MnSi_(1.7)薄膜热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对n型和p型MnSi_(1.7)薄膜进行了俄歇谱分析,研究了化学位移和薄膜电学性能之间的关系。和纯Mn相比,p型和n型MnSi_(1.7)薄膜样品的Mn[MVV]峰分别有+2.0和+7.0 eV的化学位移。与纯Mn [LMM]的峰位在545、592、638 eV处相比,p型和n型MnSi_(1.7)薄膜的545 eV的峰位都没有改变;592 eV的峰位都有-0.5 eV的化学位移;p型MnSi_(1.7)薄膜的638 eV的峰位有+0.5 eV的位移,而n型MnSi_(1.7)薄膜的638 eV的峰位没有位移。在用磁控溅射制备的两个样品中,出现了Mn[MVV]谱中50 eV、Mn [LMM]谱中600、654、705 eV的新的峰位,这些峰在n型样品中更强,这可能与薄膜中含有Fe杂质有关。与纯Si相比,n型和p型样品的Si[LVV]峰均有+1.0 eV的化学位移。
     利用磁控溅射镀膜的方法对n型MnSi_(1.7)薄膜进行了C掺杂,掺杂后样品还是n型。但是,样品的Seebeck系数和电阻率发生了变化。当样品掺入C后,Seebeck系数略有增加,电阻率减小,导致功率因子明显提高。当样品掺入量-碳薄膜厚度为2 nm时,功率因子在温度683 K时最大可达1048μW/m-K~2,已接近p型体材料的数值。
     利用电子束蒸发制备了14~27 nm厚度的MnSi_(1.7)薄膜。与文献上报道的p型MnSi_(1.7)体材料和薄膜不同,大部分纳米尺寸薄膜在室温下是p型的,随温度升高会变为n型。对这些纳米尺寸的MnSi_(1.7)薄膜样品进行Fe掺杂,当掺杂Fe含量-FeSi_2薄膜的厚度为11 nm时,样品表现为n型半导体性质。掺杂后,样品电阻率降低,这与Fe杂质所起的作用有关。样品掺杂Fe后,Seebeck系数增加,在温度483 K时Seebeck系数为-662μV/K,同时,功率因子也有明显提高,在533 K时已达到5133μW/m-K~2。当薄膜厚度为14 nm时,尽管没有铁掺杂,但是样品是n型的,在483 K时,Seebeck系数有最大值-967μV/K。如此大的Seebeck系数可能与低维半导体中费米能级附近的态密度有所增大有关。
P-and n-type higher manganese silicide (MnSi_(1.7)) films are characterized by Auger electron spectroscopy (AES). The relationship between Auger chemical shift and electrical property of the film has been established. Compared with pure Mn, the peak positions of Mn [MVV] Auger spectra in p- and n-type MnSi_(1.7) films move to higher energy regions with +2.0 and +7.0 eV, respectively. Compared with pure Mn [LMM] Auger peaks at 545, 592, and 638 eV, the peak at 545 eV remains unchanged while the one at 592 eV moves to a lower energy region with -0.5 eV for both p- and n-type MnSi_(1.7) films. The peak at 638 eV moves to a higher energy region with +0.5 eV for p-type MnSi_(1.7) film and remains unchanged for n-type MnSi_(1.7) film, respectively. New peaks around 50 eV in the Mn [MVV] Auger spectra, and 600, 654, and 705 eV in the Mn [LMM] Auger spectra appear in MnSi_(1.7) films prepared by magnetron sputtering. The new peaks have much stronger intensities for the n-type MnSi_(1.7) film. These new peaks are considered to arise from iron impurities. Compared with the pure Si, the peak position of Si [LVV] Auger spectra move to higher energy regions with + 1.0 eV for both p- and n-type MnSi_(1.7) films.
     N-type MnSi_(1.7) films with addition of carbon are prepared by magnetron sputtering. With addition of carbon, the film is still n-type. With addition of carbon, the Seebeck coefficient increases a little while the resistivity decreases. As a result, the thermoelectric power factor increases. When the thickness of the carbon layer is 2 nm, the power factor reaches to 1048μW/m-K~2 at 683 K. This value is close to that of p-type bulk material.
     Nanoscale MnSi_(1.7) films with thicknesses between 14 and 27 nm are prepared by electron beam evaporation. Contrary to the p-type conductivity for MnSi_(1.7) bulk materials and thin films reported in the open literature, the carriers of these nanoscale films are p-type around room temperature and transform to n-type at high temperatures. With addition of iron, the film becomes n-type. When the thickness of the FeSi_2 layer is 11 nm, the electrical resistivity of the nanoscale film decreases and the Seebeck coefficient increases. As a result, the thermoelectric power factor increases greatly. The Seebeck coefficient can reach to -662μV/K at 483 K, while the power factor can reach to 5133μW/m-K~2 at 533 K. When the thickness of the nanoscale film is 14 nm, a n-type film is prepared. The thermoelectric power reaches to - 967μV/K at 483 K. The large thermoelectric power may be due to the increase in the electronic density of states in low-dimensional semiconductors.
引文
[1]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社,1994.286~289
    [2]朱铁军,赵新兵,胡淑红等,新型热电材料β-Zn4Sb3的电学性能,稀有金属材料与工程,2001,30(3):187~189
    [3]李喜贵,王运志,王海英等,热电材料的研究进展,河南师范大学学报(自然科学版),2005,33(3):47~51
    [4]刘晓虎,赵新兵,倪华良,陈海燕,快速凝固和热压高锰硅的微观结构的热电性能,功能材料与器件学报,2004,10(2):231~235
    [5]高敏,Rowe. D. M,半导体温差电器件的低温余热发电,新能源,1992,14 (7):10~16
    [6] T. M. Tritt, Holey and unholy semiconductors, Science, 1999, 283(5403):804~805
    [7]钱剑锋,杨灿军,一种温差电器件的发电性能分析研究,电源技术,2005,29(7):459~465
    [8] B. Lenoir, A. Dauscher, P. Poinas, et al. Electrical performance of skutterudites solar thermoelectric generators. Appl Thermal Eng, 2003, 23:1407~1415
    [9] D. Ravot, U. Lafont, L. Chapon, et al. Anomalous physical properties of cerium-lanthanum filled skutterudites. J.Alloys Comp, 2001, 323-324:389~391
    [10] T. H. Geballe and G. W. Hull, Seebeck Effect in Germainum, Physical Review, 1954,94(5):1134~1140
    [11] T. H. Geballe and G. W. Hull, Seebeck Effect in Silicon, Physical Review, 1955,98(4):940~947
    [12]武安华,热电现象与热电材料,中国科学院上海硅酸盐研究所网
    [13]朱铁军,赵新兵,β-FeSi2热电材料的性能优化及测试方法,材料科学与工程,1999,17(4):55~59
    [14] D. Y. Chung, T. Hogan, P. Brazis, A high performance thermoelectric material for low temperature applications, Science,2000,287 (11) :1024~1027
    [15] L. A. Kuznetsova, V. L. Kuznetsov, D. M. Rowe, Peltier heat measurements at a junction between fermi gas-fermi liquid materials. Phys Chem Solids, 2000 ,61 (8) :1269~1274
    [16] Zhang Xi,Li Hongbin,Shen Jia cong et al,Ordered Self-Organizing Films of an Amphiphilic Polymer by Slow Evaporation of Organic Solvents, Macro molecules, 1997, 30 (6):1633 ~ 1638
    [17] K. F. Cai, C. W. Nan, M. Schmuecker, et al, Microstructure of hot pressed B4C-TiB2 thermoelectric composites , Journal of Alloys and Compunds , 2003 , 350(1~2):313~318
    [18]许振嘉,近代半导体材料的表面科学基础,北京,北京大学出版社,2002,488
    [19]杨君玲,陈诺夫,刘志凯等,离子束外延生长半导体性锰硅化合物,半导体学报,2001,22(11):1429~1433
    [20] H. Lange, M. Giehler, W. Henerion, et al, Growth and optical characterization of CrSi2 thin films, Physica Status Solidi B,1992,171(1):63~76
    [21] N. G. Galkin, T. V. Velitchko, S. V. Skripka, et al., Semiconducting and structural properties of CrSi2 A-type epitaxial films on Si ( 111 ) , Thin Solid Films ,1996,280(1~2):211~220
    [22] M.C.Bost and J.E.Mahan, An investigation of the optical constants and band gap of chromium disilicide, Journal of Applied Physics, 1988, 63(3):839~844
    [23] H. Lange, W. Henrion, F. fenske, et a, Optical interband properties of some semi conducting silicides, Phys. Stat. Sol. B,1996,194(1):231~240
    [24] H. Lange, Electronic properties of semiconducting silicides, Phys. Stat. Sol.(b), 1997, 201(1) :3~65
    [25]谢二庆,王文武,姜宁,贺德衍,锰硅化合物的固相反应生长研究,物理学报,2002,51(4):873~876
    [26] J.L Wang, N.F. Chen, Z. K. Liu, et al, MnSi1.7 grown on silicon with mass-analyzed low energy dual ion beam epitaxy technique, Journal of Crystal Growth, 2001, 226(4):517~520
    [27] Q. R. Hou, Z. M. Wang, Y. B. Chen, Y. J. He, Preparation of adherent MnSix films,Mod. Phys. Lett. B, 2002,16(7):205~215
    [28] Q. R. Hou, Z. M. Wang, Y. J. He, The effect of oxygen on the formation of manganese sicilide, Mod. Phys. Lett. B, 2002,16(28&29):1135~1142
    [29] Q. R. Hou, Z. M. Wang, Y. J. He, Themoelectric properties of manganese silicide films,Appl. Phys. A, 2005, 80(8):1807~1811
    [30] M. C. Bost and J. E. Mahan, An optical determination of the band gap of the most silicon-rich manganese silicide phase, Journal of Electronic Materials, 1987, 16(6):389~395
    [31] Lin Zhang, D. G. Ivey, Reaction kinetics and optical properties of semiconducting MnSi1.73 grown on <001> oriented silicon, Journal of Materials Science: Materials in Electronics, 1991, 2 (2):116~123
    [32] Lin Zhang and D. G. Ivey, Low temperature reactions of thin layers of Mn with Si, Journal of Materials Science, 1991, 6 (7):1518~1531
    [33] Ch. Krontiras, K. Pomoni and M Roilos, Resistivity and the Hall effect for thin MnSi1.73films, J. Phys. D Appl. Phys., 1988, 21(3):509~512
    [34] I. Nishida, Semiconducting of nonstoichiometric manganese silicides, Journal of Materials Science, 1972, 7:435~440
    [35] St. Teichert, R.Kilper, J.Erben, D.Franke, et al, Preparation and properties of thin polycrystalline MnSi1.73 films, Applied Surface Science, 1996, 104~105:679~684
    [36] M. Eizenberg and K. N. Tu, Formation and schottky behavior of manganese silicides on n-type silicon, Journal of Applied Physics, 1982,53(10):6885~6890
    [37]朱铁军,赵新兵,胡淑红等,快速凝固β-FeSi2半导体热电性能,功能材料,2001,32(3):280~281
    [38]李冬娜,聂冬,董闯等,碳掺杂对离子注入合成β-FeSi2薄膜的影响,半导体学报,2001,22(12):1507~1515
    [39]李冬娜,聂冬,董闯等,离子注入合成β-FeSi2薄膜的显微结构,物理学报,2002,51(1):115~124
    [40]李慧,秦复光等,Si(111)衬底上IBE法生长β-FeSi2薄膜的研究,半导体学报,1997,18(4):264~268
    [41]姚振钰,秦复光等,用质量分离的低能离子束外延生长β-FeSi2半导体外延膜的初步研究,半导体学报,1992,13(8):518~521
    [42] X. B. Zhao, T. J. hu, S.H.Hu, et al., Transport properties of rapid solidified Fe-Si-Mn-Cu thermoelectric alloys, Journal of Alloys and Compounds, 2000,306(1~2):303~306
    [43] S. Teichert, R. Kilper, T. Franke, et al, Electrical and optical properties of thin Fe1-xCoxSi2 films, Applied Surface Science, 1995,91(1~4):56~62
    [44] M. Umemoto, Preparation of thermoelectricβ-FeSi2 doped with Al and Mn by mechanical alloying (overview), Materials Transactions JIM, 1995,36(2):373~383
    [45] H. Nagai, Effects of mechanical alloying and grinding on the preparation and thermoelectric properties ofβ-FeSi2 (overview), Materials Transactions JIM, 1995,36(2):365~372
    [46] J. I. Tani, H. Kido, Electrical properties of Co- and Ni- dopedβ-FeSi2, J. Appl. Phys., 1998,84(3):1408~1411
    [47] J. I. Tani, H. Kido, Thermoelectric properties of Pt-dopedβ-FeSi2, J. Appl. Phys., 2000,88(10):5810~5813
    [48] H. Nagai, K. I. Nagai, T. Katsura, et al, Thermoelectric properties ofβ-FeSi2 mechanically alloyed with Si and C, Materials Transactions JIM, 1998, 39 (11):1140~1145
    [49] H. Nagai, T. Katsura, M. Ito, et al., Effect of Si/C ratio on thermoelectric properties ofβ-FeSi2 mechanically alloyed with (Si+C) additions, Mater. Trans. JIM, 2000,41(2):287~292
    [50] T.Koga, H.Tatsuoka, H.Kuwabara, Epitaxial growth of high qualityβ-FeSi2 layers on Si (111) under the presence of a Sb flux, Appl. Surf. Sci., 2001, 169-170:310
    [51] T. Suemasu, N. Hiroi, T. Fujii, et al., Growth of continuous and highly (100) orientedβ-FeSi2 films on Si(001) from Si/Fe multilayers with SiO2 capping and templates, Jpn.J.Appl.Phys.,1999,38(8A):L878~L881
    [52] K. I. Takakura, T. Suemasu, Y. Ikura, F. Hasegawa, Control of the conduction type of non-doped high mobilityβ-FeSi2 films grown from Si/Fe multilayers by change of Si/Fe ratios, Jpn.J.Appl.Phys., 2000, 39(8A):L789~L791
    [53] Ohta. Y, Miura. S, Mishima. Y, Thermoelectric semiconductor iron disilicides produced by sintering elemental powders, Intermetallics, 1999, 7:1203
    [54] M.Hansen, Constitution of Binary Alloys. New York. Mc Graw-Hill book Co, 1959,53
    [55] I. Kawsumi, M. Sakata, I. Nishida and K. Masumoto, Crystal growth of manganese silicide, MnSi~1.73 and semi conducting properties of Mn15Si26, Journal of Materials Science,1981,16(2):355~366
    [56] M. Umemoto, Z. G. Liu, R. Omatsuzawa, K. Tsuchiya, Production and characterization of Mn-Si thermoelectric material, Mater. Sci. Forum, 2000, 343-346:918~923
    [57] S. Okada, T. Shishido, Y. Ishizawa, et al, Crystal growth by molten metal flux method and properties of manganese silicides, J. Alloys and Compounds, 2001, 317-318:315~319
    [58] S.Okada, T.Shishido, M.Ogawa, et al, MnSi2 and MnSi2-x single crystals growth by Ga flux method and properties, J.Crystal Growth, 2001, 229(1~4):532~536
    [59] U. Stohrer, Measurement of the transport properties of FeSi2 and HMS by utilization of Peltier effect in the temperature range 50-800oC, Measurement Science and Technology, 1994, 5(4):440~446
    [60] E. Groβ, M. Riffel, U. Stohrer, Thermoelectric generators made of FeSi2 and HMS fabrication and measurement, Journal of Material Research, 1995, 10(1):34~40
    [61] Z. M. Wang, Y. D. Wu, Y. J. He, The growth of MnSi1.73 prepared by spark plasma sintering, International Journal of Modern Physics B, 2004,18(1):87~93
    [62] Z. M. Wang, Y. D. Wu, Y. J. He, Seebeck coefficient of Mn-Si materials prepared by spark plasma sintering, International Journal of Modern Physics B, 2004,18(1):2279~2286
    [63] H. Tatsuoka, T. Koga, K. Matsuda, et al, Microstructure of semi conducting MnSi1.7 andβ-FeSi2 layers grown by surfactant mediated reactive deposition epitaxy,Thin Solid Films, 2001, 381(2):231~235
    [64] J. L. Wang, M. Hirai, M. Kusaka, M. Iwami, Preparation of manganese silicide thin films by solid phase reaction, Applied Surface Science, 1997,113/114:53~56
    [65] S. Teichert, H. Hortenback and H. J. Hinneberg, Surfactant mediated growth of MnSi1.7 on Si(001), Applied Physics Letters, 2001, 78(14):1988~1990
    [66] S. Teichert, S. Schwendler, D. K. Sarkar, et al, Growth of MnSi1.7 on Si(001) by MBE, Journal of Crystal Growth, 2001, 227-228:882~887
    [67] Q. R. Hou, W. Zhao, H. Y. Zhang, et al, Thermoelectric properties of higher manganese silicide films with addition of carbon, Physica Status Solidi (a), 2006,203(10):2468~2477
    [68] Q.R.Hou, W.Zhao, Y.B.Chen, D.Liang, X.Feng, H.Y.Zhang, Y.J.He, Thermoelectric properties of higher manganese silicide films with addition of chromium, Appl.Phys.A, 2007,86(2):385~389
    [69] T. S. Kamilov, A. Z. Khusanov, M. K. Bakhadyrkhanov, et al, Nonselective polycrystalline radiation detectors based on higher manganese silicides, Technical Physica Letters, 2002,28(11):929~931
    [70] T. S. Kamilov, A. A. Uzokov, D. K. Kobilov, et al, Development of thermoelectric on the basis of higher manganese silicides films, Proc. 22nd international conference on thermoelectrics, France, 2003,384
    [71] T.S.Kamilov, et al.Research project of Tashkent state aviation institute, Uncooled highly effective receives, thermoelectric converters of infra-red radiation and gauges of pressure on a basis films of the high silicide of manganese.(private communication)
    [72] B.C.Sales.Smaller is cooler[J].Science,2002,295(5558):1248
    [73] Q.R.Hou,W.Zhao,Y.B.Chen,D.Liang,X.Feng,H.Y.Zhang and Y.J.He.Thermoelectric properties of p-type higher manganese silicide films prepared by solid phase reaction and reactive deposition[J].Phys. Stat. Sol.(a),2007,204(10):3429~3437
    [74]何元金、马兴坤.近代物理实验.北京:清华大学出版社,2003,102~104
    [75]杨帮朝、王文生.薄膜物理与技术.成都:电子科技大学出版社,1994
    [76]高敏,张景韶,D.M.Rowe,温差电转换及其应用.北京:兵器工业出版社,1996,103-132
    [77]王华馥,吴自勤.固体物理实验方法.北京:高等教育出版社,1990,121
    [78]朱永法,俄歇化学位移及其在表面化学上的应用,物理化学学报,1993,9(2):211~217
    [79] K.D. Childs, B.A. Carlson, L.A. LaVanier, et al . Handbook of Auger Electron Spectroscopy.Minnesota:Physical Electronics, Inc,1995
    [80] S. Abe, Y. Nakasima, S. Okubo, et al, Auger electron spectroscopy of super-doped Si:Mn thin films, Appl. Sur. Sci, 1999, 142:537.~542
    [81] H. Nakayama, H. Ohta, E. Kulatov, Photo-thermo excitation gas-source MBE growth of super-doped Si:Mn for spin-photonics applications, Thin Solid Films, 2001, 395:230~234
    [82] H. Nakayama, H. Ohta, E. Kulatov, Growth and properties of super-doped Si:Mn for spin-photonics, Physica B, 2001,302-303:419~424
    [83] M.Umemoto, Preparation of thermoelectricβ-FeSi2 doped with Al and Mn by mechanical alloying (overview), Mater. Trans. JIM, 1995,36(2):373~383
    [84] H.Nagai, Effects of mechanical alloying and grinding on the preparation and thermoelectric properties ofβ-FeSi2 (overview), Mater. Trans. JIM, 1995, 36(2):365~372
    [85] J.I.Tani, H.Kido, Electrical properties of Co- and Ni-dopedβ-FeSi2, J. Appl. Phys. 1998, 84(3):1408~1411
    [86] J.I.Tani, H.Kido, Thermoelectric properties of Pt-dopedβ-FeSi2, J. Appl. Phys. 2000, 88(10):5810~5813
    [87] J.Y.W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys., 1975, 46(12):5247~5254
    [88] Y.Okamoto,H.Uchino,T.Kawahara and J.Morimoto.Anomalous large thermoelectric power of the Si and Au-doped Ge superlattice thin film[J].Jpn. J. Appl. Phys.,1999,38(8B)pt.2:L945~L947
    [89] J.P.Heremas, C.M.Thrush, D.T.Morelli and M.C.Wu, Thermalelectric power of Bismuth nanocomposites [J].Physical Review Letters,2002,88(21):216801-1~216801-4
    [90] R. Venkata Subramanian, E.Siivala, T.Colpitts, et al., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001, 413:597~602
    [91] T.C.Harman, P.J.Taylor, M.P.Walsh, et al., Quantum-dot super-lattice thermoelectric materials and devices, Science, 2002, 297:2229~2232
    [92] G.Behr, J.Werner, G.Weise, et al, Preparation and properties of high-purityβ-FeSi2 single crystals, Physica Status Solidi (a), 1997, 160(2):549~556
    [93] H.Ohta, S.Kim, Y.Mune, et al, Giant thermoelectric Seebeck Coefficient of a two-dimensional electron gas in SrTiO3, Nature Mater., 2007, 6:129~134
    [94] H.J.Goldsmid and J.W.Sharp, Estimation of thermal band gap of a semiconductor from Seebeck measurement, Journal of Electron Material, 1999, 28(7):869~872

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700