单相MnSi_(1.73)尺度变化与相变规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高锰硅HMS (MnSi1.73)薄膜热电材料是一种金属硅化物热电材料,它可以把废热转化为工业、居民用电,具有广泛的应用前景和巨大优势。但是目前高锰硅薄膜材料制备方法制备的薄膜普遍存在尺度不够、厚度不均匀、杂质相太多等问题。因此要寻找一种设备简单、成本低廉的方法来制备出尺寸、形貌可控的、连续均匀的MnSi1.73薄膜。
     本课题采用在真空条件下,用MnCl2作为Mn源,在MnCl2的气氛内加热Si衬底,生长硅锰化合物薄膜。通过采用等温接触式生长方式和非接触式生长方式来研究基板表面高锰硅物相的形成规律以及薄膜形貌的特征,以及研究不同温度和时间条件下薄膜生长厚度和时间的关系,确定生长出100nm以上、连续均匀、形貌可控的高锰硅薄膜的最佳生长条件是900℃-12h,最后通过热力学以及界面变化简单分析MnSi1.73生长规律。
     实验过程中,综合使用多种分析手段,通过优化不同工艺参数,分析其相变过程和界面、尺度变化规律,通过光学性质测量,分析其电子结构特征。得出以下结论:
     1、MnSi1.73薄膜的制备方面
     (1)在接触式生长方式下,500℃、600℃生成的MnSi1.73薄膜难以检测到;700℃通过扫描形貌及能谱分析,检测出此温度区间有MnSi1.73形成,但是其含量低,薄膜太薄;800℃各个温度区间可以检测到MnSi1.73薄膜存在,但薄膜表面杂质过多、有烧结残留物质存在。
     (2)等温非接触式生长方式制备的薄膜膜层干净、厚度均匀一致、单相。分析不同保温时间、不同温度表面形貌得知,900℃-12h制备的薄膜表面形貌最好、最均匀、平整;分析相同保温时间、不同烧结温度的薄膜厚度,发现薄膜厚度从800℃-1000℃呈现先增加后降低的趋势。最好的制备MnSi1.73薄膜的工艺参数是:真空条件下、等温非接触生长方式、900℃保温12h。
     2、薄膜物相反应规律及光谱性能
     (1)TEM分析表明,850℃-12h条件下Si基板上生长出的是MnSi1.73薄膜;部分地方有SiO_2形成。该薄膜沿着[100]晶向垂直于Si基板表面生长,HMS与Si基板的外延关系为:MnSi1.73[100]/Si[111]和MnSi1.73[011]/Si[011].
     (2)光谱数据分析表明,本实验制备的HMS为直接带隙,禁带宽度为0.7eV。
     (3)薄膜的形成规律为:500℃生成了HMS及其转变前的物相MnSi:然后600℃HMS消失全部变成MnSi;接着700℃时生成了SiO_2及少量的HMS;800℃时生成了SiO_2及HMS;然后到900℃时全部生成了HMS,没有杂质相存在;最后1000℃时生成了HMS及SiO_2。900℃薄膜厚度最厚达到了8μm左右。少量SiO_2的存在对单相HMS的生长起到了促进作用,抑制了界面以上MnSi相的生成。
High manganese silicon film thermoelectric materials (MnSi1.73) is a metal silicide thermoelectric materials, which can convert waste heat into industrial and residential electricity and has wide application prospect. But now the films prepared by these methods have too many problems because of the heterogeneous reaction, such as scale is insufficient, uneven thickness, and have too much impurity phase. Therefore, we must find a new method which can easily prepared the size, morphology is controlled, and continuous uniform film.
     In order to prepare a better MnSi1.73film, this project use MnCl2as the Mn source, the Si substrate is heated within the atmosphere of the MnCl2in vacuum conditions, to prepare the MnSi1.73film. By using isothermal contact growth way and the isothermal non-contact way to study high manganese silicon phase formation on the substrate surface and thin film morphology characteristics. Secondly, by studying the relationship between the thickness of the film and growth time under different temperature and time, to determine the best condition to prepare the MnSi1.73is900℃-12h. Finally, we use the thermodynamics and dynamics data to research its growth law.
     In the experiment, a variety of analysis methods are used. Through the optimization of different process parameters, we obtained a best method to prepare the large scale, morphology controlled, continuous MnSi1.73film and analyzed the phase change and the change law of the interface. The electronic structure was measured by optical properties. The conclusions are following:
     1、The field on prepare MnSi1.73film
     (1)、Through researching the film which was prepared in contact way we know that there is no MnSi1.73film was found under500℃and600℃. Under the700℃, by scanning morphology and energy spectrum analysis we find that there is MnSi1.73to generate, but the film is too thin and the content is low. Every temperature region under800℃can determine the MnSi1.73, but the surface of the film contains too much impurities and uneven holes.
     (2)、The film layer which was clean, single phase, and uniform thickness was prepared in isothermal non-contact way. Compared the surface under different holding time and sintering temperature, it is find that900℃-12h is the condition which can prepare the best film surface. Compared with the film thickness under the same holding time and different sintering temperature, it was found that the film thickness showed a trend of decrease after the first increase. The best process parameters of preparing for HMS thin film is:under the condition of high vacuum, isothermal non-contact growth way,900℃-12h.
     2、The phase change law of HMS film and spectrum performance
     (1) TEM analysis indicated that under the condition of850℃for12h, the prepared HMS film along [100] crystal orientation to grow and perpendicular to the surface of the Si substrate. SiO2was generated on some parts of the film. The epitaxial relationships between HMS and Si substrate are:MnSi1.73[100]/Si [111] and MnSi1.73[011]/Si [011].
     (2) Spectral data analysis shows that the HMS is direct band gap and energy gap is about0.7eV.
     (3) The forming rule of the HMS film is as follows:The HMS and the phase before shift were generated in500℃. In600℃it all changed to MnSi. And then the SiO2and the small amount of HMS were created in700℃. The SiO2and the HMS were created in800℃. After that, the clean HMS were appeared in900℃. Lastly, the SiO2and HMS were also appeared in1000℃. The thickest film reaches8μm in900℃. The presences of a small amount of SiO2have played an important role to promote growth of the single-phase HMS and restrain the formation of the MnSi.
引文
[1]Service RF, Semiconductor advance may help reclaim energy from'lost' heat[J]. Science, 2006,311:1860-1860.
    [2]Sales B C. Thermoelectric materials-Smaller is cooler[J]. Science,2002, 95(5558):1248-1249
    [3]Matsumiya M, Qiu F, Shin W. Thermoelectric CO gas sensor using thin-film catalyst of Au and CO3O4[J]. Journal of the Electrochemical Society,2004,151:7-10
    [4]张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势[J].电源技术,2006,30(7):525-530
    [5]张建中.国外温差电制冷技术发展概况[J].电源技术,1992,3:41-47
    [6]T.Kajikawa. Status and future prospects on the development of thermoelectric power generation systems utilizing combustion heat from municipal solid waste. Proc. 6th Int.Conf. On Thermoelectrics,IEEM,1997:28-36
    [7]谢华清.低维热电材料研究进展[J].稀有金属材料与工程,2010,39(3):556~560
    [8]杨树人,王宗昌.半导体材料[M].北京:科学出版社,2004
    [9]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004
    [10]高敏,张景韶,D.M.ROWE.温差电转换及其应用[J],北京:兵器工业出版社
    [11]吉晓华.纳米结构BizTe3基热电材料的合成与性能[D].[浙江大学硕士学位论文].浙江:浙江大学,2005
    [12]王艳玲,戴世勋,徐铁峰,聂秋华.TeO2-TiO2-Bi2O3系统玻璃的热学特性及光学带隙研究[J].光学学报,2008,28(9):1751~1756
    [13]樊东晓.P型硅化物热电材料的制备及掺杂[D].[浙江大学硕士学位论文].浙江:浙江大学,2011
    [14]马健.新型Half-Heusler化合物基热电材料计算设计及其热电效应[D].[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2011
    [15]刘华军,李来凤.半导体热电制冷材料的研究进展[J].低温工程,2004,137(1):32~38
    [16]R.deRidder, G.vanTendeloo. Ineommensurate superstructures in MnSi2-x[J]. Physica Status Solidi (a),1976,30:99
    [17]徐国栋,陈哲,严有为,刘德辉,尹懿,文红民.高优值系数热电材料研究[J].材料导报,2010,24(2):60~64
    [18]李明亮.碳化硅基热电材料的制备及性能研究[D].[郑州大学硕士学位论文].郑州:郑州大学,2010
    [19]冯建林.热电材料Ca3Co4O9的制备及掺杂性能研究[D].[长春理工大学硕士学位论文].
    [20]B.Lenoir, A.Dauseher, M.Cassart. Effeet of antimony content on the thermoelectric figure of merit of Bi1-xsbx alloys [J]. J.Phys. Chem. Solids,1998,59(1):129-134
    [21]P.Pierrat, A.Dauseher, B.Lenoir. Preparation of the Bi8Sb32Te6o solid solution by mechanical alloying [J]. Journal of Materials Scienee,1997,32(14):3653-3657
    [22]Y.Nod. Preparation and thermoelectric Properties of Ag or K doped PbTe [J]. Mater. Trans, JIM,1998,39(5):602-605
    [23]J.L.Harringa. Application of hot isostatic pressing for consolidation of n-type silicon-germaniu alloys prepared by mechanical alloying. Mater.Sci.Eng:B,1999,60(2):137-142
    [24]高敏,张景韶,Rowe D M.温差电转换及其应用[M],北京:兵器工业出版社,1996.
    [25]Masaki I. Preparation and evaluation of PbTe-FGM by joining melt-frown materials[J]. ApplPhys,1997,60:379-381.
    [26]Adams PL, LaughlinJ, MonkmanAP. SynthMat,1996,76:157
    [27]Meyer E, et al. Nature,1991,349:398
    [28]Balandin A, Wang K I. Effect of phonon confinement on the thermoelectric figure of merit of qunantum well[J]. J Appl Phys,1998,84(11):6149-5153.
    [29]Nishio Y, Hirano T. Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers [J]. Jpn J Appl Phys,1997,36:170-174.
    [30]Alexander B, Wang K L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells [J]. J Appl Phys,1998,84:6149-6153.
    [31]Broido D A, Reinecke T L. Thermoelectric figure of merit of quantum wire superlattices [J].Appl Phys Lett,1995,67(1):100-102.
    [32]邢学玲,闵新民.声子玻璃电子晶体和低维热电材料的研究进展[J].材料导报,2007,21(2):19-25
    [33]Dresselhaus M S, Dresselhaus G, Sun X, et al. Phys Sol Stat,1999,41(5):679
    [34]孙毅.氧化物热电材料的制备及性能研究[D].[山东大学博士学位论文].山东:山东大学,2012
    [35]Lin Zhang, D. G. Ivey. Reaction kinetics and optical properties of semiconducting MnSii.73 grown on<001> oriented silicon [J]. Journal of Materials Science, Materials in Electronics, 1991,2 (2):116-123
    [36]张慧云,陈宜保.锰硅化合物的制备及塞贝克效应[J].材料科学与工艺,2008,16(3):427~429
    [37]谢二庆,王文武,姜宁.锰硅化合物的固相反应生长研究[J].物理学报,2002,51(4):873~876
    [38]Ch. Krontiras, K. Pomoni and M Roilos.Resistivity and the Hall effect for thin MnSii.73 films [J]. J. Phys. D Appl. Phys,1988,21(3):509-512
    [39]St.Teichert, R.Kilper, J.Erben, D.Franke. Preparation and properties of thin polycrystalline MnSii.73 films[J]. Applied Surface Science,1996,104-105:679-68
    [40]Q.R.Hou, W.Zhao, H.Y.Zhang, Y.B.Chen, YJ.He. Thermoelectric properties of higher manganese silicide films with addition of carbon [J]. Physica status solidi,2006,10(203): 2468-2477
    [41]姜洪义.Mg-Si基化合物的固相反应合成、材料制备及其热电性能研究[D].[武汉理工大学博士学位论文].武汉:武汉理工大学,2003
    [42]林泽冰.P型掺杂高锰硅化合物的制备及热电性能[D].[武汉理工大学硕士学位论文]. 武汉:武汉理工大学,2012
    [43]殷浩.Mg2Si基半导体的制备及其热电性能研究[D].[浙江大学硕士学位论文].浙江:浙江大学,2008
    [44]李玮聪.锰的硅化物纳米线在Si(110)、(100)表面的外延生K[D].[上海交通大学硕十学位论文].上海:上海交通大学,2011
    [45]Hirokazu Tatsuoka, Tsutomu koga, Koji Matsusa. Microstructure of semiconducting MnSi1.7 and β-FeSi2 layers grown by surfactant-mediated reactive deposition epitaxy [J]. Thin Solid Films,2001,381:231-235
    [46]S.Teichert, S.Schwendler, D.K.Sarkar, A.Mogilatenko, M.Falke. Growth of MnSi1.7 on Si (001) by MBE[J]. Journal of Crystal Growth,2001,278:882-887
    [47]杨君玲,陈诺夫,刘志凯,杨少延,柴春林,廖梅勇.离子束外延生长半导体姓锰硅化合物[J].半导体学报,2001,22(11):1429~1433
    [48]Kawasumi.I, Sakata. M. Crystal growth of manganese silicide, MnSi-1.73 and semiconducting properties of Mn15Si26 [J]. Journal of Materials Science,1981,16 (2): 355-366
    [49]Okada, S., Shishido, T. MnSi and MnSi2-x single crystals growth by Ga flux method and properties [J]. Journal of Crystal Growth,2001,229 (1-4):532-536.
    [50]Kamilov, T., Khusanov, A. Nonselective poly-crystalline radiation detectors based on higher manganese silicides [J]. Technical Physics Letters,2002,28 (11):929-931.
    [51]Eizenberg, M., Tu, K. N. Formation and Schottky behavior of manganese silicides on n-type silicon [J]. Journal of Applied Physics,1982,53 (10):6885-6890.
    [52]Lian, Y. C, Chen, L. J. Localized epitaxial growth of MnSi [sub 1.7] on silicon [J]. Applied Physics Letters,1986,48 (5):359-361.
    [53]Wang, J, Hirai, M, Kusaka, M. Preparation of manganese silicide thin films by solid phase reaction [J]. Applied Surface Science,1997,113-114:53-56.
    [54]Teichert, S, Sarkar, D. K, Schwendler, S, Preparation and properties of MnSi1.7 on Si (001) [J]. Microelectronic Engineering,2001,55 (1-4):227-232.
    [55]Teichert, S, Schwendler, S, Sarkar, D. K, Growth of MnSi1.7 on Si(001) by MBE[J]. Journal of Crystal Growth.2001,227-228:882-887.
    [56]Umemoto M.Liu Z. Omatsuzawa R. Production and characterization of Mn-Si thermoelectric material [J]. Meterial Science Forum,2000,918:343-346
    [57]ItohT, Yamada M. Synthesis of Thermoelectric Manganese Silicide by Mechanical Alloying and Pulse Discharge Sintering [J]. Journal of Electronic Materials,2009,38:925-929
    [58]Zhou A. J, Zhu T. J, Zhao X. B. Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions [J]. Journal of Electronic Materials,2010,39: 2002-2007
    [59]Wenhui Luo, Han Li, Fan Fu, Wen Hao, Xinfeng Tang. Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method[J]. Journal of Electronic Materials,2011,40:1233-1237
    [60]Okada.S Shishido.T, Ogawa.M. MnSi and MnSi2-x single crystals growth by Ga flux method and properties [J]. Journal of Crystal Growth,2001,229 (1-4):532-536
    [61]Stohrer U. Measurement of the transport properties of FeSi2 and HMS by utilization of Peltier effect in the temperature range50-800℃ [J]. Measurement Science andTechnology, 1994,5(4):440-446
    [62]朱铁军,赵新兵B-FeSi2热电材料的性能优化及测试方法[J].材料科学与工程,1999,17(4): 55-59
    [63]赵伟,候清润,陈宜保,何元金.MnSi1.73半导体薄膜材料研究进展[J].真空科学与技术学报,2008,28(6):539~546
    [64]赵伟.MnSi1.7薄膜热电性能研究[D].[清华大学硕士学位论文].北京:清华大学,2008
    [65]Junhua Hu, Caili Zhang, WenLi, Shaokang Guan, Hirokazu Tatsuoka. Preparation and electrical properties of Mn silicides by reaction of MnCl2 and Si power [J]. Physics Procedia,2011,11:138-141
    [66]Hu Junhua, Takanori Kurokawa, Takashi Suemasu, Shogo Takahara, Masaru Itakura, Hikokazu Tatsuoka. Growth of manganese silicide layers on Si substrates using MnCl2 source [J].Physica status solidi,2009,2(206):233-237
    [67]Lin Zhang, Douglas G.Ivey. Low temperature reactions of thin layers of Mn with Si [J]. J.Mater.Res,1991,7(6):1518-1531
    [68]姚志强.氟化非晶态碳膜的制备及其性能研究[D].[西南交通大学硕士学位论文].成都:西南交通大学,2001
    [69]叶超,宁兆元,程珊华,王响英.氟化非晶碳薄膜的光学带隙分析[J].物理学报,2002,51(11):2643-2644
    [70]Yun Gao, GuoSheng Shao, Quan Li, Ye Ming Xu. Microstructural and Optical Properties of Synthesized by Ion Implantation [J]. Japanese Journal of Applied Physics,2007,46(9A): 5777-5779
    [71]Cuilian Wen, Akihiko Kato, Tomoni Nonomula, Hirokazu Tatsuoka. Phase selection during calcium silicide formation for layered and powder growth [J]. Journal of Alloys and Compounds,509(2011):4583-4587
    [72]沈学础.半导体光谱和光学性质[M].北京:科学出版社,2002
    [73]张民,季诚响,韩荣生,王志敏.锰硅化合物Mn4Si7能带结构的研究[J].装甲兵工程学院学报,2006,20(3):84~89
    [74]陈长乐.固体物理学.[M].北京:科学出版社,2007
    [75]王金良.硅基底上外延生长过度金属硅化物薄膜的研究[J].北京航空航天大学学报,2005,31(1):1-4
    [76]J.E. Mahan. The potential of higher manganese silicide as an optoelectronic thin film materialfJ]. Thin Solid Films,2004,461,152-159
    [77]施敏,梅凯瑞.半导体制造工艺基础[M].安徽:安徽大学出版社,2005
    [78]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002
    [79]胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2006
    [80]伊赫桑.巴伦.纯物质热化学数据手册[J].北京:科学出版社,2001
    [81]无机化合物的标准热力学数据
    [82]Ali Allam, Carlos Angelo Nunes.On the stability of the Higher Manaanese Silicides[J]. Journal of Alloys and Compounds,2012,512:278-281
    [83]Y. Souno,Y.maeda,H.Kuwabara,J.Cryst.Growth229,527(2001)
    [84]A.Mogilatenko, M,Falke,H.Hortenbach,S.Teichert,etc. Surfactant effect of Sb on the growth of MnSil.7 layers on Si(001)[J]. Applied Surface Science,2006,253:561-565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700