanol over zeolites. Appl. Catal. 1984, 13, 161–170.
    (3) Bal, R.; Sivasanker, S. Vapour phase selective O-alkylation of phenol over alkali loaded silica. Appl. Catal. A. 2003, 246, 373–382.
    (4) Ono, Y. Catalysis in the production and reactions of dimethyl carbonate: An environmentally friendly building block. Appl. Catal., A. 1997, 155, 133–166.
    (5) Delledonne, D.; Rivetti, F.; Romano, U. Developments in the production and application of dimethyl carbonate. Appl. Catal., A 2001, 221, 241–251.
    (6) Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res. 2002, 35, 706–716.
    (7) Tundo, P.; Moraglio, G.; Trotta, F. Gas-liquid phase-transfer catalysis: a new continuous-flow method in organic synthesis. Ind. Eng. Chem. Res. 1989, 28, 881–890.
    (8) Bomben, A.; Selva, M.; Tundo, P.; Valli, L. A continuous-flow O-methylation of phenols with dimethyl carbonate in a continuously fed stirred tank reactor. Ind. Eng. Chem. Res. 1999, 38, 2075–2079.
    (9) Fu, Z. H.; Ono, Y. Selective O–methylation of phenol with dimethyl carbonate over X-zeolites. Catal. Lett. 1993, 21, 43–47.
    (10) Beutel, T. Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite. J. Chem. Soc., Faraday Trans. 1998, 94, 985–993.
    (11) Fu, Y.; Baba, T.; Ono, Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part I. O-Methylation of catechol over alumina. Appl. Catal., A. 1998, 166, 419–424.
    (12) Fu, Y.; Baba, T.; Ono, Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part II. Selective synthesis of guaiacol over alumina loaded with alkali hydroxide. Appl. Catal., A. 1998, 166, 425–430.
    (13) Fu, Y.; Baba, T.; Ono, Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part III: Selective synthesis of veratrole over alumina loaded with potassium nitrate. Appl. Catal., A. 1999, 176, 201–204.
    (14) Talawar, M. B.; Jyothi, T. M.; Sawant, P. D.; Raja T.; Rao, B. S. Calcined Mg-Al hydrotalcite as an efficient catalyst for the synthesis of guaiacol. Green Chem. 2000, 2, 266–268.
    (15) Jyothi, T. M.; Raja, T.; Talawar, M. B.; Rao, B. S. Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites. Appl. Catal., A. 2001, 211, 41–46.
    (16) Barcelo, G.; Grenouillat, D.; Senet, J. P.; Sennyey, G. Pentaalkylguanidines as etherification and esterification catalysts. Tetrahedron 1990, 46, 1839–1848.
    (17) Lee, Y.; Shimizu, I. Convenient O-Methylation of phenols with dimethyl carbonate. Synlett 1998, 1063–1064.
    (18) Lissel, M.; Schmidt, S.; Neumann, B. Dimethylcarbonat als Methylierungsmittel unter phasen-transfer-katalytischen Bedingungen. Synthesis 1986, 382–383.
    (19) Ouk, S.; Thiebaud, S.; Borredon, E.; Legars, P.; Lecomtb, L. O-Methylation of phenolic compounds with dimethyl carbonate under solid/liquid phase transfer system. Tetrahedron Lett. 2002, 43, 2661–2663.
    (20) Shieh, W. C.; Dell. S.; Repic, O. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and Microwave-Accelerated Green Chemistry in Methylation of Phenols, Indoles, and Benzimidazoles with Dimethyl Carbonate. Org. Lett. 2001, 3, 4279–4281.
    (21) Ouk, S.; Thiebaud, S.; Borredon, E.; Gars, P. L. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal., A. 2003, 241, 227–233.
    (22) Ouk, S.; Thiebaud, S.; Borredon, E.; Gars, P. L. Dimethyl carbonate and phenols to alkyl aryl ethers via clean synthesis. Green Chem. 2002, 4, 431–435.
    (23) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083.
    (24) Shen, Z. L.; Jiang, X. Z.; Mo, W. M.; Hu, B. X.; Sun, N. Catalytic O-methylation of phenols with dimethyl carbonate to aryl methyl ethers using [BMIm]Cl. Green. Chem. 2005, 7, 97–99.
    (25) Ouk, S.; Thiébaud, S.; Borredon, E.; Gars, P. L. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal., A 2003, 241,227–233.
    (26) Mei, F. M.; Pei, Z.; Li, G. X. The transesterification of dimethyl carbonate with phenol over Mg-Al-hydrotalcite catalyst. Org. Process Res. Dev. 2004, 8, 372–375.
    (27) Romero, M. D.; Ovejero, G.; Rodríguez, A.; Gómez, J. M.;águeda, I. O-methylation of phenol in liquid phase over basic zeolites. Ind. Eng. Chem. Res. 2004, 43, 8194–8199.
    (28) Lu, Q.; Yang, X. L.; Zhu, X. F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J. Anal. Appl. Pyrolysis 2008, 82, 191–198.
    (29) Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539.
    (30) Pearson, R. G.; Songstad, J. Application of the principle of hard and soft acids and bases to organic chemistry. J. Am. Chem. Soc. 1967, 89, 1827–1836.
    (31) Tundo, P.; Rossi, L.; Loris, A. Dimethyl carbonate as an ambident electrophile. J. Org. Chem. 2005, 70, 2219–2224.
    (32) Rosamilia, A. E.; Arico, F.; Tundo, P. Insight into the Hard?Soft Acid?Base properties of differently substituted phenylhydrazines in reactions with dimethyl carbonate. J. Phys. Chem. B 2008, 112, 14525–14529.
    (33) Tundo, P.; Rossi, L.; Loris, A. Reaction of the ambident electrophile dimethyl carbonate with the ambident nucleophile phenylhydrazine. J. Org. Chem. 2008, 73, 1559–1562.
    (1) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy convers. Manage. 2007, 48, 87–92.
    (2) Goyal, H. B.; Seal, D.; Saxena, R. C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable Sustainable Energy Rev. 2008, 12, 504–517.
    (3) Diebold, J. P. Report No. NREL/SR-570-27613; National Renewable Energy Laboratory: Golden, CO, 2000; pp 5–10.
    (4) Ba, T.; Chaala, A.; Garcia-Perez, M.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy Fuels 2004, 18, 188–201.
    (5) Mohan, D.; Pittman, C. U., Jr.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889.
    (6) Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.
    (7) Juste, G. L.; Monfort, J. J. S. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass Bioenergy 2001, 19, 119–128.
    (8) Ikura, M.; Stanciulescu, M.; Hogan, E. Emulsifcation of pyrolysis derived bio-oil in diesel fuel. Biomass Bioenergy 2003, 24, 221–232.
    (9) Li, Y. P.; Wang, T. J.; Liang, W.; Wu, C. Z.; Ma, L. L.; Zhang, Q.; Zhang, X. H.; Jiang, T. Ultrasonic preparation of emulsions derived from aqueous bio-oil fraction and 0# diesel and combustion characteristics in diesel generator. Energy Fuels 2010, 24, 1987–1995.
    (10) Sheu, Y. E.; Anthony, R. G. Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Process. Technol. 1988, 19, 31–50.
    (11) Zhang, S. P.; Yan, Y. J.; Li, T. C.; Ren, Z. W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005, 96, 545–550.
    (12) Tang, Z.; Lu, Q.; Zhang, Y.; Zhu, X. F.; Guo, Q. X. One step bio-oil upgrading through hydrotreatment, esterification, and cracking. Ind. Eng. Chem. Res. 2009, 48, 6923– 6929.
    (13) Vitolo, S.; Seggiani, M.; Frediani, P.; Ambrosini, G.; Politi, L. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 1999, 78, 1147–1159.
    (14) Williams, P. T.; Horne, P. A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J. Anal. Appl. Pyrol. 1995, 31, 39–61.
    (15) Iliopoulou, E. F.; Antonakou, E. V.; Karakoulia, S. A.; Vasalos, I. A.; Lappas, A. A.; Triantafyllidis, K. S. Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chem. Eng. J. 2007, 134, 51–57.
    (16) Kechagiopoulos, P. N.; Voutetakis, S. S.; Lemonidou, A. A.; Vasalos, I. A. Hydrogen Production via Reforming of the Aqueous Phase of Bio-Oil over Ni/Olivine Catalysts in a Spouted Bed Reactor. Ind. Eng. Chem. Res. 2009, 48, 1400–1408.
    (17) Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl. Catal., A 2005, 61, 130–139.
    (18) Domine, M. E.; Iojoiu, E. E.; Davidian, T.; Guilhaume, N.; Mirodatos, C. Hydrogen production from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and sequential cracking processes. Catal. Today 2008, 133–135, 565–573.
    (19) Fisk, C. A.; Morgan, T.; Ji, Y. Y.; Crocker, M.; Crofcheck, C.; Lewis, S. A.Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl. Catal., A 2009, 358, 150–156.
    (20) Zhang, Q.; Chang, J.; Wang, T. J.; Xu, Y. Upgrading bio-oil over different solid catalysts. Energy Fuels 2006, 20, 2717–2720.
    (21) Mahfud, F. H.; Cabrera, I. M.; Heeres, H. J. Biomass to fuels: Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts. Process Saf. EnViron. Prot. 2007, 85, 466–472.
    (22) Xu, J. M.; Jiang, J. H.; Sun, Y. J.; Lu, Y. J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 2008, 32, 1056–1061.
    (23) Peng, J.; Chen, P.; Lou, H.; Zheng, X. M. Upgrading of bio-oil over aluminum silicate in supercritical ethanol. Energy Fuels 2008, 22, 3489–3492.
    (24) Peng, J.; Chen, P.; Lou, H.; Zheng, X. M. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol. Bioresour. Technol. 2009, 100, 3415– 3418.
    (25) Xiong, W. M.; Zhu, M. Z.; Deng, L.; Fu, Y.; Guo, Q. X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels 2009, 23, 2278–2283.
    (26) Adjaye, J. D.; Sharma, R. K.; Bakhshi, N. N. Characterization and stability analysis of a wood derived oil. Fuel Process. Technol. 1992, 31, 241–256.
    (27) Yang, X. L.; Chatterjee, S.; Zhang, Z. J.; Zhu, X. F.; Pittman, C. U., Jr. Reactions of phenol, water, acetic Acid, methanol, and 2-hydroxymethylfuran with olefins as models for bio-oil upgrading. Ind. Eng. Chem. Res. 2010, 49, 2003–2013.
    (28) Zhang, Z. J.; Wang, Q. W.; Yang, X. L.; Chatterjee, S.; Pittman, C. U., Jr. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil. Bioresour. Technol. 2010, 101, 3685–3695.
    (29) Song, Q. H.; Nie, J. Q.; Ren, M. G.; Guo, Q. X. Effective phase separation of biomass pyrolysis oils by adding aqueous salt solutions. Energy Fuels 2009, 23, 3307–3312.
    (30) Faix, O.; Fortmann, I.; Meier, D. Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz. Roh. Werkst. 1990, 48, 281–285.
    (31) Faix, O.; Fortmann, I.; Meier, D. Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz. Roh. Werkst. 1990, 48, 351–354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700