工艺条件对高铬铸铁凝固组织及腐蚀行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对不同成分的高铬白口铸铁,通过改变工艺条件末研究高铬铸铁基体组织的形成特征;深入分析了工艺条件的变化对奥氏体析出量、稳定性的影响规律及对其腐蚀行为的影响;进一步探讨了高铬铸铁中碳化物的组成特征。研究结果表明:
     对于含铬量为15%、碳量为2.6%的亚共晶高铬白口铸铁而言,随着冷却条件的改变,凝固组织也发生着显著的变化:在本实验条件下,当浇注尺寸为φ70×100mm时,得到了典型的亚共晶组织:马氏体+共晶组织;在砂型中浇注成尺寸为φ30×100mm高铬铸铁试样,凝固后的组织中初生奥氏体完全消失,得到全部的伪共晶组织。上述两种情况下的高铬铸铁中的初生和共晶奥氏体中固溶的碳、铬量不足以使其稳定地保留到室温,从而发生奥氏体→马氏体的转变;随着冷却速率的增大(浇注金属型中φ20×50mm和水冷φ10×25mm高铬铸铁试样),初生奥氏体的析出量增加,共晶组织的数量减少,并且初生奥氏体中固溶的过饱和的碳、铬量增加。初生奥氏体中固溶的碳、铬量越多,奥氏体越稳定,但同时析出二次碳化物的趋势也越强。当二次碳化物未析出时,C、Cr原子的增加使初生奥氏体稳定性增加,而一旦二次碳化物析出,C、Cr原子的增加导致初生奥氏体稳定性变差。
     冷却条件的改变带来高铬铸铁凝固组织的改变,相应地必然使其性能发生很大的变化,这在其耐腐蚀性能方面就有较深刻的体现。无论是对于Cr15还是Cr30高铬铸铁,快冷均使得同化学成分下的高铬铸铁的耐腐蚀性能显著增强。快冷使得Cr15高铬铸铁中奥氏体的析出量及其稳定性增强,同慢冷条件下以马氏体为基体的Cr15高铬铸铁相比,其耐腐蚀性能显著提高;对于Cr30高铬铸铁,虽然慢冷和快冷条件下得到的基体组织均为奥氏体,但快冷不仅使奥氏体中固溶的碳、铬量增加、均匀性更好,而且改善了碳化物的尺寸形态,降低了奥氏体基体与碳化物之间的电极电位差,从而从整体上显著提高了其耐腐蚀性能。
     当高铬铸铁中的含铬量为15%、碳量为3.2%时,凝固组织中初生碳化物和共晶碳化物的类型均为(Fe,Cr)_7C_3型,但其中Fe、Cr原子的组成比例是有所不同的。仞生碳化物形成温度较高,C、Cr原子扩散供应充分,相应的初生碳化物的心部和边部Fe、Cr原子的组成比例一样,均为Fe_2Cr_5C_3;而对于共晶碳化物,由于其形成温度有所下降,C、Cr原子尤其是Cr原子扩散供应有所减缓,从而使共晶碳化物心部的原子组成比例仍为Fe_2Cr_5C_3,而边部原子的组成比例变为Fe_(2.4)Cr_(4.6)C_3。
The formation characteristics of matrix were studied by varying technological conditions aimed at different chemical compositions of high chromium white cast iron; the effects of technological conditions variation on austenite precipitation, its stability and corrosion-resistance behavior were analyzed profoundly; and the constituent characteristics of carbides in high chromium cast iron were further discussed. The results showed that:
     As for as a 15%Cr, 2.6%C hypoeutectic white cast iron, solidified microstructure changed remarkably with increasing cooling rate: under our experimental conditions, when the pouring size of specimen was (?)70×100mm in crucible, the microstructure consisted of martensite and eutectic structure, which was typical hypoeutectic microstructure; as the pouring size was (?)30×100mm in sand mold, primary austenite disappeared and almost 100% pseudoeutectic structure was obtained. Both the primary and eutectic austenite in above-mentioned specimens were unstable due to low carbon、chromium content, thereby transforming into martensite. However, with the increase in cooling rate (that was pouring the specimen of (?)20×50mm in metallic mold and that of (?)10×25mm with hydro-cooling), the amount of primary austenite increased whereas that of eutectic structure decreased, and the amount of carbon、chromium atoms soluted in primary austenite increased. The more carbon、chromium atoms soluted in primary austenite were, the more stable austenite was, however, the tendency of secondary carbides precipitation also enhanced. The increase of carbon、chromium atoms leaded to primary austenite more stable when no secondary carbides precipitating, however, once secondary carbides precipitate, it resulted in the instability of primary austenite.
     The solidified structure of high chromium cast iron changed with the cooling conditions variation, and its corrosion-resistance varied correspondingly. No matter Cr15 or Cr30 cast iron, both of them had better corrosion-resistance at rapid cooling velocity. The austenitic amounts and its stability of Cr15 cast iron increased at rapid cooling velocity, and compared with Cr15 cast iron with martensite matrix at slow cooling velocity, the corrosion-resistance of Cr15 white iron under rapid cooling conditions improved greatly; for Cr30 cast iron, although both of the matrix structure obtained at slow and rapid cooling velocity were austenite, the amount of austenite obtained at rapid cooling velocity increased, it soluted more carbon、chromium atoms and had better uniformity, which decreased the electrode potential difference between austenite matrix and carbides, and thus, the corrosion-resistance of Cr30 cast iron under rapid cooling conditions was significantly improved.
     For a 15%Cr, 3.2%C white cast iron, the type of both primary and eutectic carbides was (Fe,Cr)_9C_3, however, the proportion between Fe and Cr atoms was varying. For primary carbides, because of its higher forming temperature and full diffusion of carbon and chromium atoms, its chemical formula was Fe_2Cr_5C_3; but for eutectic carbides, the chemical formula of its center was also Fe_2Cr_5C_3 ,while that of its periphery was Fe_(2.4)Cr_(4.6)C_3 due to the decrease of temperature and slowing up the diffusion of carbon、chromium atoms, especially chromium atoms.
引文
[1] 何俊.近年耐磨材料的发展[J].国外金属矿选矿,1996(4):21-24
    [2] 陈华辉,赵会友等.我国耐磨材料的使用与发展概况.中国特殊钢年会 2005年论文集,2005,5
    [3] Tanner, Danelle M., Dugger and Michael T.. Wear mechanisms in a reliability methodology[J]. Proceedings of SPIE- The international society for optical engineering, 2003(4980):22-40
    [4] 何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001
    [5] 卢书媛,丁厚福.几种新型的耐磨材料[J].国外金属热处理,2002(10):168-170
    [6] 周平安.磨损失效分析及耐磨材料的现状和展望[J].水利电力机械,1999(10):3-5
    [7] S. W. Watson, B. W. Madsen, S. D. Cramer. Wear-corrosion study of white cast irons. Wear, 181-183(1995):469-475
    [8] 美国《工程与采矿杂质》编辑部.抗磨损材料述评[J].国外会属矿山,1994(2):75-81
    [9] 秦紫瑞,孙连春,李隆盛.新型高铬铸铁的研制[J].机车车辆工艺,1997(6):5-11
    [10] 周继扬.铸铁彩色金相学[M].北京:机械工业出版社,2002,9
    [11] 陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1996
    [12] Anon. Mechanical properties of high-alloy and white iron[J]. Engineered Casting Solutions, 2004 (7):37-38
    [13] Bruce A Betts, Stan A Hebdon. Determining PREN for high-chromium cast irons[J]. Materials Performance, 8(2000):78-81
    [14] Cemil Cetinkaya. An investigation of the wear behaviours of white cast irons under different compositions[J]. Materials & Design, 27(2006):437-445
    [15] 李海鹏,梁春永,王立辉,陈学广.铬系白口铸铁的研究进展[J].中国铸造装备与技术,2006,5:8-12
    [16] 郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社,1993
    [17] 皇志富,刑建东,贺伟.重熔时间对半固态过共晶高铬铸铁初生相的影响[J].西安交通大学学报,2005,39(3):282-285
    [18] Tadashi Usami, Yo Serita. Relation Between Sand Erosion and Corrosion Resistance of High Chromium White Cast Iron[J]. IMONO, 1978, 50(5):281-286
    [19] Liming Lu, Hiroshi Soda, Alexander McLean. Microstructure and mechanical properties of Fe-Cr-C eutectic composites[J]. Materials Science and Engineering, A347(2003):214-222
    [20] 李卫,朴东学,姜炳焕.马氏体—贝氏体—奥氏体复相基体高硅碳比中铬铸铁及 马氏体基体高铬铸铁磨损特性的研究[J].铸造,1992(9):16-21
    [21] 苏俊义.铬系耐磨白口铸铁[M].北京:国防工业出版社,1990
    [22] 刘志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002
    [23] 于春田等.含硅量和冷却速度对中铬铸铁碳化物的影响[J].铸造,2001(5):258-262
    [24] 苏应龙,张学昆,张大勇等.高铬白口铸铁的强化原则[J].北京工业大学学报,1991,17(3):58-65
    [25] 王树奇,崔向红.改善白口抗磨铸铁中共晶碳化物形态研究的进展[J].机械工程材料,1995,19(2):9-11
    [26] 朴东学.改善高铬铸铁件使用性能的新工艺[J].铸造,994(2):43-45
    [27] 马永庆,于至伟,张占平等.ZTCr15和ZTCr25滑动磨损的分析[J].铸造,1997(5):16-19
    [28] 麻生节夫,田上道弘等.Fe-Cr-C-B系合金铸造材机械的性质[J].日本金属会志.1992,56(2):707-714
    [29] R. H. Forst, T. Majewski, G.. Krauss. AFS Trans, 1986:297-321
    [30] 王兆昌,周年.奥氏体白口铸铁与马氏体白口铸铁的磨料磨损行为及抗磨性能[J].铸造,1993(9):24-28
    [31] Sare I. R. Abrasion Resistance and Fracture Toughness of White Cast Iron[J]. Metals Technology, 1972(11):412-419
    [32] 苏应龙,张学昆.高铬抗磨铸铁韧性的提高[J].现代铸铁,2000(4):56-59
    [33] 西安电力机械厂耐磨件试制组等.高铬铸铁及其在抗磨上的应用[J].西安交通大学学报.1978(4):99-106
    [34] 王文才,刘根生.铸态高铬铸铁磨球的组织和应用[J].铸造,1997(9):28-32
    [35] Fiset M, Peev K, Radulovic M. Influence of niobium on fracture toughness and abrasion resistance in high-chromium white cast irons[J]. Journal of Materials Science Letters, 1993(5):615-617
    [36] Radulovic M, Fiset M, Peev K. Influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons[J]. Journal of Materials Science, 1994, 29(19):5085-5094
    [37] M. Izciler, H. Celik. Two- and three-body abrasive wear behavior of different heat-treated boron alloyed high chromium cast iron grinding balls[J]. Journal of Materials Processing Technology, 105(2000):237-245
    [38] Tan Y. Y, Xu X. P. Effect of multi-element low alloys on the structure and properties of high Cr-Mn white cast iron[J]. Journal of Nanjing University of Science and Technology, 2001 (4): 160-164
    [39] 杨庆祥,赵亚坤.稀土对高铬铸铁碳化物形态及相变动力学的影响[J].中国稀土学报,1998(2):71-74
    [40] A. Bedolla-Jacuinde, R. Correa, J. G. Quezada, C. Maldonado. Effect of titanium on the as-cast microstructure of a 16% chromium white iron[J]. Materials Science and Engineering. A398(2005):297-308
    [41] 张景辉等.变质高铬铸铁组织与性能的研究[J].铸造,1993(8):42-46
    [42] Han Fusheng, Wang Zhaochang. Modifying high Cr-Mn cast iron with boron and rare earth-silicon alloy[J]. Mater. Sci. Technol, 1989(9):918-924
    [43] Qin Zirui, Nie Liwen. Effect of RE-Mg alloy modification on high cast iron [J]. Shiyou Jixie, 1998, 26(8):20-23
    [44] 杜家林.高铬铸铁的热处理新工艺[J].金属热处理,1988(11):10-14
    [45] 宋强,孟繁琴,张廷华.热处理工艺对高铬铸铁组织性能的影响[J].铸造,1998(4):44-46
    [46] 付瑞东.退火工艺对高铬铸铁组织及性能的影响[J].金属热处理,2001(6):15-16
    [47] 马前,王兆昌.白口铁热处理时共晶碳化物的溶解与团粒化[J].钢铁研究学报,1990(1):63-69
    [48] Chang Limin, Liu Jianhua, Zhang Ruijun, Wang Jidong. Effect of RE modification and heat treatment on impact fatigue property of a wear resistant white cast iron[J]. Journal of Rare Earths, 2004(8):537-541
    [49] Farah A. F, Crnkovic O. R, Canale L. C. F. Heat treatment in high Cr white cast iron Nb alloy[J]. Journal of Materials Engineering and Performance, 2001(2):42-45
    [50] M. M. Arikan, H. Cimenoglu, E. S. Kayali. The effect of titanium on the abrasion resistance of 15Cr-3Mo white cast iron[J]. Wear, 247(2001):231-235
    [51] Drotlew A, Garbiak M. Relationship between moulding sand composition and size of carbide particles in white cast iron[J]. Metallurgy, 2001 (1):41-45
    [52] Hong Li, Burdett C. F. Superplastic behaviour of fine-grained white cast irons[J]. Journal of Materials Science, 1993(11):5901-5908
    [53] Shadrov N. Sh, Plotnikov G. N. Abrasive and corrosive resistance of high-chromium cast irons under centrifugal casting[J]. Liteinoe Proizvodstvo, 1994(1): 12-13
    [54] Huang Zhifu, Zhang Anfeng. Characteristics of semi-solid gradient microstructure of high chromium white cast iron prepared by inclined cooling body-centrifugal casting[J]. Special Casting and Nonferrous Alloys, 2005(8):449-450
    [55] Matsuo T. T, Kiminami C. S, Fo W. J, Botta Bolfarini C. Sliding wear of spray formed high-chromium white cast iron alloys[J]. Wear, 2005(7):445-452
    [56] Michiru Sakamoto, Hua-Nan Liu a, Mikio Nomura, Keisaku Ogi. Tribological stability of Al_2O_3 short fiber reinforced high Cr cast iron[J]. Wear, 251(2001): 1414-1420
    [57] D. N. Hanlon, W. M. rainforth, C. M. Sellars. The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature[J]. Wear, 225-229(1999):587-599
    [58] 周庆德,刘小为,沈军.除气对高铬铸铁性能的影响[J].铸造技术,1984(1):38-41
    [59] 苏应龙,张学昆,马黛妮.高铬抗磨铸铁韧性的提高[J].北京工业大学学报.1998,24(1):71-76
    [60] 苏俊义等.定向凝固高铬铸铁耐磨性的初探[J].西安交通大学学报,1983(4):59-64
    [61] O. N. Dogan, G.. Laird II, J. A. Hawk. Abrasion resistance of the columnar zone in high Cr white cast iron[J]. Wear, 181-183(1995):342-349
    [62] O. N. Dogan,J.A.Hawk.Effect of carbide orientation on abrasion of high Cr white cast iron[J].Wear, 189(1995): 136-142
    [63] 许振明,何镇明,姜启川.改善抗磨白口铸铁中碳化物形态的展望[J].矿山机械,1995.8:18-21
    [64] 陈光,傅恒志等.非平衡凝固新型金属材料[M].北京:科学出版社,2004
    [65] 刘天喜,何姣莲等.快速凝固技术及双辊法的研究现状[J].热加工行业资讯,2006,6:47-50
    [66] Trivedi R and Kurz W.Dendritic Growth[J].International Metals Reviews,1994, 39(2):49-74
    [67] 胡壮麒,周尧和,介万奇.凝固技术[M].北京:机械工业出版社,1998
    [68] Carrard M,Gremaud M Zimmermann M,Kurz W. About the banded structure in rapidly solidified dendritic and eutectic[J].Acta Metallurgica et Materialia, 1992, 40(5):983-996
    [69] Boetting W J, Coriell S R, Trivedi R. Rapid Solidification Processing: Princples and Technologiesm, Edited by Mehrabian R, and Parrish P A. Santa Narbara, 1987
    [70] 刘玉高.工艺条件对铬系白口铸铁组织性能的影响[D].陕西:西安建筑科技大学冶金工程系,2006
    [71] J.V.Wood.Proc.5th Inter. Conf. on Strenth of Metals and Alloys,1979
    [72] Yukinori ONO,Noriko MURAI,Keisaku OGI. Partition Coefficients of Alloying Elements to Primary Austenite and Eutectic Phase of Chromium Irons for Rolls[J]. ISIJ International, 1992, 32(11): 1150-1156
    [73] 翟启杰.铸铁物理冶金理论与应用[M].北京:冶金工业出版社,1995.
    [74] 陈景琚,余自甦等编著.合金高铬铸铁及其应用[M].北京:冶金工业出版社,1999
    [75] Laird Ⅱ, G. and Powell, G. L. F. Met. Trans, A22(1993): 981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700