MnSi_(1.7)热电材料的制备及其电子结构计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是实现热能和电能之间相互转换的一种半导体功能材料。其中较有前景的是高锰硅化物MnSi_(1.7)。它具有化学稳定性高、抗氧化性能好、无毒无污染、成本低等优点,具有广泛的应用前景。
     本文采用粉末冶金法制备了MnSi_(1.7)块体热电材料。通过对比不同工艺参数对试样的影响,得到合理的制备工艺参数,并考察其电导率随温度的变化规律。同时,为了深入理解MnSi_(1.7)的电子结构,对Mn_4Si_7的能带结构和态密度进行了较为完备的理论计算和分析。
     采用酒精湿磨方法将Mn粉和Si粉混合后,压制压力为486 MPa条件下制备出的MnSi_(1.7)块体材料成型性和致密性最佳。随着烧结温度的升高和烧结时间的延长,产物中MnSi_(1.7)所占比例逐渐升高。较快的降温速率对MnSi_(1.7)相的保留有很好的促进作用。MnSi_(1.7)块体材料的电导率随着温度的升高,先增大后减小,在400℃左右时达到了最小值。
     热电材料的热电性能与其电子结构密切相关,研究其电子结构可为开发高性能热电材料提供理论指导。本文利用基于密度泛函理论的第一性原理对Mn_4Si_7的能带结构和态密度做了较为完备的理论计算和分析,计算结果表明,Mn_4Si_7具有0.82 eV的直接能隙。体系中Si空位的引入导致在费米能级附近产生杂质态,形成p型Mn_4Si_7;Si空位的存在使得费米能级附近态密度的增加,这预示通过在Mn_4Si_7中引入缺陷可能提高其ZT系数。
Thermoelectric materials are semiconductor functional materials which can directly convert heat into electricity and vice versa. Higher manganese silicides MnSi1.7 are very promising among them. MnSiu has broad application prospects because of its high chemical stability, good oxidation resistance, non-toxic pollution and low cost.
     In the present work, MnSiu bulk thermoelectric materials were prepared by powder metallurgy. The influences of the process parameters on the quality of samples were investigated. Based on the results, a reasonable process was obtained. The variation of electrical conductivity with temperature was also investigated. Meanwhile, the band structure and density of states of Mn4Si7 were calculated theoretically.
     A mixture of Mn powder and Si powder was wet-milled with ethanol, and then pressed under a pressure of 486 MPa. Then MnSiu bulks with high density were obtained. As the increase of the sintering temperature and sintering time, the proportion of MnSiu in the samples were gradually increased. Faster cooling rate promotes the reservation of MnSiu to temperature. The conductivity of MnSiu samples increased with temperature, and then decreased, with a minimum at about 400°C.
     The thermoelectric properties of thermoelectric materials are closely related to their electronic structure. Study of electronic structure of the thermoelectric materials can provide theoretical guidance to develop high-performance thermoelectric materials. By means of first principles calculations based on density functional theory, the band structure and density of states of Mn4Si7? were investigated. The results indict that Mn4Si7 has a direct band gap of 0.82 eV. Si vacancy in Mn4Si7?crystal produces an impurity state near the Fermi level, leading to the formation of p-type Mn4Si7.Si vacancy introduced increases the density of states near the Fermi level, which indicates that the introduction of the defects may improve the ZT factor of Mn4Si7.
引文
[1] Sales B C, Thermoelectric materials-Smaller is cooler, Science, 2002, 295(5558): 1248-1249.
    [2] DiSalvo F J, Thermoelectric cooling and power generation, Science, 1999, 285 (5428):703-706.
    [3] Leong D, Harry M, Reeson K J, et al, A silicon/iron-disilicide light-emitting diode operating at a wave length of 1.5pm. Nature, 1997, 387 (6634):686-688.
    [4] Service R F, Semiconductor advance may help reclaim energy from‘lost' heat. Science, 2006, 311: 1860-1860.
    [5] Abelson R D, Section Space Missions and Applications. Thermoelectrics Handbook, ed. D. M. Rowe. CRC Press. Boca Raton, USA.2005.Ch.56.
    [6]张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势.电源技术, 2006, 311: 525-530.
    [7] Weinberg R J, Rowe D M, Min G, Novel high performance small-scale thermoelectric power generation employing regenerative combustion systems. J.Phys. D-Appl. Phys,2002, 35(13): L61-L63.
    [8] Schmidt M A, Portable MEMS Power Sources. In 2003 IEEE International Solid-State Circuits Conference. San Francisco, USA: 2003. 394-395.
    [9] La Grandeur J, Crane D, Hung S, et al, High Efficiency Waste Energy Recovery System for Vehicle Applications. in Proc. 25th Int. Conf. on Thermoelectrics. Wien, Austria:2006. 343-348.
    [10] Moser W, Friedl G, Hofbauer H, Small-scale Pellet Boiler with Thermoelectric Generator. in Proc. 25th Int. Conf. on Thermoelectrics. Wien, Austria: 2006. 349-353.
    [11] Ota T, Kouichi F, Tokura S, et al, Development of Thermoelectric Power Generation System for Industrial Furnaces in Proc. 25th Int. Conf. on Thermoelectrics. Wien, Austria: 2006. 354-357.
    [12] Fairbanks J, Thermoelectric generators for near-term automotive applications and beyond. in Proc. 4th Euro. Conf. on Thermoelectrics. Cardiff, UK: 2006. Paper 1.
    [13] Haruyama T, Performance of Peltier elements as a cryogenic heat flux at temperature down to 60K. Cryogenics, 2001, 41: 335-339.
    [14] Gulian A, Wood K, Fritzande G, et al, X-ray/UV single photon detectors with isotropic Seebeck sensors. Nuclear Instru. And Meth. In Phys. Res. Sec. A, 2000, 444: 232-236.
    [15] Matsumiya M, Shin W, Izu N, et al, Thermoelectric CO gas sensor using Au and Co3O4 thin films. J. Electrochem Soc., 2004, 151: H7-10.
    [16]苗俊杰,黄蕙,邹昌钦,中国能源战略走向.瞭望, 2004(15): 29-31.
    [17] Lee J S, Rhi S H, Kim C N, et al, Use of two-phase loop thermosyphons for thermoelectric rerfigeration: experiment and analysis, App. Thermal Eng. , 2003, 23(9): 1167-1176.
    [18] Vian J G, Rodriguez A, Astrain D, et al, Development of a thermoelectric icemaker device built in a refrigerator. in Proc. 25th Int. Conf. on Thermoelectrics. Wien, Austria: 2006. 338-342.
    [19] Highgate D J, Probert S D, Higher energy-efficiency, readily transportable incubators. Applied Energy 1990, 35(2): 135-149.
    [20] Giiler N F, Ahiska R, Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit. App. Thermal Eng., 2002, 22(11): 1271-1276.
    [21] Fettig R, A view to recent developments in thermoelectric sensors. in Proc. 15th Int. Conf. on Thermoelectrics. Pasadena, Canada 1996. 315-320.
    [22] Phelan P E, Chiriac V A, Lee T Y T, Current and future miniature refrigeration cooling technologies for high power microelecrtonics. IEEE Trans. Comp-on. Packaging Technol., 2002, 15(3): 356-365.
    [23] Bierschenk J, Gilley M, Assessment of TEC Requirements for Thermoelect- rically Enhanced Sinks for CPU Cooling Applications. in Proc. 25th Int. Conf. on Thermoelectrics. Wien, Austria: 254-59.
    [24] Metzger T, Huebener R P, Modelling and cooling behaviour of Peltier cascades Cryogenics 1998,39(3): 235-239.
    [25] Kaila M M, High Temperature Superconductor THz Thermal Sensors and Coolers. J. Supercond. & Novel Magnet., 2005, Published online: 27 July.
    [26] Rowe D M, General Principles and Basic Considerations. Thermoelectrics Handbook, ed. D. M. Rowe CRC Press. Boca Raton, USA. 2005.
    [27]陈海燕,β-FeSi2基热电材料的微观结构和性能优化,博士学位论文,浙江大学,2007.
    [28] Lin Chung, Reinecke T L, Thermoelectric figure of merit of composition superlattice systems. Phys. Rev. B, 1995, 51, 13244.
    [29] Ioffe A F, Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limitied. London, UK. 1957.
    [30] Hicks L D, Dresselhaus M S, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B, 1993, 47(19): 12727-12731.
    [31] Venkatasubramanian R, Siivola E, Colpitts T, et al, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602.
    [32] Hannan T C, Taylor P J, Walsh M P, et al, Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229-2232.
    [33] Buttner H, Chen G, Venkatasubramanian R, Aspects of thin-Film superlattice thermoelectric materials, devices, and applications. MRS Bulletin, 2006, 31(3): 211-217.
    [34] Sales B C, Mandrus D, Williams R K, Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325-1328.
    [35] Tritt T M, Thermoelectric materials-Holey and unholy semiconductors, 1999, 283(5403): 804-805.
    [36] Hsu K F, Loo S, Guo F, et al, Polyehroniadis and M. G. Kanatzidis, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818-821.
    [37]吴宏照,氧化物热电材料的制备及其性能研究,硕士论文,天津大学,2007.
    [38]况学成,宁小荣,热电材料的研究现状及发展趋势,佛山陶瓷,2008,18(6): 34-40.
    [39] Yuzuru Miyazaki, Crystal structure and thermoelectric properties of the misfit-layered cobalt oxide. Solid Ionics. 2004, (172)463-467.
    [40] Nolas G S, Colin J L, Slack G A, Mean-field theory of spin-glasses with finite coordination number. Phys. Rev. B. 1998, 58(1): 164.
    [41] Min G, Rowe D M, Strong Coupling Theory for Driven Tunneling and Vibrational Rdaxation. Appl. Phys. Lett, 2000, 76: 860.
    [42] Hicks L D, Dressehaus M S, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1999, 47, 12727.
    [43] Tsidilkovski V I, Gordov V P, Balakireva V B, Thermoelectric power of proton conducting oxides. Solid Ionics. 2003(55-61)162-163.
    [44] Maignan A, Wang L B, Hcbccrt S, et al, Large thermoelectric in metallic misfit cobaltites. Chem. Mater. 2000, 14, 1231-1235.
    [45] Chen G, Thermal conductivity and ballistic-phonon transport in the cross-plane direction superlattices. Phys. Rev. B, 1998, 57,14985.
    [46] Takahata K, Iguchi Y, Tanaka D, et al, Low thermal conductivity of the layered oxide(Na, Ca)Co2O4: Another example of a phone glass and an electron crystal. Phys. Rev. B, 2000, 61, 12551-12555.54.
    [47] Masset A C, Michel C, Maignan A, et al, Misfit-layered cobaltite with an anisotropic giant magnetoresistanea: Ca3CO4O9. Phys. Rev. B, 2000, 62. 166-175.
    [48] Umemototm, Liu Z G, Omatsuzawar, et al, Production and characterization of Mn-Si thermoelectric materials. Matastable, Mechanically Alloyed and Nanocry- stalline materials, PTS1 AND2, 2000, 343-3: 918-923.
    [49]张慧云,陈宜保,锰硅化合物的制备及塞贝克效应,2008,16(3):427-429.
    [50] Zhang L, Ivey D G, Reaction kinetics and optical properties of semiconducting MnSi1.73 grown on <001> oriented silicon. Journal of Materials Science: Materials in Electronics, 1991, 2(2): 116-123
    [51] Nakanishi O, Yanase A, Hasegawa A, Electronic energy band structure of MnSi. Manganese Materials, 1980, 15-18: 879-880.
    [52] Stoehrer U, Measurement of the transport properties of FeSi2 and HMS by utilization of the Pehier effect in the temperature range 50-800℃. Measure- ment Science Technology, 1994, 5: 440-446.
    [53] Hohenberg P, Kohn W, Inhomogeneous electron gas. Physical. Review, 1964(136). B864.
    [54] Kohn W, Sham L J, Self-consistent equations including exchange and correlation effects. Physical Review, 1965(140), A1133.
    [55] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal Physics Conditon Matter, 2002(14): 2717-2744.
    [56] Payne M P, Teter M C, Allan D C, at al. Iterative minimization techniques for ab initio total-energy calculations molecular-dynamics and conjugate gradients. Review of Modified Physics, 1992(64): 1045–1097.
    [57] Migas D B, Shaposhnikov V L, Filonov A B, et al, Ab initio study of the band structures of different phases of higher manganese silicides. Physical Review B, 2008, 77(7): 075205.
    [58] Perdew J P, Chevary J A, Vosko S H, et al, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 1992(46): 6671.
    [59] Vanderbilt D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review. 1990(B41): 7892–7895.
    [60] Nishida I, Semiconducting of non-stoichiometric manganese silicides. Journal of Materials Science, 1972, 7(4): 435– 440.
    [61] Teichert S, Kilper R, Erben, et al, Preparation and properties of thin polycry- stalline MnSi1.73 films. Applied Surface Science, 1996(104-105): 679-684.
    [62] Bost M C, Mahan J E, An optical determination of the band gap of the most silicon-rich manganese silicide phase. Journal of Electronic Materials, 1987(166): 389-395.
    [63] Gao Y, Shao G S, Li Q, et al, Microstructure and optical properties of semiconducting MnSi1.7 synthesized by ion implantation. Japanese Journal of Applied Physics, Part 1, 2007, 46(9A): 5777-5779.
    [64]张民,季诚响,韩荣生,等.锰硅化合物Mn4Si7能带结构的研究.装甲兵工程学院学报, 2006, 20(3): 84-89.
    [65]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:电子工业出版社,2003.8:59-60.
    [66] Shi L, Yao D, Zhang G, et al. Large thermoelectric figure of merit in Si1-xGex nanowires. Applied Physics Letters, 2010, 96(17): 173108-173110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700