快速凝固热压金属硅化物热电材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-FeSi_2和MnSi_(1.75)基半导体热电材料,由于它们在利用工业废热余热和其他设施热损失发电方面有很大的潜力,而且它们还具有成本低,无毒,无污染,热和化学稳定性好的优点,所以它们备受关注。
     本文采用悬浮熔炼、快速凝固和单轴热压等制备工艺,制备了P型高锰硅和N型β-FeSi_2热电材料。采用XRD、SEM以及材料热电性能测试分析手段,系统的研究了材料微观结构特征及其对材料热电性能的影响。另外进行了以N型β-FeSi_2和P型HMS热电材料为基体的温差电池模型的理论计算和实际测量。
     本文首次采用快速凝固热压技术制备高锰硅热电材料。研究表明快速凝固热压技术是制备高锰硅的有效方法之一。对快速凝固HMS热电材料的微观组织研究表明在Mn_4Si_7半导体相基体中,存在小区域平行分布的薄片状MnSi金属相,其形成机制是在快速凝固时的准定向凝固。研究表明不同Si含量对MnSi_(1.75-x)的热电性能有显著的影响。电导率随Si含量的增大而下降,Seebeck系数和热导率均随Si含量的增大而上升。综合各项测试的结果发现,在整个测试温度范围内,MnSi_(1.75)的ZT值最高。在500℃时MnSi_(1.75)的ZT值有最大值为0.42。
     研究发现在800℃退火8h后的MnSi_(1.75-x)试样的电学性能得到了提高。这是由于退火后的MnSi_(1.75-x)中MnSi金属相有所减少的缘故。
     研究表明掺Cr是提高HMS热电材料电学性能的另一种有效方法。掺杂Cr的量对Mn_(1-x)Cr_xSi_(1.73)材料的电导率和Seebeck系数有显著的影响。几乎所有掺Cr的HMS热电材料的电导率随掺杂Cr量的增加而增加,Seebeck系数随掺杂Cr量的增加而减小。掺杂量x=0.02的试样的功率因子是所有掺杂材料中最优的,并且在500℃比未掺杂的快凝热压试样MnSi_(1.73)的功率因子要高260μWm~(-1)K~(-10)。
     Fe_(1-x)Co_xSi(1-y)Al_y样品经悬浮熔炼,快速凝固,在975℃下氮气保护下热压30min,最后在800℃下真空退火20h后基本都转变成β-FeSi_2。快凝热压退火后的样品中,掺杂量为x=0.05的样品的电学性能为最优。在500℃下其功率因子为1072.75μWm~(-1)K~(-1)。
     计算得到了理想温差电偶模型和实际温差电偶模型的最大输出功率。实验测得的温差电偶的最大输出功率远低于理论计算得到的最大输出功率。研究表明要正确估算温差电偶的最大输出功率必须考虑接触电阻和接触热阻的影响。
Semiconducting p-FeSi2 and MnSi 1.75 based alloys are of great interests due to their potential applications in thermoelectric generators used to recover waste energy from exhaust gas and other infrastructure heat losses in industrial processing plants, and also due to their attractive characteristics such as low cost, environmental friendship, chemical stability at high temperatures.
    In the present work, P-type higher manganese silicides (HMS) MnSi1.75_x and N-type p-FeSi2 thermoelectric alloys were prepared with levitation melting, rapid solidification (RS) and hot uniaxial pressing (HUP). The microstructures of the materials were analysed with XRD and SEM, and the transport properties were measured. Both theoretical estimation and experimental measurements were done for the thermoelectric power generator module using p-FeSi2 and HMS as the P- and N-leg.
    State-of-the-art techniques of RS and HUP were used firstly to prepare HMS in the present work. It was shown that the microstructures of the MnSius-x prepared by RS and HUP consist of locally parallelly distributed MnSi thin flakes in the semiconductor MrLjSi7 matrix due to the gwos/'-directional solidification during RS. It was found that with the increase of the silicon content, the electrical conductivities of the materials decrease and both Seebeck coefficients and thermal conductivities increase. The ZT value of MnSi 1 75 is the highest in the MnSii.75-x in the range from room temperature to 600℃. The maximal ZT value of MnSi1.75 is 0.42 at 500℃.
    It was found that the electrical properties of the MnSi1 75-x samples are improved with the annealing at 800℃ for 8h, because the amount of metal phase MnSi decreases when the MnSi1 75-x are annealed.
    It was found that doping with Cr was an effective method to improve the electrical properties of MnSius.x. The doping content of Cr has a significant effect to the electrical conductivities and the Seebeck coefficients of the Cr-doped Mn1-xCrxSi1.73. The electrical conductivities increase and the Seebeck coefficients decrease with the increasing doping amount of Cr. The highest power factor of the Mn1xCrjSi1.73 was found for x = 0.02, which is 260tiWnf 'K'1 higher than that of the undoped MnSi].73 at 500℃.
    The p-phase transformation are almost completed after 20 hours annealing at 800℃ for ail Fei.jCOjSii-yAlj, samples prepared by RS and HUP. The highest power factor of about 1070 K"1 at 500℃ was measured for the sample doped with 5at% Co.
    The maximum power outputs were calculated and measured for a thermoelectric module. It was show that the power outputs from experiments were much lower than that calculated. It
    
    
    was suggested that both electric and thermal resistances at the contact interfaces should be taken into account for the estimation of the power output of a thermoelectric generator module.
引文
1. Rama Venkatasubrarnanian, Edward Siivola, Thomas Collpitts, Brooks O'quinn, Thin-film thermoelectric deices with high room-temperature figures of merit, Nature, 413, 2001:597-602
    2. J. Esarte, G. Min, D. M. Rowe, Modelling heat exchangers for thermoelectric generators, J. Power Sources, 93, 2000:72-76
    3. N. Kondo, S. Yamaguchi, I. Nomura, Y. Hasegawa, T. Eura, New proposal of medium temperature thermoelectric conversion in power plant, 2000 IEEE, 18th International Conference On Thermoelectrics, 1999:88-91
    4. H. Javan, Optimal design of thermoelectric generator, 2000 IEEE, 18th International Conference On Thermoelectrics; 1999:345-348
    5. G. Min, D.M. Rowe, Improved model for calculating the coefficient of performance of a peltier module, Energy Conversion & Management, 41, 2000:163-171
    6. S.A. Omer, D.G. Infield, Design optimization of thermoelectric devices for solar power generation, Solar Energy Mater. Solar Cells, 53, 1998:67-82
    7.[日]犬石嘉雄、滨川圭弘、白藤纯嗣,半导体物理,周绍康等译,科学技术出版社会,1986
    8.徐德胜编著,半导体制冷与应用技术,上海交通技术出版社,上海,1992
    9. C. Sales et al, Filled Skutterudite antimonides: A new class of thermoelectric materials. Science, 272, 1996:1325-1328
    10.高敏,张景韶,D.M.Rowe热电转换及其应用,兵器工业出版社,1996
    11. O. Masaki, N. Yasutoshi, T.K. Hiromasa, A.N. Isao, Evaluation of thermoelectric properties of impurity-doped PbTe. Mater. Trans., JIM, 39(6), 1998:672-678
    12. G.A. Slack, in CRC Handbook of Thermoelectrics, D.M. Rowe, Ed. (CRC Press, Boca Raton, FL), 1995:407
    13. C.M. Bhandari, D.M. Rowe, The effect of phonoh-grain boundary scattering, doping and alloying on the lattice thermal conductivity of lead telluride, J. Phys. D: Appl. Phys., 16, 1983 :L75-77
    14. D.M. Rowe, C.M. Bhandari, Lattice thermal conductivity of small grain size PbSnTe and PbGeTe thermoelectric material, Appl. Phys. Lett., 47 (3), 1985:255-257
    15.高敏.张景韶,D.M.Rowe,温差电转换及其应用,兵器工业出版社,1996:52
    16. G. Nolas, G. Slack, D.T. Morelli, T.M. Tiltt, A.C. Ehrlich, The effect of rare-earth filling on the lattice thermal conducting of Skutterudite, J. Appl. Phys. 79, 1996:4002
    17. G. Nolas, et al, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, J. Appl. Phys. Lett., 73; 1998:178
    
    
    18.高敏,张景韶,D.M.Rowe,温差电转换及其应用,兵器工业出版社,1996:65
    19.高敏,张景韶,D.M.Rowe,温差电转换及其应用,兵器工业出版社,1996:66
    20. Lenoir B, Dauscher A, Devaux X, Martin-Lopez R, Ravich Yu I, Scherrer H, Scherrer S. Bi-Sb alloys: an update. 15th International Conference Thermoelectrics, 1996:1-13
    21. Yim W M, Rosi F D. Compound tellurides and their alloys for Peltier cooling-a review. Solid State Electronics, 1972, 15:1121-1140
    22. Jain A L. Temperature dependence of the electrical properties of bismuth-antimony alloys. Phys Rev, 1958,114(6): 1518-1528
    23. Smith G E, Wolfe R. Thermoelectric properties of bismuth-antimony alloys. J Appl Phys, 1962, 33:841-846
    24. Yim W M, Amith A. Bi-Sb alloys for magneto-thermoelectric and thermoelectric cooling. Solid State Electrics, 1972, 15:1141-1165
    25. Guff K F, Horst R B, Weaver J L, Hawkins S R, Kooi C F, Enslow G M. The thermomagnetic figure of merit and ettingshausen cooling in Bi-Sb alloys. Appl Phys Lett, 1963, 2:145-146
    26. Yazaki T. Thermal conductivity of bismuth-antimony alloy single crystals. J Phys Soc Japan, 1968, 25:1054-1060
    27. Tae Sung Choi . Formation of PbTe intermetallic compound by mechanical alloying of elemental Pb and Te powders.Scrita Metallurgica et Materialia, 1995,V32 (4):407
    28. Masaki. Preparation and evaluation of PbTe-FGM by joining melt-grown materials. IEEE, 1997:379-381
    29. Trumbore F A, Tartaglia A A. Resistivities and hole mobilities in very heavily doped germanium. J Appl Phys, 1958, 29:1511
    30. Vandersand J W, Wood C, Draper S L. Mat Res Soc Symp Proc, 1987:97-347
    31. Vandersand J W, Borshchevsky A, Parker J, Wood C. Proc 7th Inter Conf on Thermoelectric Energy Conversion, Arlington Texas, 1989:76-78
    32.高敏,Rowe D M.SiGe/GaP合金的高温退火特性[J].半导体学报,1990,11(9):713-7178.
    33. Y. Noda, H. kon and Y. Furukawa et al. Preparation and thermoelectric properties of Mg_2Si_(1-x)Ge_x(x=0.0-0.4)solid solution semiconductors. Materials Transactions, 1992, 33(9):845-850
    34. N. D. Marchuk, V. K. Zaitsev, M. I. Fedorov and A.E. Kaliazin, Thermoelectric properties of some cheap n-type material. In Proceedings of the 8th International Conference on Thermoelectric Energy Conversion and the 2th European Conference on Thermoelectric. 1998:210-214
    35. R. Aigrain, Design of materials for thermoelectric power production. New York. John
    
    wiley and Sons. 1960:180-185
    36. T. Kajikawn, K. Shida and S. Sugihara et al. Thermoelectric proerties of Magesium Silicide processed by powerd elements plasma activated sintering method. In Proceedings of the 16th International Conference on Thermoelectric Energy Conversion. 1997:275-278
    37. J. Ackermann, A. Wold, The preparation and characterization of the cobalt Skutterudites COP_3, CoAs_3 and CoSb_3, J. Phys. Chem. Solids, 38,1977:1013-1016
    38. A. Kjekshus, T. Rakke, Compounds with the skutterudite type crystal structure. Ⅲ. Structural data for arsenides and antimonides, Acta Chemica Scandinavica A, 28,1974:99-103
    39. Skutterudite type crystal structure.Ⅲ. Structural data for arsenides and antimonides, Aeta Chemica Scandinavica A, 28,1974:99-103
    40. B.C. Sales, D. Mandrus and R.K. Williams, Filled Skutterudites antimonides: a new class of thermoelectric materials. Science, 272,1996:1325-1328
    41.唐新峰,陈立东,後藤孝,平井敏雄,袁润章,Skuttenrudite化合物Fe_xCo_(4-x)Sb_12反应合成及热电特性.物理学报,49(6),2000:1120-1124
    42. H. Takizawa, K. Miura, M. Ito, T. Suzuki, T. Endo, Atom insertion into the CoSb_3 Skutterudite host lattice under high pressure. J Alloys Comp., 282,1999:79-83
    43. G.S. Nolas, J.L. Cohn, G.A. Slack, Effect of partial void filling on the lattice thermal conductivity of Skutterudites. Phys. Rev. 58(1), 1998:164-170
    44. J. S. Kasper, R Hagenmuller, Clathrate structure of silicon NasSi46 and Na_xSi_136 (x<11). Science, 150,1965:1713-1714
    45. B. C. Sales, B.C. Chakoumakos, D. Mandrus, J.W. Sharp, Brief communication Atomic displacement parameters and the lattice thermal conductivity of Clathrate-like thermoelectric compounds. J. Solid State Chem. 146,1999:528-532
    46. J. S. Tse, K. Uehara, R. Rousseau, A. Ker, C.I. Ratcliffe, Structural principles and amorphous like thermal conductivity ofNa-doped Si Clathrates. Appl. Phys. Lett., 85(1), 2000:114-117
    47. W. Jeitschko, Transition metal stannides with MgAgAs and MnCu_2Al type structure. Metal. Trans., 1970:3159-3162
    48. K. Mastronardi, D. Young, C.C. Wang, P. Khalifah, R.J. Cava, A.P. Ramirez, Antimonides with the half-Heusler structure: new thermoelectric materials. Appl. Phys. Lett. 74(10), 1999:1415
    49. D. P. Young, P. Khalifah, R.J. Cava, A.P. Ramirez, Thermoelectric properties of pure and doped FeMnSb (M: V, Nb), J. Appl. Phys., 87(1), 2000:317
    50. C. Uher, J. Yang, S. Hu, D. T. Morell, G. P. Melsuer, Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B, 59(13), 1999:8615-8621
    
    
    51. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, T.M. Tritt, Thermoelectric properties of semimetallic (Zr, Hf) CoSb half-Heusler phases. J Appl. Phys. 88(4), 2000:1952-1955
    52. Q. Shen, L. Chen, J.Y ang, G.P. Meisner, T. Goto, T.H irai, Effects of partial substitution of Ni by Pd on thermoelectric properties of ZrNiSn-based compounds. 2001 IEEE, 20th Int. Conf On Thermoelectrics 2001, 247-250
    53. F.S. Galasso. Structure, Properties, and preparation of Perovskite-type Compounds, Pergamon Press, Oxford, 1969:73
    54. T. Kobayashi, H. Takizawa, T. Endo, T. Sato, M. Shimada, H. Taguchi, M. Nagao, Metal insulator transition and thermoelectric properties in the (R_(1-x)Ca_x)MnO_(3-δ)(R:Tb,Ho, V). J. Solid State Chem., 92,1991: 116-129
    55. J.B. Wu, J. Nan, X.S. Zhou, S.L. Chen, C.W. Nan, Preparation and thermoelectric properties of Li-doped Ca_(0.05)Ni_(0.95)O. 2001 IEEE, ICT'2001, 201-204
    56. C.G. Fonstad, R.H. Rediker, Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42,1971(7):2911-2918
    57. K. Fujita, T. Mochida, K. Nakamura, High temperature thermoelectric properties for Na_xCoO_(2-δ) single crystal. 2001 IEEE, ICT'2001, 168-171
    58. K.Koumoto, W.-S. Seo, S.Ozawa, Huge thermopower porous Y_2O_3. Appl. Phys. Lett. 71(11),1997:1475-1476
    59. Y. Nishio, T. Hirano, Thermoelectric properties of multi-layered system. 1998 IEEE, 17th International Conference Thermoelectrics, 1998, 111-114
    60. Y. Nishio, T. Hirano, Methods of improving the efficiency of thermoelectric energy conversion and characteristic energy range of carriers. Jpn. J. Appl.Phys., 36, 1997:5181-5182
    61. Y. Nishio, T. Hirano, Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers. Jpn. J. Appl.Phys., 36, 1997:170-174
    62. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well struvtures on the thermoelectric figure of merit. Phys. Rev. B47, 1993:12727-12731
    63. L. W. Whitlow, T. Hirano, Super lattice applications to thermoelectricity [J]. J. Appl.Phys., 78(9), 1995:5460-5466
    64. M.S. Dressehhaus, Y.M. Lin, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T.Koga, J.Y. Ying, Advances in 1D and 2D thermoelectric materials. 2000IEEE, 18th International Conference on Thermoelectrics, 1999, 92-99
    65. Ware R M, McNeill D J. Proc lEE, 1964, 111: 178
    66. I. Nishida, Study of semiconductor-to-metal transition in Mn-doped FeSi_2. Phys. Rev., 1973, B7:2710-2713
    
    
    67. Kojima T, Shkata M, Nishida I. Formation of β-FeSi_2 from the sintered eutectic alloy FeSi-Fe_2Si_5 doped with cobalt. J. Less-Common Metals, 1990, 159:299-305
    68. Isamu Yamanchi, Takashi Okamoto, Hajime Ohata and Itsuo Ohnaka. β-phase transformation and thermoelectric power in FeSi_2 and Fe_2Si_5 based alloys containing small amounts ofCu. J. Alloys Comp., 1997, 260:162-171
    69. Zhao X B, Zhu T J, Hu S H, Zhou B C, Wu Z T. Transport properties of rapid solidified Fe-Si-Mn-Cu thermoelectric alloys. J. Alloys Comp., 2000, 306:303-306
    70. Takeshi Negase, Isamu Yamauchi, Itsuo Ohnaka. Effect of rapid solidification on microstructure of various Fe_(29.5-x)Si_(70.5-x) alloys. J. Alloys Comp., 2000, 312:295-301
    71. Ohta Y, Miura S, Mishima Y. Thermoelectric semiconductor iron disilicides produced by sintering elemental powders. Intermetallics, 1999, 7:1203-1210
    72. Birkholz U, Schelm J. Mechanism of electrical conduction in β-FeSi_2. Phys. Stat. Sol., 1968, 27:413-425
    73. Hiroahi Nagai. Effects of mechanical alloying and grinding on the preparation and thermoelectric properties of β-FeSi_2. Mater. Trans. JIM., 1995, 136(2): 363-372
    74. Isoda Y, Shinohara Y, Imai Y, Nishida I, Ohashi O. Thermoelectric properties of boron doped iron disilicide. 17th International Conference on Thermoelectrics, 1998, p.390-393
    75. Cho W S, Park K, Choi S K and Yoon Y S. Thermoelectric properties of thermoelectric modules consisted of porouos FeSi_2 based compounds fabricated by pressureless sintering. Mater Sci. Eni., 2000, B76:200-205
    76. Rowe D W, Shuka U S. The effect of phonon grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J. Appl. Phys., 1981, 52(12): 7421-7426
    77. Mikio Ito, H Iroshi nagai, Shigeru Katsuyama, Kazuhiko Majima. Effects of Ti, Nb, and Zr doping on thermoelectric performance of β-FeSi_2. J. Alloys Comp. 2001, 315:251-258
    78. Masashi Komabayashi, Ken-ichi Hijikata, Shunji Ido. Effects of some additives on thermoelectric properties of FeSi_2 thin films. Jpn. J. Appl. Phys, 1991, 30(2):331-334
    79. H. Okamoto, Mn-Si (Manganese-Silicon). J. Phase Equilibria, 1991, 12:505-507
    80. O. Schwomma, A. Presinger, H. Nowotny and A. Wittman, Monatsh. chem. 1965, 95:1527
    81. A. Boren, "Borides, Silicides and Phosphides" edited by B. Aronsson, R. Lundslrom and S. Rundquist (Methuen and Co.,London and New York, 1965)
    82. H. W. Knott, M. H. Mueller and L. Heaton, Acta Cryst.,1967, 23:549
    83. G. Zwilling and H. Nowotny, Monatsh. Chem., 1971, 102:672
    84. O. G. Karpinskii and B. A. Evseev, lzd Akad NaukSSSR, Neorg.Materialy ,1969, 5:525
    85. L. D. Ivanova, N. K. Abrikosova, E. I. Elagina and V.D. Khvostikova, ibid., 1969, 5:1933
    
    
    86. N.K. Abrikosova, and L.D. Ivanova, ibid, 1974,10:1016
    87. L.M. Levinson, General Electric Technical Information Series Number 72CRD111, March, 1972, p, 1
    88. T. Kojima and I. Nishina, Jap. J. Appl. Phys., 1975, 14:141
    89. Idem, J.Crystal growth, 1975, 47:589
    90. I. Kawasumi, I. Nishina, K. Masumoto and M. Sakata, Jap.J.Appl.Phys., 1976, 15:1405
    91. V.A. Korshunov and P.V. GEL'D, Fiz. Metal. Metalloved., 1961, 11:945
    92. D. Shinoda and S. Asanabe, J. Phys. Soc. Jap., 1966, 21:555
    93. Zaitsev V.K., Fedorov M.I. Peculiarities of parameter optimization and energetic possibilities of thermoelectric materials based on silicon compounds. Semiconductors, 1995, 29(5): 946-960
    94. M. Umemoto, Preparation of thermoelectric β-FeSi_2 doped with Al and Mn by mechanical alloying (Overview). Mater. Trans. JIM, 1995, 36:373-383
    95. Masashi Komabayashi, Ken-ichi Hijikata, Shunji Ido. Effects of some additives on thermoelectric properties of FeSi_2 thin films. Jpn. J. Appl. Phys., 1991, 30(2): 331-334
    96. B. G. Min, D. H. Lee, Effect of dispersed Si-phase on thermoelectric properties of FeSi_2 prepared by mechanical alloying and sintering, 1997 IEEE, 16th International Conference on Thermoelectrics (1997), 315-320
    97. Hesse J, Bucksch R. Solid solubility of CoSi_2 in β-FeSi_2. J. Materials Sciences., 1970, 5: 272
    98. Sherman, R. R. Heikes, R. W. Ure, Calculation of efficiency of thermoelectric devices, J. Appl. Phys., 31(1), 1960, 1-16
    99. D Charles. Stationary temperature distribution in an electrically heated conductor, J. Appl. Phys.,25(10), 1954, 1310-1311
    100. J. Schilz, E. M(?)ller, L. Helmers, et al. On the composition function of graded thermoelectric materials, Mate. Sci. Forum, 308-311,647-652(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700