两种新型耐磨堆焊材料及其堆焊金属组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械零件大多数是用金属材料制造的,由于零件之间或零件与物料之间的相对运动,会发生磨损。随着现代工业的发展,机械零件经常处于异常复杂和苛刻的条件下工作,大量的机械装备往往因磨损而报废。堆焊因工艺简单、设备投资少、操作灵活、适应面广而被广泛应用于在钢板表面制备耐磨合金层,提高机械零件的寿命。
     焊条、药芯焊丝均为传统的堆焊材料,一般采用合金粉末生产。合金粉末生产工艺复杂,使得堆焊材料的成本大幅度提高。同时传统的手工堆焊工艺生产效率也较低。本文针对上述问题,设计了夹芯合金粉块、堆焊合金颗粒两种新型耐磨堆焊材料。夹芯合金粉块解决了手工堆焊效率低的问题,堆焊合金颗粒则以钢铁企业的自产废钢为主要原料,降低了生产成本。
     夹芯合金粉块由内部的焊芯和外部的药皮两部分组成,其横截面设计为三角形、半圆形、梯形等特定几何形状之一,很好地解决了合金粉块中合金元素较多、熔点较高不易熔敷的问题。采用油压式焊条压涂机压制,在合金粉块中添加H08A焊芯,保证了压涂的工艺性能。夹芯合金粉块可以采用电弧熔敷。本文根据装载机的磨损工况,设计了Cr-Mo-V系夹芯合金粉块,通过SEM、X射线衍射和电子探针等实验手段研究了Cr-Mo-V合金粉块堆焊金属的组织与性能。实验结果表明:Cr-Mo-V堆焊金属的组织以马氏体为主,Cr、Mo等合金元素主要以固溶体的形式存在于基体中。通过磨料磨损实验研究了Cr-Mo-V堆焊金属中Cr/C比、Mo含量变化、堆焊金属的硬度与耐磨性的关系。基于研究结果,进行了Cr-Mo-V夹芯合金粉块应用于装载机工作装置的工程试验,结果表明耐磨性良好。
     随着钢铁冶金行业装备水平的提高,高洁净钢材的产量逐年提高。在钢板生产过程中,由于定尺的需要大约产生钢产量4%~5%的板头、板边,目前钢铁企业多作为废钢回炉重新炼钢,使得这些废钢重走炼钢、轧钢工艺流程,浪费能源、污染环境。这些废钢所具备的洁净特点符合焊接材料用原料标准,并且其中所含有合金元素也可以为焊接冶金有效利用。本文以钢铁企业的自产废钢为原料,采用中频感应炉将废钢熔化成钢水,并根据堆焊材料的使用工况添加适量合金元素,采用离心雾化技术将钢水制成堆焊用的合金颗粒,合金颗粒为直径0.1mm~5mm的球形或椭球形。合金颗粒采用电弧熔敷于钢板表面,可获得具有耐磨合金层的复合钢板。本文设计了系列Fe-Cr-C系高铬铸铁耐磨堆焊合金颗粒,通过SEM、X射线衍射等实验手段研究了亚共晶、共晶及过共晶Fe-Cr-C系合金颗粒堆焊金属的组织性能。通过磨料磨损实验研究了Fe-Cr-C合金颗粒堆焊金属的耐磨性能,分析了堆焊金属的碳当量、硬度与耐磨性的关系,以及过共晶高铬铸铁堆焊金属中碳化物数量与耐磨性的关系。用Fe-Cr-C合金颗粒堆焊的耐磨复合钢板制作装载机河砂斗的耐磨部件,在山东大汶河采沙场进行了装机实验。结果表明,装载机河砂斗的耐磨性大大提高。
Machinery accessory is mostly made of metal material.Due to the relative motion between machinery parts or between machinery parts and subject materials,the abrasion will take place.With the process of modern industry,working condition of machinery accessory is so extraordinarily demanding that lots of machinery accessory are discarded because of abrasion.As it is simple in technique and economic in equipment,facing welding is widely used in preparation of wear-resistant alloy layers on steel substrate to improve the lifespan of machinery accessory.
     The conventional surface welding materials,such as electrode and flux-cored wire, are commonly made from alloy powder.However,the production technology of alloy powder is complex,which increases cost of surface welding in turn.Furthermore,the production efficiency of traditional manual labour surface welding is relatively low.In concern of these problems,this paper designs two novel wear-resistant surface welding materials:core alloy powder agglomates and surface welding alloy beads.The using of Core alloy powder agglomates improves production efficiency of traditional manual labour surface welding,and,the using of weld alloy beads reduces the cost of production as we can recycle the home-grown scrap steel..
     Core alloy powder agglomates is maken up of core welding-wire in the center and coating in the outside.The cross section of core alloy powder agglomates can be designed to specific geometry form,such as triangle,hemicycle,echelon and so on, which solves the problem of high melting point and the difficulty in depositing,while too many alloy elements coexist in core alloy powder agglomates.Pressed by hydraulic electrode extrusion press,core alloy powder agglomates with H08A core welding-wire ensure quality of the extrusion.According to the wear wording condition of mechanical loader,this paper designs core alloy powder agglomates of Cr-Mo-V.The deposited metal of Cr-Mo-V alloy powder agglomates are studied using SEM,X-ray,electron probe etc.The results demonstrate that the majority of deposited metal of Cr-Mo-V mostly is martensite and alloy element,such as Cr,Mo presents in the substrate in the form of solid solution.The relationship between the fraction of Cr,C,and Mo in deposited metal,the hardness of deposited metal and wear-resistance are analyzed through grinding abrasion testing.Then,the project test of application of Cr-Mo-V alloy powder agglomates on work device of mechanical loader are carried out based on the research results.
     With the improving of equip level of ferrous metallurgy,the production of high purity steels increases rapidly.While the production high purity steels,the amount of coach and plate edges take up to the 4%~5%of gross steel production due to need of length fix,and these steels are seemed as scrap steel to melt down as scrap steel, which will experience the technological process of steel-making,and steel-rolling once again,causing the waste of energy source and the pollution of environment. However the purity of such scrap steel meets the standard of raw material of welding material,and alloy elements in it can be used by welding metallurgy efficiently.This paper makes use of the home-grown scrap steel of steel enterprise,melting the scrap steel into molten steel with medium frequency induction furnace,adding proper amount of alloy elements on the basis of application condition of surface welding material,and manufacturing the molten steel into weld alloy beads by centrifugal atomization.Alloy beads can be deposited on the surface of steel substrate by electric arc,obtaining clad plate with high wear-resistance alloy layer.The shape of the particle is globular shape or spheroidicity,and the dramatic of the particle is 0.1mm~5mm.This paper designs the chromium rich Fe-Cr-C cast-ion wear-resistant surface welding alloy beads.The structure property of Fe-Cr-C alloy particle high chromium cast-ion deposited metal of hypoeutectic,eutectic,hypereutectic are studied using SEM,X-ray,and so on.Through the test of grinding abrasion,the wear-resistant ability of deposited metal are measured,and the relationship between carbon equivalent in deposited metal,hardness of deposited metal,carbide quantity of hypereutectic high chromium cast-ion deposited metal and wear-resistant ability are analyzed.Wear resistant parts of basket of mechanical loader are fabricated by wear resistant clad plate of Fe-Cr-C alloy particle and tested in Taian battlefield.The results show that the wear resistant cladding greatly improves the abravability of basket of mechanical loader.
引文
1.刘家浚编.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    2.机械设备磨损失效分析案例编委会编.磨损失效分析案例汇集.北京:机械工业出版社,1985
    3.柳永浩.复摆颚式破碎机主轴轴承内套破断原因分析.鞍钢技术,1998,2:29-31
    4.孟庆森,吴建灵.奥氏体合金堆焊金属抗冲击磨损特性分析.机械管理开发,2002,2:46-47
    5.宋延沛,王文,谢敬佩等.微量元素对高碳中锰钢组织和冲击磨损性能的影响.矿山机械,2001,11:59-60
    6.李茂林.我国金属耐磨材料的发展和应用.铸造,2002,51(9):525-529
    7.李卫.钢铁耐磨材料技术进展.铸造,2006,55(11):1105-1109
    8.何力,卢锦德,熊玉竹等.合金化对高锰钢奥氏体基体强度及耐磨性的影响.贵州工业大学学报(自然科学版),2002,29(2):45-48
    9.苏俊义.铬系耐磨白口铸铁.北京:国防工业出版社,1990
    10.王祖宾,东涛等.低合金高强度钢.北京:原子能出版社,1996
    11.张雪华.金属耐磨材料的发展与研究.矿山机械,2004,32(8):107-109
    12.陈伯蠡,黄云庆,王莲芳.中碳合金钢耐磨堆焊合金优化研究.焊接,1995,3:11-16
    13.邱常明 张贵杰.耐磨金属材料的最新研究进展.甘肃冶金,2007,29(2):1-3
    14.徐滨士,刘世参.表面工程.北京:机械工业出版社,2001
    15.王娟等.表面堆焊与热喷涂技术.北京:化学工业出版社,2004
    16.材料耐磨抗蚀及其表面技术委员会.材料的磨料磨损.北京:机械工业出版社,1988
    17.白范雄.高强度高韧性耐磨埋弧堆焊用药芯焊丝的研制.湘潭大学硕士学位论文,2006
    18.姚光华.中国专利CN86106019耐热耐磨堆焊焊条,1986
    19.蔡亚西,赵文轸.中国专利CN1116574A 一种连铸辊堆焊用烧结焊剂及其生产方法.2002
    20.蔡亚西,赵文轸.中国专利CN1415453A 一种堆焊用包芯焊丝.2003
    21.黄文哲等.中国专利CN85102440 Fe-05耐磨堆焊合金粉块.1985
    22.何奖爱,王玉玮.材料磨损原理及其耐磨性.沈阳:东北大学出版社,2001
    23.M.A.摩尔.中国农业机械化科学研究院工艺材料研究所编译.磨粒磨损与抗磨技术译文集.北京:中国农业机械出版,1999
    24.马乃恒,范向东.进口装载机斗齿磨损失效分析.热加工工艺,1990,1:37-39
    25.郭恒博,葛福华.用耐磨堆焊修复铲斗.工程机械与维修,2007,9:142
    26.蔡黎明,王德治.工程机械铲斗、挖斗斗齿的修复.建筑机械,2004,1:88-89
    27.温新林等.斗齿低碳低合金耐磨材料的研究.Hot Working Technology,2005,7:24-25
    28.周平安.耐磨、耐热件的失效机理及在冶金行业中的应用.水利电力机械,2003,25(5):32-33
    29.周平安.耐磨、耐热件的失效机理及在冶金行业中的应用(续).水利电力机械,2003,25(5):31-33
    30.刘堃等.国实用新型专利CN101003107.碎焊丝与铁粉混合的焊接方法.2006
    31.张华.废钢铁资源与我国钢铁工业可持续发展.中国地质矿产经济,2002,5:26-30
    32.吴建常.中国废钢铁消费趋势.中国钢铁业,2007,5:6-9
    33.化茂林等.碳弧堆焊防磨技术在排粉机上的应用.西北电力技术,1998,4:31-33
    34.李希甫等.利用Fe-5耐磨合金粉块堆焊引风机叶轮技术的应用.中国甜菜糖业,1997,1:44-44
    35.尹士科.焊接材料手册.北京:中国标准出版社.2000
    36.廖立乾.焊条的设计、制造与使用.北京:机械工业出版社,1988
    37.王智慧.用填粉式堆焊方法制造耐磨复合钢板.机械工程材料,2001,25(3):25-27
    38.王勇.碳对多元合金系堆焊层硬度和组织的影响.太原理工大学学报.2001,3:386-389
    39.李怀学.高碳合金钢质冷堆焊金属的第二相强化及其增韧.山东大学硕士学位论文,2004
    40.向道平.Cr/C比及热处理工艺对高铬铸铁抗磨料磨损性能的研究.热加工工艺,2004,5:21-23
    41.刘政军等.合金元素对抗冲击磨损堆焊材料性能的影响.热加工工艺,2005,8:18-20
    42.雍歧龙等.钒在钢中的物理冶金学基础数据.钢铁研究学报,1998,10(5):63-66
    43.锡金.国外钒的应用概况.有色金属.2000,2:13-20
    44.鲜玉强.耐磨堆焊层中花絮成分对热裂倾向的影响.重庆建筑大学学报,2000,22(1):53-57
    45.黄新民,张国荣.Mo对高铬铸铁组织结构的影响.机械工程学报,1994,30(3):23-24,26
    46.刘金海,刘东.多元中铬合金耐磨铸钢的研究.工程机械,2002,33(2):45-47
    47.陈伯蠡,黄云庆.中碳合金钢耐磨堆焊合金优化研究.焊接,1995,03:11-16
    48.高文民.金相检验基本知识.北京:中国铁道出版社,1989
    49.李炯辉等.钢铁材料金相图谱.上海:上海科学技术出版社.1981
    50.李卫等.中铬合金耐磨钢的研发与应用.广东有色金属学报,2004,14(01):15-19
    51.谢敬佩等.耐磨铸钢及其熔炼.北京:机械工业出版社,2003
    52.赵品等.材料科学基础.哈尔滨:哈尔滨工业大学出版社,1999
    53.刘金海.多元中铬合金耐磨铸钢的研究.工程机械,2002,33(2):45-47
    54.陈伯蠡,王莲芳.Cr与Mo对堆焊金属耐磨料磨损性能的影响.焊接学报,1992,13(4):218-224
    55.郝石坚.高铬耐磨铸铁.北京:机械工业出版社,2000
    56.陈璟琚.合金高铬铸铁及其应用.北京:冶金工业出版社,1999
    57.孙爱芳等.焊接结构制造.北京:北京理工大学出版社,2007
    58.蔡泽高.金属磨损与断裂.上海:上海交通大学出版社,1985
    59.赵学彬.盾构刀具堆焊层设计与性能研究.北京工业大学硕士学位论文,2007
    60.王清宝.Fe-Cr-C高碳耐磨堆焊合金的研究.北京工业大学硕士学位论文,2003
    61.周继杨.铸铁彩色金相.北京:机械工业出版社,2002
    62.V.G.Rivlin.International Matals Reviews.1984,29(4):299-327
    63.王清宝等.Fe-Cr-C系高碳耐磨堆焊合金组织及性能.焊接学报,2004,25(6):119-123
    64.王智慧等.硼对Fe-Cr-C耐磨堆焊合金组织的影响.材料工程,2001,10:18-20
    65.王莲芳.堆焊金属耐磨性与硬度关系的研究.焊接,1991,6:69
    66.T.J.Eckstein.Heat.treatment.of.Steel.Leipzi.DeutscherVerlagforGrundstofindustrie.1969
    67.H.Berns and A.Fischer.Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb,Tiand,B.Meterialscharcterzation,1997,3(9):499-527
    68.苏俊义等.定向凝固高铬铸铁耐磨性的探讨.西安交通大学学报,1984,4:54-64
    69.F.Maratray etal.Factors afecting the Structure of Chromium and Chromium-Molybdenum White Irons,Climax Molybdenum Co.1970
    70.潘春旭.耐磨堆焊层显微组织特征及其与耐磨关系的研究.兵器材料科学与工程,2000,23(2):8-12
    71.A.N.J.Stevenson,I.M.Hutchings Wear of Hardfacing White Cast Irons by Solid Particle Erosion Wear,1995:150-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700