铸态Ti-Ni-Sn合金组织和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源问题和环境问题的日益突出,为了寻找传统能源的替代产品,人们在热电材料方面做了不少有益的探索,热电材料的研制也成为了研究的热点。本文采用电弧炉真空氩气保护下熔炼与铸造的方法,制备了TiNiSn材料。重点对TiNiSn热电材料腐蚀性能、组织形貌及热电性能和热膨胀等性能进行了研究。
     对铸态下获得的TiNiSn材料所做的相鉴别分析表明,在铸态TiNiSn材料中存在着TiNiSn、TiNi2Sn、Ni3Sn2、TiNi、Ti3Ni4、Ti6Sn5,同时材料中存在Sn相;能谱分析表明铸态TiNiSn材料中存在着Ti6Sn5、TiNi2Sn相,同时材料中存在微裂纹;利用透射电镜观察分析铸态TiNiSn材料中存在Ti6Sn5和Ti3Ni4相。
     用3wt.% NaCl水溶液进行的浸泡腐蚀实验的结果表明,经过热处理后材料的耐蚀性有了明显的提高。铸态试样的点蚀和应力腐蚀同时进行,在浸泡进行到25天的时候试样表面已完全腐蚀;热处理96小时的试样表面没有发生明显的点蚀,腐蚀进行到55天时表面还没有达到完全的腐蚀。铸态和热处理态的试样中都存在铸造和加工缺陷,腐蚀总是首先从这些地方开始的,850℃下热处理96小时的试样的点缺陷基本消除,但应力缺陷的仍然存在于材料中,因此在腐蚀的过程中,还是出现了自试样的边缘部位开始的应力腐蚀。XPS结果表明,浸泡试样的表面反应产物是Sn的氧化物,Ti和Ni在浸泡的过程中脱离了试样表面。
     电化学实验表明,热处理48小时和热处理96小时的试样都出现了明显的钝化区,热处理96小时试样的维钝电流密度低于热处理48小时试样的维钝电流密度,显示了TiNiSn材料随着热处理时间的增加,耐腐蚀性能不断提高的特性。
     物理性能测试结果表明,随着测试温度的升高,铸态TiNiSn材料的电阻率下降,Seebeck系数、热导率和优值系数都升高。材料的抗压和硬度试验表明,该材料属脆性材料,热处理的进行能提高材料的硬度。
Thermoelectric materials are currently being investigated for their potential against the problems of energy and environment. They can be served as a substitution of traditional energy. TiNiSn materials were prepared in arc furnace under Ar atmosphere. Corrosion properties, morphology, physical properties, and some mechanical properties of TiNiSn material were investigated.
     XRD analysis of as-cast TiNiSn material showed that it was difficult to get single-phase TiNiSn. TiNi2Sn, Ni3Sn2, TiNi, Ti3Ni4, Ti6Sn5, and Sn were tested in the sample. Results of energy spectrum analysis of the as-cast sample showed that there were Ti6Sn5 and TiNi2Sn phases, and also there were some micro-cracks in the material. TEM image of as-cast TiNiSn material and diffraction pattern on appointed site showed that there were Ti6Sn5 and Ti3Ni4 in the as-cast TiNiSn material.
     Results showed that resistance ability of corrosion in 3wt.% NaCl solution can be improved by heat treatment. The as-cast sample corroded fast, there are pitting corrosion and surface tension corrosion. It was corroded thoroughly after 25 days. There are not pitting corrosion on the sample treated for 96 hour, and this sample was not corroded thoroughly until the 55th days. There were many casting flaws and processing stresses in the as-cast and heat treatment samples. And the corrosion started from those areas. Pitting flaws in the sample of 96 hours heat treatment in vacuum furnace were basically eliminated, but the processing stresses still existed. Corrosion of this sample was mainly surface tension corrosion. Results of XPS showed that Sn was oxidized on surface of the sample. Ti and Ni were corroded off the surface of the sample.
     There are significant passivation areas in samples treated for 48h and 96h, current density of sample treated for 96h is higher than sample treated for 48h. With increase of heat treatment time, corrosion resistance increases.
     Results of the physical property showed that with the increase of the temperature, electrical resisitivity of the as-cast TiNiSn material decreased. Seebeck coefficient, heat conductivity, and ZT value increased. The mechanical experiment indicated that TiNiSn material was brittle material. Heat treatment could improve hardness of the material.
引文
1 G. Mahan, B. Sales and J. Sharp. Thermoelectric Materials: New Approaches to an Old Problem. Physics Today. 1997, 50(2): 42~47
    2 C. Kloc, K. fess, W. Kaefer, et al. Crystal Growth of Narrow Gap Semiconductors for Thermoelectric Applications. 15th International Conference on Thermoelectrics. Istenbul, 1996: 155~158
    3马乔矢.半导体技术的应用和发展.沈阳建筑工程学院学报. 1999, (3): 37~41
    4李喜贵,王运志,王海英等.热电材料的研究进展.河南师范大学学报(自然科学版). 2005, 33(3): 47~51
    5刘宏,王继扬.半导体热电材料研究进展.功能材料. 2002, (2): 76~79
    6许斌,王为.微型温差电器件及相关材料的研究现状.电源技术. 2006, (03): 24~27
    7周芸,沈容,史庆南等.热电材料的最新进展.昆明理工大学学报(理工版). 2003, (3): 14~17
    8张艳华,赵新兵,吉晓华.含镧的Bi2Te3基化合物的溶剂热合成及微观结构.中国稀土学报. 1997, (4): 7~9
    9彭江英,杨君友,陈跃华等.机械球磨和烧结制备CoSb3的工艺研究.材料科学与工艺. 2005, 4(2): 112~116
    10 G. S. Nolas, G. A. Slack, and S. B. Schujan. Semiconductor Calthrates: a Phonon Glass Electron Crystal Material with Potential for Thermoelectric Applications. Semicond. Semimet. 2001, (69): 255~300
    11 T. Caillat, J. P. Fleurial and A. Borshchevsky. Preparation and Thermo-electric Properties of Semiconducting Zn4Sb3. J. Phys. Chem. Solids. 1997, 7(58): 1119~1125
    12李红星,赵新兵,李伟文.新型热电材料的研究进展.材料导报. 2002, 6(16): 20
    13 M. G. Kanatzidis. The Role of Solid-state Chemistry in the Discovery of New Thermoelectric Materials. Semicond. Semimet. 2001, (62): 51~100
    14毛顺杰,栾伟玲,黄琥等.氧化物热电材料的研究现状与应用.硅酸盐通报. 2005, (3): 59~62
    15 I. Terasaki, Y. Sasago, and K. Uchinokura. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys. Rev. B.. 1997, (56): 685~687
    16 A. Balandin, K. L. Wang. Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Freestanding Semiconductor Quantum Well. Phys. Rev. B.. 1998, (58): 1544~1549
    17 G. Chen. Phonon Engineering in Nanostructures for Solid-state Energy Conversion. Mater. Sci. Eng.. 2000, (292): 155~161
    18 G. J. Snyder, J. R. Lim, C. K. Huan, et al. Thermoelectric Micro-device Fabricated by a Mems-like Electro- chemical Process. Nature Materials. 2003, (2): 28~53
    19崔红梅,刘虹,李霞等.水热共还原法合成一维Sb2Se3纳米单晶带和单晶棒.机械工程材料. 2005, (7): 61~64
    20李玲玲,张丽鹏,于先进.热电材料的研究进展.山东陶瓷. 2007, (2): 19~22
    21马秋花,路朋献. N型热电材料的研究现状.电工材料. 2005, (4): 34
    22胡淑红. BiTe基材料的制备及其热电性能研究.浙江大学博士学位论文. 2001
    23钟广学.半导体致冷器件及其应用.北京:科学出版社, 1989. 17
    24顾永明,郭燕明.生长速度对N型和P型Bi-Te热电材料性能的影响.上海大学学报(自然科学版). 1999, (4): 315
    25裴勇,钱兴华,蒋文涛.半导体制冷优化设计方法的理论分析.制冷与空调. 2005, (6): 36~38
    26宋春梅,刘华军,黄荣进.高压合成纳米晶Bi(0.85)Sb(0.15)的低温热电性能.材料研究学报. 2007, (2): 126~129
    27王丹,徐桂英,张春燕等.热压法制备P型Si0.8Ge0.2合金及其热电性能.装备制造技术. 2007, (4): 50~55
    28黄向阳,徐政等. Half-Heusler热电半导体材料.无机材料学报. 2004, (1): 25~28
    29 B. Scales. Novel Thermoelectric Materials. Current Opinion in Solid State & Materials Science. 1997, (2): 284
    30焦正宽,汪壮兵.热电材料新进展.功能材料. 2002, (2): 116
    31 G. D. Mahan. Good Thermoelectrics. Solid State Phys.. 1998, (51): 81~157
    32 D. T. Morelli and G. P. Meisner. Low-temperature of Thermoelectric Materials by Silicon Molding Process. Senior Actuat. A-Phys.. 2003, 108(3): 97~102
    33 T. M. Tritt, G. S. Nolas and G. A. Slack, et al. Low Temperature Transport Properties of the Filled and Unfilled IrSb3 Skutterudite System. J. Appl. Phys.. 1996, 79(11): 8412~8418
    34刘向阳,任山,闻立时.微型热电器件研究进展.材料导报. 2007, (03): 5~9
    35梁永斌,李瑜煜,热电发电器的研究进展.应用能源技术. 2006, (10): 36~40
    36 H. Bottner. Thermoelectric Micro-devices: Current State, Recent Developments and Future Aspects for Technological Progress and Applications. Proceedings of the 2lst International Conference on Thermo-electronics. IEEE. 2002, (5): 511~518
    37单扬文,黄琥,栾伟玲. Bi-Te基热电材料的能带结构计算,能源技术. 2007, (01): 1~4
    38 G. S. Nolas, G. A. Slack, D. T. Morelli, et al. The Effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites. J. Appl. Phys.. 1996, (79): 4002~4008
    39 D. J. Braun and W. Jeitschko. Preparation and Structural Investigations of Antimonides with the LaFe4P12 Structure. J. Less-Common Met.. 1980, (72): 147~156
    40 G. Slack. CRC Handbook of Thermoelectrics. New York: D. M. Rowe. CRC Press. 1995, (5): 407~440
    41 B. Lenoir, A. Dauscher, M. Cassart, and H. Scherrer. Effect of Antimony Content on the Thermoelectric Figure of Merit of Bi1-xSbx Alloys. J. Phys. Chem. Solids. 1998, 59(1): 129~134
    42 J. Yang, T. Aizawa, A. Yamamoto, and T. Ohta. Thermoelectric Properties of P-Type (Bi2Sb3)(x)(Bi2Te3)(1-x) Prepared via Bulk Mechanical Alloying and Hot Pressing. J. Alloy. Compd.. 2003, 9(2): 225~228
    43 J. Y. Yang, T. Aizawa, A. Yamamoto, and T. Ohta. Thermoelectric Properties of N-Ttype (Bi2S3)(x)(Bi2Te3)(1-x) Prepared by Bulk Mechanical Alloying and Hot Pressing. J. Alloy. Compd.. 2000, (312): 326~330
    44 J. Seo, K. Park, and C. Lee. Fabrication and Thermoelectric Properties of N-Type SbI3-Doped Bi2Te2.85Se0.15 Compounds by Hot Extrusion. Mater. Res. Bull.. 1998, 33(4): 553~559
    45 P. Pierrat, A. Dauscher and H. Scherrer. Preparation of the Bi8Sb32Te60 Solid Solution by Mechanical Alloying. J. Mater. Sci.. 1997, 32(14): 3653~3657
    46 P. W. Zhu, Y. Shinohara and G. T. Zou. Enhanced Thermoelectric Properties of PbTe Alloyed with Sb2Te. J. Phys. Condes. Matter.. 2005, 17(46): 7319~7326
    47宋春梅,刘华军,吴云龙等. Bi0.90Sb0.10热电材料高压制备及性能研究.低温工程. 2005, (16): 20~23
    48 D. Eyidi, D. Maier, O. Eibl, et al. Chemical Composition and Crystal Lattice Defects of Bi2Te3 Peltier Device Structures. Phys. Stat. Sol.. 2001, (2): 585~600
    49 G. Chen, T. Zeng, T. Borca, et al. Phonon Engineering in Nanostructures for Solid–State Energy Conversion. Mater. Sci. Eng.. 2000, (292): 155~161
    50李洪林,荀立,冉均国.纳米Bi2Te3基热电材料最新研究进展.现代技术陶瓷. 2005, (104): 16~20
    51 Caillat T, Kulleck J, Borshchevsky A, et al. Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru0.5Pd0.5Sb3. J. Appl. Phys.. 1996, 79(11): 8419~8426
    52刘晓虎,赵新兵,倪华良等.快速凝固和热压高锰硅的微观结构和热电性能.功能材料与器件学报. 2004 (02): 58~61
    53 N. Mateeva, H. Niculescu, J. Schlenoff, et al. Correlation of Seebeck Coefficient and Electric Conductivity in Polyaniline and Polypyrrole. J. Appl. Phys.. 1998, (6): 3111~3117
    54张丽鹏,于先进,肖晓明.热电材料的研究进展,现代技术陶瓷. 2006 (03): 20~24
    55厉英,张丽华,姜茂发. NaxCo2O4热电材料的研究进展.东北大学学报. 2005, (3): 236~238
    56吴宏照,师春生,赵乃勤.氧化物热电材料NaCo2O4的研究.兵器材料科学与工程. 2005, (9): 69~72
    57刘海强,唐新峰,宋晨等. Ti1-x(Hf0.919Zr0.081)xNiSn的制备及热电性能.物理学报. 2006, (4): 120~124
    58徐桂英,葛昌纯.热电材料的研究和发展方向.材料导报. 2000, (11): .67~70
    59 F. Aliev, N. Brand. J. Phys.. 1998, (10):7843~7850
    60张建中,王凤跃,伍绍中.温差电材料的研究新动向.电源技术. 2002, (02): 64~67
    61 V. M. Browning, S. J. Poon, T. M. Tritt, et al. Thermoelectric Materials, 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications. Materials Research Society. 1999, (4): 400~403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700