光交联聚醚酐凝胶纳米粒的制备及包载疏水性药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过制备一种具有交联疏水内核-亲水外壳结构的可降解性聚醚酐凝胶纳米粒(gel nanoparticles, GNP),以克服聚合物胶束在大量体液稀释下会解缔合等不稳定性问题,并将其用于增溶疏水性药物。文中通过改变PEG链段长度和加入疏水性单体来调节凝胶纳米粒的结构与亲水疏水性,并最终影响凝胶纳米粒的降解和载药性能。
     本研究首先成功合成了两亲性可光交联醚酐大分子单体和两种疏水性可光交联单体,分别用红外和核磁进行了结构表征;然后采用乳液光聚合制备了聚醚酐凝胶纳米粒,观察其形态基本为圆球或椭圆球状,而加入疏水性单体硬脂酸单丙烯酸酐(monoacrylic stearic acid, MSA)后凝胶纳米粒具有了较明显的核-壳结构,激光粒度仪测定其粒径为340-670 nm,X-射线衍射显示凝胶纳米粒中PEG链段结晶度降低,MSA以无定形态接枝于内核网络中,凝胶纳米粒能在较短时间内完全降解,并可通过PEG链段长短调节其降解速率。
     通过原位或后包合的方法将模型药物吲哚美辛(indomethacin, IND)包载于凝胶纳米粒中,通过红外验证了吲哚美辛在原位包载过程中未发现化学变化,激光粒度仪测定出载药凝胶纳米粒的粒径比空白凝胶纳米粒有所增加,X-射线衍射结果验证了原位载药可使吲哚美辛以无定形态高度分散于内核网络中,而后包载药则仍有部分药物以结晶态存在。载药量和包封率受醚酐单体种类和内核疏水性等因素影响,本文中最高可达65%左右。体外溶出结果显示,纯醚酐单体制得载药凝胶纳米粒的溶出速率和溶出量比原料药有明显增加,且随着PEG链段增长而更明显;但加入MSA后,释药速率明显减缓,且出现释药不完全现象;这表明药物的溶出与凝胶纳米粒亲水外壳厚度和内核交联度及疏水性密切相关。而溶解度结果显示六种凝胶纳米粒都能不同程度的增溶吲哚美辛,提高其溶解度。
     综上结果,此具有疏水交联内核-亲水外壳的聚醚酐凝胶纳米粒在增溶和输送难溶性药物上具有一定的潜力。
Biodegradable poly(ether-anhydride) gel nanoparticles (GNP) with hydrophobic crosslinked core-hyphophilic shell sturcture were prepared, which could overcome the instable problems of polymer micelles, such as disintegration by dilution in the body, and could be used to solubilize hydrophobic drugs. The structure and hydrophilicity/hydrophobicity of GNP was modified by changing PEG chain length and adding hydrophobic monomers, which could finally affect the degradability and the drug loading capacity GNP.
     Amphiphilic photocrosslinkable ether-anhydride macromers and two hydrophobic photocrosslinkable monomers were synthesized initially and characterized by FT-IR and 1H NMR spectrum, then poly(ether-anhydride) gel nanoparticles were prepared by emulsion photopolymerization method, which were found to be spherical or elliptoid in shape and with obvious core-shell structure when stearic monoacrylic anhydride (MSA) was added. The particle size measured by laser particle analyzer (LPA) was 340-670 nm. The X-ray diffraction of GNP showed that the crystality of PEG chain decreased and MSA was grafted to core networks in amorphous state. GNP could degrade in a few hours in vitro, and the degradation rate could be tailored by regulating the length of PEG chain.
     Indomethacin (IND) was chosed to be the model hydrophobic drugs, which was entrapped in the hydrophobic crosslinked core by in situ or post embedding method. The FT-IR of IND in situ loaded GNP showed that there was no chemical change of IND structure during the preparation indicating that IND kept stable during the entrapment. The particle size of IND loaded GNP measured by LPA became slightly larger than that of blank GNP. The X-ray diffraction showed that IND was highly dispersed in the hydrophobic crosslinked core and stayed in amorphous or molecular state when in situ loaded in GNP, while some of the loaded IND stayed in crystal state when it was post embedded in GNP. The drug loading and encapsulation efficacy of IND by in situ method was affected by many factors, such as the different ether-anhydride macromers and the hydrophobicity of the core, which could be as high as 65% in this thesis. The in vitro release behavior of IND loaded GNP showed that GNP prepared by ether-anhydride macromers could improve the dissolution rate greatly, especially the GNP prepared by larger weight macromers. But the dissolution rate decreased obviously and IND could not be released completely after MSA added. The dissolution results implied that drug dissolution rate is closely related to the hydrophilic shell thickness and crosslinking density and hydrophobicity of the core. Six drugs loaded GNP could solubilize IND in different levels by measuring dissolution in water.
     The results indicate that these novel poly(ether-anhydride) gel nanoparticles with hydrophobic crosslinked core-hyphophilic shell are potential in solubilizing and deliverying hydrophobic drugs.
引文
[1] Umesh G, Hrushikesh BA, Abhay A, et al., Dendrimers: novel polymeric nanoarchitectures for solubility enhancement, Biomacromolecules, 2006, 7(3): 649~658
    [2] Torchilin VP, Micellar nanocarriers: pharmaceutical perspectives, Pharm. Res., 2007, 24(1): 1~16
    [3] Chabot GG, Armand JP, Terret C, et al., Etoposide bioavailability after oral administration of the prodrug etoposide phosphate in cancer patients during a phase I study, J. Clin. Oncol., 1996, 14 (7): 2020~2030
    [4]赵小雨,杨超,费进波等,超声化学法制备阿奇霉素超细粉体的研究,安徽化工,2007,33(2):26~28
    [5]沈志刚,陈建峰,钟杰等,超重力法制备超细头孢拉定抗生素药物及其特性,中国药学杂志,2004,38(1):36~39
    [6] Li P, Solubilization of flurbiprofen in pH2-surfactant solutions, J. Pharm. Sci., 2003, 92(5): 951~956
    [7] Takeuchi H, Nagira S, Yamamoto H, et al., Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method, Int. J. Pharm., 2005, 293(1-2): 155~164
    [8] Hemant NJ, Ravindra WT, Martha D, et al., Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture, Int. J. Pharm., 2004, 269(1): 251~258
    [9] Rebecca LC, Lee AM, Imran A, The utility of cyclodextrins for enhancing oral bioavailability, J. Contro1. Release, 2007,123(2): 78~99
    [10] Marcus EB, Thorsteinn L, Cyclodextrins as pharmaceutical solubilizers, Adv. Drug Deliv. Rev., 2007, 59(7): 645~666
    [11] Abhijit AD, Nagarsenker MS, Parenteral microemulsions: an overview, Int. J. Pharm., 2008, 355(1-2): 19~30
    [12] Xu QG, TanakaY, Jan TC, Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes, Biomaterials, 2007, 28(16): 2687~2694
    [13] Yasuko K, Ming TL, Joanne TB, et al., In vitro stability and permeability studies of liposomal delivery systems for a novel lipophilic endomorphin analogue, Int. J. Pharm., 2008, 356(1-2): 37~43
    [14] Pan J, Feng SS, Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles, Biomaterials, 2008, 29(17): 2663~2672
    [15] Min KH, Park K, Kim YS, et al., Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy, J. Contro1. Release, 2008, 127(3): 208~218
    [16] Thienen TG, Demeester J, Smedt SC, Screening poly(ethyleneglycol) micro- and nanogels for drug delivery purposes, Int. J. Pharm., 2008, 351(1-2): 174~185
    [17] Bronich TK, Vinogradov SV, Kabanov AV, Interaction of nanosized copolymer networks with oppositely charged amphiphilic molecules, Nano. Lett., 2001, 1(10): 535~540
    [18] Genevie`ve G, Marie-He′le`ne D, Vinayak PS, et al., Block copolymer micelles: preparation, characterization and application in drug delivery, J. Contro1. Release, 2005, 109(1-3): 169~188
    [19]陆彬,药物新剂型与新技术,北京,人民卫生出版社,2005,63~66
    [20] IaLkyanov AN, Torchilin VP, Mieelles from lipid derivatives of water-soluble polymers as delivery systemsfor poorly soluble drugs, Adv. Drug Deliv. Rev., 2004, 56(9): 1273~1289
    [21] Posler A, Vandermeulen GWM, Klok A, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Deliv. Rev., 2001, 53(1): 95~108
    [22] Chung JE, Yokoyama M, Aoyagi T, et al., Efect of molecular architecture of hydrophobically modified poly(N-isopmphlacrylamide) on the formation of thermoresponisve core-shell micellar drug carriers, J. Contro1. Release, 1998, 53(1-3): 119~131
    [23] Lo C L, Huang CK, Lin KM, et al., Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery, Biomaterials, 2007, 28(6): 1225~1235
    [24] Na K, Sethuraman VT, Bae YH, Stimuli-sensitive polymeric micelles as anticancer drug carriers, Anticancer Agents Med. Chem., 2006, 6(6): 525~535
    [25] Benahmed A, Ranger M, Leroux JC, Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide), Pharm. Res., 2001, 18(3): 323~328
    [26] Lavasanifar A, Samuel J, Kwon GS, Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery, Adv. Drug Deliv. Rev., 2002, 54(2): 169~190
    [27] Chiappetta DA, Sosnik A, Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs, Eur. J. Pharm. Biopharm., 2007, 66(3): 303~317
    [28] Yoo HS, Park RG, Biodegradable poymefie micelles composed of doxorubicin conjugated PLGA-PEG block copolymer, J. Control. Release, 2001, 70(1-2): 63~70
    [29] Kataoka K, Harada A, Nagasaki Y, Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Deliv. Rev., 2001, 47(1): 113~131
    [30] Duncan R, The dawning era of polymer therapeutics, Nature Rev., 2003, 2(5): 347~360
    [31] Allen C, Han J, Yu Y, et al., Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone, J. Control. Release, 2000, 63(3): 275~286
    [32] Kataoka K, Matsumoto T, Yokoyama M, et al., Doxorubicin-loaded poly(ethyleneglyco1)-poly(β-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance, J. Control. Release, 2000, 64(1-3): 143~153
    [33] Liggins RT, Burst HM, Polyether-polyester diblock polymers for the preparation of paclitaxel loaded polymeric micelle formulations, Adv. Drug Deliv. Rev., 2002, 54(2):191~202
    [34] Zhang X, Jackson JK, Burr HM, Development of amphiphilic diblock copolymers as micellar carriers of taxol, Int. J. Pharm., 1996, 132(1-2): 195~206
    [35] Shuai X, Ai H,Nasonglda N, et al., Micellar carriers based on block copolymers of poly( -caprolactone) and poly(ethylene glyco1) doxorubicin delivery, J. Control. Release, 2004, 98(3): 415~426
    [36] Aliabadi HM, Mahmud A, Sharifabadi AD, Micelles of methoxy poly(ethylene oxide)-b-poly( -caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A, J. Control. Release, 2005, 104(2): 301~311
    [37] Garrec D, Gori S,Luo L,et a1., Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation, J. Control. Release, 2004, 99(1): 83~101
    [38] Fournier E, Dufresne MH, Smith DC, et al., A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers, Pharm. Res., 2004, 21(6): 962~968
    [39] Bontha S, Kabanov AV, Bronich TK, Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs, J. Control. Release., 2006, 114(2): 163~174
    [40] Lavasanifar A, Samuel J, Kwon JG, Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexylstearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B, J. Control. Release., 2001, 77(1-2): 155~160
    [41] Sant VP, Smith D, Leroux JC, Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization, J. Control. Release, 2004, 97(2): 301~312
    [42] Yokoyama M, Satoh A, Sakurai Y, et al., Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size, J. Control. Release, 1998, 55(2-3): 219~229
    [43] Yao Z, Zhang C, Ping QN, et al., A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel, Carbohydr. Polym., 2007, 68(4): 781~792
    [44] Teng Y, Morrison ME, Munk P, et al., Release kinetics studies of aromatic molecules into water from block polymer micelles, Macromolecules, 1998, 31(11): 3578~3587
    [45] Kim SY, Shin IG, Lee YM, et al., Methoxy poly(ethylene glycol) andε-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: II. Micelle formation and drug release behaviours, J. Control. Release, 1998, 51(1): 13~22
    [46] Jeong Y, Cheon JB, Kim SH, et al., Clonazepam release from core-shell type nanoparticles in vitro, J. Control. Release,1998, 51(2-3): 169~178
    [47] Ye YQ, Yang FL, Hu FQ, et al., Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin, Int. J. Pharm, 2008, 352(1-2): 294~301
    [48] Kwon GS, Naito M, Yokoyama M, et al., Physical entrapment of adriamycin in AB block copolymer micelles, Pharm. Res., 1995, 12(2): 200~203
    [49] Kwon GS, Naito M, Yokoyama M, et al., Block copolymer micelles for drug delivery: loading and release of doxorubicin, J. Control. Release, 1997, 48(2-3): 195~201
    [50] Opanasopit P, Ngawhirunpat T, Chaidedgumjorn A, et al., Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system, Eur. J. Pharm. Biopharm., 2006, 64(3): 269~276
    [51] Lee J, Cho E C, Cho K, Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block-poly(ethylene oxide) micelles, J. Control. Release, 2004, 94(2-3): 323~335
    [52] Yokoyama M, Fukushima S, Uehara R, et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, J. Control. Release, 1998, 50(1-3): 79~92
    [53] Chen C, Yu CH, Cheng YC, et al., Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers, Biomaterials, 2006, 27(27): 4804~4814
    [54] Kim IS, Kim SH, Development of a polymeric nanoparticulate drug delivery system: in vitro characterization of nanoparticles based on sugarcontaining conjugates, Int. J. Pharm., 2002, 245(1-2): 67~73
    [55] Lin WJ, Juang LW,. Lin CC, Stability and release performance of a series of pegylated copolymeric micelles, Pharm. Res., 2003, 20(4): 668~673
    [56] Burt HM, Zhang X, Toleikis P, et al., Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel, Colloids Surf. B Biointerfaces, 1999, 16(1-4): 161~171
    [57] Liu J, Xiao Y, Allen C, Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine, J. Pharm. Sci., 2004, 93(1): 132~143
    [58] Allen C, Maysinger D, Eoisenberg A, Nano-engineering block copolymer aggregates for drug delivery, Colloids Surf. B Biointerfaces, 1999, 16(1-4): 3~27
    [59] Hamaguchi T, Matsumura Y, Suzuki M, et al., NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel, Br. J. Cancer, 2005, 92(7): 1240~1246
    [60] Lavasanifar A, Samuel J, Kwon GS, The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide), J. Control. Release, 2002, 79(1-3): 165~172
    [61] Lee J, Lee SC, Park K, et al., Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property, Pharm. Res., 2003, 20(7): 1022~1030
    [62] Huh KM, Lee SC, Park K, et al., Hydrotropic polymer micelle system for delivery of paclitaxel, J. Control. Release, 2005, 101(1-3): 59~68
    [63] Toncheva V, Schacht E, Heller J, et al., Use of block copolymers of poly(ortho esters) and poly(ethylene glycol) micellar carriers as potential tumour targeting systems, J. Drug Target., 2003, 11(6): 345~353
    [64] Kang N,. Leroux JC, Triblock and star-block copolymer of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and d,l-lactide: synthesis and self-assembling properties in water, Polymer, 2004, 45(26): 8967~8980
    [65] Opanasopit P, Yokoyama M, Watanabe M, et al., Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting, Pharm. Res., 2004, 21(11): 2001~2008
    [66] Yamamoto Y, Yasugi K, Kataoka K, et al., Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles in aqueous milieu, J. Control. Release, 2002, 82(2-3): 359~371
    [67] Hu FQ, Wu XL, Du YZ, et al., Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin, Eur. J. Pharm. Biopharm., 2008, 69(1): 117~125
    [68] Yang T F, Chen C N, Chen M C, et al., Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle, Biomaterials, 2007, 28(4): 725~734
    [69] Thurmond KB, Remsen EE, Kowalewski T, et al., Packaging of DNA by shell crosslinked nanoparticles, Nucletic Acids Res., 1999, 27(14): 2966~2971
    [70] Joralemon MJ, Murthy KS, Remsen EE, et al., Synthesis, characterization, and bioavailability of mannosylated shell cross-Linked nanoparticles, Biomacromolecules, 2004, 5(3): 903~913
    [71] Li Y, Lokitz BS, Armes SP, et al., Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents, Macromolecules, 2006, 39(8): 2726~2728
    [72] Liu S, Weaver JVM, Tang Y, Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers, Macromolecules, 2002, 35(16): 6121~6131
    [73] Shuai X, Merdan T, Schaper AK, et al., Core cross-linked polymeric micelles as paclitaxel carriers, Bioconjug. Chem., 2004, 15(3): 441~448
    [74] Iijima M, Nagasaki Y, Okada T, et al., Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers, Macromolecules, 1999, 32(4): 1140~1146
    [75] Rijcken CJ, Snel CJ, Schiffelers RM, et al., Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies, Biomaterials, 2007, 28(36): 5581~5593
    [76] Jiang JQ, Qi B, Lepage M, et al., Polymer micelles stabilization on demand through reversible photo-cross-linking, Macromolecules, 2007, 40(4): 790~792
    [77] Miyata K, Kakizawa Y, Nishiyama N, et al., Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver, J. Control. Release, 2005, 109(1-3): 15~23
    [78] Bontha S, Kabanov AV, Bronich TK, Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs, J. Control. Release, 2006, 114(2): 163~174
    [79] Jaturanpinyo M, Harada A, Kataoka K, et al., Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde, Bioconjug. Chem., 2004, 15(2): 344~348
    [80] Xu PS, Kirk EAV, Li SY, et al., Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy, Colloids Surf. B Biointerfaces, 2006, 48(1): 50~57
    [81] Chan Y, Bulmus V, Zareie MH, et al., Acid-cleavable polymeric core-shell particles for delivery of hydrophobic drugs, J. Control. Release, 2006, 115(2): 197~207
    [82] Ajun W, Kou YX, The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers, J. Nanopart. Res., 2008, 10: 437~448
    [83] Zahr AS, Pishko MV, Encapsulation of paclitaxel in macromolecular nanoshells, Biomacromolecules, 2007, 8(6): 2004~2010
    [84] Oh KS, Lee KE, Han SS, et al., Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system, Biomacromolecules, 2005, 6(2): 1062~1067
    [85] Lee W C, Li Y C, Chu I M, Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs, Macromol. Biosci., 2006, 6(10): 846~854
    [86] Missirlis D, Tirelli N, Hubbell JA, Amphiphilic hydrogel nanoparticles. preparation, characterization, and preliminary assessment as new colloidal drug carriers, Langmuir, 2005, 21(6): 2605~2613
    [87] Vinogradpv SV, Kohli E, Zeman AD, et al., Comparison of nanogel drug carriers and their formulations with nucleoside 5’-triphosphates, Pharm. Res., 2006, 23(5): 920~930
    [88] Daoud-Mahammed S, Couvreur P, Gref R, Novel self-assembling nanogels: Stability and lyophilisation studies, Int. J. Pharm., 2007, 332(1-2): 185~191
    [89] Morimoto N, Endo T, Ohtomi M, et al., Hybrid nanogels with physical and chemical cross-linking structures as nanocarriersa, Macromol. Biosci. 2005, 5(8): 710~716
    [90] Nagahama K, Mori Y, Ohya Y, et al., Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation, Biomacromolecules, 2007, 8(7): 2135~2141
    [91] Yu S, Yao P, Jiang M, et al., Nanogels prepared by self-assembly of oppositely charged globular proteins, Biopolymers, 2006, 83(2): 148~158
    [92] Hurtel P, Laurent D, Rondini J, Process for the synthesis of (meth)acrylic anhydrides, France: 4857239, 1989-8-15
    [93]龙永福,谢凯,许静等,刚柔嵌段共聚物聚苯基喹啉-b-聚乙二醇的合成及荧光性质,材料导报,2005,19(5):105~109
    [94] Kim BS, Hrkach JS, Langer R, Synthesis and characterization of novel degradable photocrosslinked poly (ether-anhydride) networks, J. Polym. Sci. A, 2000, 38(8): 1277~1282
    [95] Tarcha PJ, Su L, Baker T, et al., Stability of photocurable anhydrides: methacrylic acid mixed anhydrides of nontoxic diacids, J. Polym. Sci. A, 2001, 39(24): 4189~4195
    [96] Yang Z, Zhang WQ, Shi WF, et al., Synthesis and thermally responsive characteristics of dendric poly(ether-amide) grafting with PNIPAAM and PEG, polymer, 2007, 48(4): 931~938
    [97]陆雯,饶炬,程树军等,可光聚混合聚酸酐的合成与降解,华东理工大学学报(自然科学版),2005,31(1):76~78
    [98] Nguyen KT, West JL, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials, 2002, 23(22): 4307~4314
    [99]高钊,新型聚(醚-酐)凝胶纳米粒用于难溶性药物增溶的研究:[硕士学位论文],天津;天津大学,2007
    [100]Muggli DS, Burkoth AK, Keyser SA, et al., Reaction behavior of biodegradable, photo-cross-linkable polyanhydrides, Macromolecules, 1998, 31(13): 4120~4125
    [101]Venkatram PS, Robert FP, Peter T, A preliminary report on the biocompatibility of photoipolymerizable semi-interpenetrating anhydride networks, Biomaterials, 2004, 25(4): 715~721
    [102]何仲贵,邢楠,施洁明等,2-羟丙基β-环糊精对吲哚美辛的增溶及稳定作用,中国药学杂志,2004,39(5):353~355
    [103]夏芸,邱利焱,金一,温敏性吲哚美辛/β-环糊精包合物的制备及体外评价,药学学报,2005,40(2):187~192
    [104]Zavisova V, Koneracka M, Strbak O, et al., Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles, J. Magn. Magn. Mater., 2007, 311(1): 379~382
    [105]廉云飞,李娟,平其能等,吲哚美辛微乳的制备及经皮吸收研究,中国医药工业杂志,2005,36(3):148~152
    [106]Kim IS, Jeong Y, Cho CS, et al., Core-shell type polymeric nanoparticles composed of poly(l,d-lactic acid) and poly(N-isopropylacrylamide), Int. J. pharm., 2000, 211(1-2): 1~8
    [107]Zhang ZP, Feng SS, Nanoparticles of poly (lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release, Biomaterials, 2006, 27(2): 262~270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700