Ru~Ⅲ催化KMnO_4氧化去除水中新兴微污染物的效能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年,随着环境检测技术的进步和人类环保意识的增强,水环境中的新兴微污染物(emerging micropollutants, EMs)正日益受到全世界科研人员的关注。目前水质或环境指标中并没有规定多数新兴微污染物在水中或者环境中的最高允许浓度。新兴微污染物种类繁多、性质各异,因此它们的检测和分析也给科研人员提出了很大挑战。常规水处理工艺很难有效去除水中的新兴微污染物,所以寻找和开发更加有效的深度水处理技术或者预处理技术已经成为必然。高锰酸钾氧化工艺在常见水处理pH范围内对水中有机污染物具有较强的氧化能力,其还原产物二氧化锰可以通过吸附、氧化、助凝等与高锰酸钾协同除污染。但由于高锰酸钾在使用过程中容易出现色度超标的问题,因此本文采用钌催化高锰酸钾氧化技术,通过催化过程提高高锰酸钾氧化新兴微污染物的效能,同时降低高锰酸钾的投加量。
     本文首先证明了在近中性pH范围内均相RuIII催化高锰酸钾氧化技术去除水中新兴微污染物的可行性。RuIII在pH4.0-8.0范围内将高锰酸钾氧化双酚A的反应速率提高了1.2-8.4倍,同时也提高了双酚A的矿化率。虽然RuIII溶液作为均相催化剂可以很好地催化高锰酸钾氧化去除水中新兴微污染,但RuIII溶液投加进水体以后会对水体造成二次污染,并且也不能实现回收利用。
     为了实现催化剂的回收和重复利用,本文制备了非均相钌催化剂。利用上海光源X射线精细结构吸收光谱(XAFS)探索了其催化高锰酸钾氧化新兴微污染物的机制,具体如下:催化剂表面的RuIII被高锰酸钾氧化为高价态的RuVII和RuVI,而RuVII比高锰酸钾的氧化活性更高,可以快速地将新兴微污染物氧化,同时自身回到RuIII。RuIII可以继续与高锰酸钾反应,开始下一轮催化循环过程。
     非均相钌催化高锰酸钾氧化的效能受反应条件的影响较大。随着pH从4.0升高至8.0,Ru/CeO2催化高锰酸钾氧化对羟基苯甲酸丁酯的二级反应速率常数从90.4M-1s-1降低至16.9M-1s-1;高锰酸钾浓度较低的时候,Ru/CeO2的催化效果更明显;当催化剂的浓度从0.13g L-1增加至2.0g L-1,相应的二级反应速率常数呈线性增大的趋势,从6.7M-1s-1升高至74.7M-1s-1;另外非均相钌催化剂降低了高锰酸钾氧化对羟基苯甲酸丁酯的表观活化能。
     本文制备了Ru/CeO2、Ru/TiO2、Ru/ZSM-5A、Ru/ZSM-5B和Ru/MCM-41等一系列不同载体的催化剂,考察了载体对其催化性能的影响。结果表明基于不同载体的钌催化剂其催化效果的差异主要源于催化剂表面钌负载量的不同,与载体自身的性质没有明显关系。载体对催化剂的稳定性有很大影响,载体的比表面积越大,相应载体制备的催化剂在反应过程中就越容易吸附高锰酸钾的还原产物二氧化锰,也就越容易失活。
     随着非均相钌催化剂的重复使用,催化剂会出现逐渐失活的现象,因此本文采用盐酸羟胺和抗坏血酸分别对非均相钌催化剂Ru/ZSM-5A进行了再生研究。经盐酸羟胺再生后的Ru/ZSM-5A的性能与新制备Ru/ZSM-5A的性能相当,再生后的Ru/ZSM-5A催化高锰酸钾氧化磺胺甲噁唑的去除率可以达到95%;而经抗坏血酸再生的Ru/ZSM-5A氧化磺胺甲噁唑的去除率仅为76.2%。这可能主要是由于抗坏血酸不能够完全将非均相钌催化剂表面堆积的二氧化锰还原为溶解态的离子,而使得催化剂再生不完全。
     非均相钌催化高锰酸钾氧化技术可以很好地去除水中含有富电子基团的新兴微污染物,也可以同步降低其相应的急性生物毒性。该技术可以同时去除水中共存的多种痕量新兴微污染物(浓度约为g L-1),并且它们的二级反应速率常数不会因为彼此间竞争催化剂和氧化剂而降低。
     通过向实际水源水中投加新兴微污染物的标准品,发现在实际水体中Ru/TiO2催化高锰酸钾氧化技术对富电子基团的新兴微污染物具有很好的选择性,并且水源水中微量的腐殖酸可以进一步促进该技术的氧化效能,但当腐殖酸的浓度较高时也会与新兴微污染物形成竞争,进而降低氧化效率。非均相钌催化高锰酸钾氧化过程中不会有溴酸盐等消毒副产物产生。由此可见,RuIII催化高锰酸钾氧化技术是去除水中新兴微污染物非常高效和非常有前景的预氧化水处理技术。
With the development of measuring and testing techniques and people’s awareness of environmental protection in this decade, the emerging micropollutans (EMs) in aquatic environment are becoming a new concern to the worldwide researchers. Emerging micropollutants are those that are suspected to have harmful effects-e.g. endocrine disruption and antibiotic drug resistance-but are not routinely monitored or regulated against. Research on emerging micropollutants is further complicated as there is an extensive array of different chemicals entering the aquatic environment, their volume is increasing and new compounds are continually being introduced to the market. Emerging micropollutants have been found in the effuent of wastewater treatment plants, which constitutes a major limitation for their potential reuse. Hence, the development of new strategies to deal with this concern is needed. Permanganate has several obvious advantages, such as relatively low cost, ease of handling, effectiveness over a wide pH range, and comparative stability. Its reductant manganese dioxide can also remove the pollutants by adsoption, oxidation and coagulation. Considering the unpleasant color of permanganate, only very low inlet concentration was allowed to avoid the appearance of chromaticity in the treated water. Thus, catalyzing this process is becoming a necessity to achieve high emerging pollutants removal with lower permanganate dosage.
     This study proved that the addition of homogeneous Ru enhanced the performance of permanganate oxidation of emerging micropollutant at environmentally relevant pH. The second order rate constants of permanganate oxidation of bisphenol A (BPA) were increased by1.2to8.4fold at pH4.0-8.0in the presence of RuIII. The mineralization rate of BPA was much higher in RuIII catalyzed permanganate oxidation than its uncatalytic counterpart. Ru is rather expensive and the addition of RuIII into permanganate oxidation system is far from practical application, since it is troublesome to remove or/and Ru from the efuents. The heterogeneous catalyst (Ru/CeO2) was prepared for reclamation and
     recycling. The catalytic mechanism of Ru/CeO2in permanganate oxidation of emerging micropollutant was explored. The XANES analysis revealed that (i) Ru was deposited on the surface of CeO2as RuIII;(ii) RuIII was oxidized by permanganate to its higher oxidation state RuVI and RuVII, which acted as the co-oxidants in butylparaben (BP) oxidation;(iii) RuVI and RuVII were reduced by BP to its initial state of RuIII. Therefore, Ru/CeO2acted asan electron shuttle in catalytic permanganate oxidation process.
     The kinetics of BP degradation by Ru/CeO2catalyzed permanganate was determined as functions of pH, permanganate concentration, catalyst dosage and temperature. In the heterogeneous catalysis, the oxidation potential of permanganate increased with decreasing pH over the pH range of4.0-8.0, which would result in more efective RuIII oxidation to RuVII and RuVI and thus more rapid BP oxidation at lower pH. More signifcant enhancement in BP removal rate due to the presence of Ru/CeO2catalyst at lower permanganate concentration was observed. With the increase of Ru/CeO2dosage from0.13to2.0g L-1, the rate constant of BP degradation increased linearly from6.7to74.7M-1s-1.
     The second order rate constants of Ru catalyzed permanganate correlated well with the loading of Ru on the catalysts, indicating that the performance of heterogeneous catalysts dependented on their coorespounding Ru loading. The stability of heterogeneous catalysts was highly depended on the BET suface area of the support. The higher BET suface area would lead to higher amount of MnO2deposition onto the surface of catalyst, thus the catalytic effect of Ru/CeO2catalyst would decrease due to the masking of the active sites.
     The regenerated Ru/ZSM-5A by hydroxylamine hydrochloride performed as good as the newly prepared one. But the ascorbic acid could not totally remove the deposited MnO2. It should be noted that hydroxylamine hydrochloride was toxic, thus Ru/ZSM-5A regenerated by hydroxylamine hydrochloride should be flushed for some times before next run in water treatment.
     Permanganate catalyzed by Ru/TiO2is a selective oxidant, which can oxidize emerging micropollutants containing electron-rich organic moieties. Ru catalyzed permanganate oxidation was effective not only for eliminating emerging micropollutants but also for detoxification.
     The oxidation rates of these three emerging micropollutants by Ru/TiO2catalyzed permanganate were not decreased due to the presence of other emerging micropollutants, indicating that the oxidation ability of Ru/TiO2catalyzed permanganate was much stronger than permanganate. Therefore, Ru/TiO2catalyzed permanganate could remove target emerging micropollutants effectively in the presence of a variety of other emerging micropollutants at trace concentration.
     In real water, the oxidative removal of emerging micropollutants by Ru/TiO2catalyzed permanganate is a promising method due to its higher selectivity. In catalytic process, the removal of emerging micropollutants was enhanced in the presence of lower concentration humic acid, while some reductants and higher concentration humic acid in real water may compete for the oxidant with target organics and thus lower the performance of Ru catalyzed permanganate oxidation. No bromate byproduct was formed during the catalytic process. Therefore, Ru-catalyzed permanganate oxidation was an effective and promising peroxidation process in water treatment.
引文
[1] Daughton C G, Ternes T A. Pharmaceuticals and personal care products inthe environment: Agents of subtle change?[J]. Environmental HealthPerspectives,1999,1076:907-938.
    [2] Liu R, Zhou J L, Wilding A. Simultaneous determination of endocrinedisrupting phenolic compounds and steroids in water by solid-phaseextraction-gas chromatography-mass spectrometry[J]. Journal ofChromatography A,2004,1022:179-189.
    [3] Wang B, Huang B, Jin W, et al. Occurrence, distribution, and sources of sixphenolic endocrine disrupting chemicals in the22river estuaries aroundDianchi Lake in China[J]. Environmental Science and Pollution Research,2013,20(5):3185-3194.
    [4] Li J Z, Fu J, Zhang H L, et al. Spatial and seasonal variations of occurrencesand concentrations of endocrine disrupting chemicals in unconfined andconfined aquifers recharged by reclaimed water: A field study along theChaobai River, Beijing[J]. Science of the Total Environment,2013,450:162-168.
    [5] Celiz M D, Tso J, Aga D S. Pharmaceutical metabolites in the environment:Analytical challenges and ecological risks[J]. Environmental Toxicologyand Chemistry,2009,28(12):2473-2484.
    [6] Bolong N, Ismail A F, Salim M R, et al. A review of the effects of emergingcontaminants in wastewater and options for their removal[J]. Desalination,2009,239(1-3):229-246.
    [7] Carballa M, Omil F, Lema J M, et al. Behavior of pharmaceuticals,cosmetics and hormones in a sewage treatment plant[J]. Water Research,2004,38(12):2918-2926.
    [8] Duca G, Boldescu V. Pharmaceuticals and personal care products in theenvironment[J]. Role of Ecological Chemistry in Pollution Research andSustainable Development,2009:27-35.
    [9] Fent K, Weston A A, Caminada D. Ecotoxicology of humanpharmaceuticals[J]. Aquatic Toxicology,2006,78(2):207.
    [10] Fent K, Escher C, Caminada D. Estrogenic activity of pharmaceuticals andpharmaceutical mixtures in a yeast reporter gene system[J]. ReproductiveToxicology,2006,22(2SI):175-185.
    [11]刘小为. UV/O3降解水中新兴微污染物的特性与机理研究[D].哈尔滨工业大学,2012:2-3.
    [12] Bu Q W, Wang B, Huang J, et al. Pharmaceuticals and personal careproducts in the aquatic environment in China: A review[J]. Journal ofHazardous Materials,2013,262:189-211.
    [13] Oulton R L, Kohn T, Cwiertny D M. Pharmaceuticals and personal careproducts in effluent matrices: A survey of transformation and removalduring wastewater treatment and implications for wastewatermanagement[J]. Journal of Environmental Monitoring,2010,12(11):1956-1978.
    [14] Kemper N. Veterinary antibiotics in the aquatic and terrestrialenvironment[J]. Ecological Indicators,2008,8(1):1-13.
    [15] Kolodziejska M, Maszkowska J, Bialk-Bielinska A, et al. Aquatic toxicityof four veterinary drugs commonly applied in fish farming and animalhusbandry[J]. Chemosphere,2013,92(9):1253-1259.
    [16] Weng S S, Liu S M, Lai H T. Application parameters of laccase-mediatorsystems for treatment of sulfonamide antibiotics[J]. BioresourceTechnology,2013,141:152-159.
    [17] Lim S J, Seo C K, Kim T H, et al. Occurrence and ecological hazardassessment of selected veterinary medicines in livestock wastewatertreatment plants[J]. Journal of Environmental Science and Health PartB-Pesticides Food Contaminants and Agricultural Wastes,2013,48(8):658-670.
    [18] Akhter S, Ansari M S, Rakha B A, et al. Efficiency of ciprofloxacin forbacterial control, post-thaw quality, and in vivo fertility of buffalospermatozoa[J]. Theriogenology,2013,80(4):378-383.
    [19] Tevyashova A N, Olsufyeva E N, Solovieva S E, et al. Structure-antifungalactivity relationships of polyene antibiotics of the amphotericin B group[J].Antimicrobial Agents and Chemotherapy,2013,57(8):3815-3822.
    [20] Hu L H, Martin H M, Strathmann T J. Oxidation kinetics of antibioticsduring water treatment with potassium permanganate[J]. EnvironmentalScience&Technology,2010,44(16):6416-6422.
    [21] Hu L H, Stemig A M, Wammer K H, et al. Oxidation of antibiotics duringwater treatment with potassium permanganate: Reaction pathways anddeactivation[J]. Environmental Science&Technology,2011,45(8):3635-3642.
    [22] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in theaquatic environment[J]. Science of the Total Environment,1999,225(1-2):109-118.
    [23] Andreozzi R, Marotta R, Paxeus N. Pharmaceuticals in STP effluents andtheir solar photodegradation in aquatic environment[J]. Chemosphere,2003,50(10):1319-1330.
    [24] Bueno M, Aguera A, Gomez M J, et al. Application of liquidchromatography/quadrupole-linear ion trap mass spectrometry andtime-of-flight mass spectrometry to the determination of pharmaceuticalsand related contaminants in wastewater[J]. Analytical Chemistry,2007,79(24):9372-9384.
    [25]胡伟.天津城市水、土环境中典型药物与个人护理品(PPCPs)分布及其复合雌激素效应研究[D].南开大学,2011:44-60.
    [26] Le T X, Munekage Y, Kato S. Antibiotic resistance in bacteria from shrimpfarming in mangrove areas[J]. Science of the Total Environment,2005,349(1-3):95-105.
    [27]谭蓉.使用喹诺酮类抗生素人畜的排泄物对环境的污染[J].环境与健康杂志,2009,12:1125-1127.
    [28] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment offluoroquinolone antibacterial agents from sewage to soil[J]. EnvironmentalScience&Technology,2003,37(15):3243-3249.
    [29] Zuccato E, Calamari D, Natangelo M, et al. Presence of therapeutic drugs inthe environment[J]. Lancet,2000,355(9217):1789-1790.
    [30] Ternes T A. Occurrence of drugs in German sewage treatment plants andrivers[J]. Water Research,1998,32(11):3245-3260.
    [31] Rosal R, Rodriguez A, Perdigon-Melon J A, et al. Occurrence of emergingpollutants in urban wastewater and their removal through biologicaltreatment followed by ozonation[J]. Water Research,2010,44(2SI):578-588.
    [32] Ternes T A, Herrmann N, Bonerz M, et al. A rapid method to measure thesolid-water distribution coefficient (K-d) for pharmaceuticals and muskfragrances in sewage sludge[J]. Water Research,2004,38(19):4075-4084.
    [33] Joss A, Zabczynski S, Gobel A, et al. Biological degradation ofpharmaceuticals in municipal wastewater treatment: Proposing aclassification scheme[J]. Water Research,2006,40(8):1686-1696.
    [34] Togola A, Budzinski H. Multi-residue analysis of pharmaceuticalcompounds in aqueous samples[J]. Journal of Chromatography A,2008,1177(1):150-158.
    [35] Hernando M D, Mezcua M, Fernandez-Alba A R, et al. Environmental riskassessment of pharmaceutical residues in wastewater effluents, surfacewaters and sediments[J]. Talanta,2006,69(2):334-342.
    [36] Yang L, Yu L E, Ray M B. Degradation of paracetamol in aqueous solutionsby TiO2photocatalysis[J]. Water Research,2008,42(13):3480-3488.
    [37] Lin A, Tsai Y T. Occurrence of pharmaceuticals in Taiwan's surface waters:Impact of waste streams from hospitals and pharmaceutical productionfacilities[J]. Science of the Total Environment,2009,407(12):3793-3802.
    [38] Muir N, Nichols J D, Stillings M R, et al. Comparative bioavailability ofaspirin and paracetamol following single dose administration of soluble andplain tablets[J]. Current Medical Research and Opinion,1997,13(9):491-500.
    [39] Jones O, Voulvoulis N, Lester J N. The occurrence and removal of selectedpharmaceutical compounds in a sewage treatment works utilising activatedsludge treatment[J]. Environmental Pollution,2007,145(3):738-744.
    [40] Meyer B K, Ni A, Hu B H, et al. Antimicrobial preservative use inparenteral products: Past and present[J]. Journal of Pharmaceutical Sciences,2007,96(12):3155-3167.
    [41] Lundov M D, Moesby L, Zachariae C, et al. Contamination versuspreservation of cosmetics: a review on legislation, usage, infections, andcontact allergy[J]. Contact Dermatitis,2009,60(2):70-78.
    [42] Canosa P, Rodriguez I, Rubi E, et al. Optimisation of a solid-phasemicroextraction method for the determination of parabens in water samplesat the low ng per litre level[J]. Journal of Chromatography A,2006,1124(1-2):3-10.
    [43] Lee H B, Peart T E, Svoboda M L. Determination of endocrine-disruptingphenols, acidic pharmaceuticals, and personal-care products in sewage bysolid-phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2005,1094(1-2):122-129.
    [44] Albero B, Perez R A, Sanchez-Brunete C, et al. Occurrence and analysis ofparabens in municipal sewage sludge from wastewater treatment plants inMadrid (Spain)[J]. Journal of Hazardous Materials,2012,239:48-55.
    [45] Benijts T, Lambert W, De Leenheer A. Analysis of multiple endocrinedisruptors in environmental waters via wide-spectrum solid-phaseextraction and dual-polarity ionization LC-Ion trap-MS/MS[J]. AnalyticalChemistry,2004,76(3):704-711.
    [46] Ramaswamy B R, Shanmugam G, Velu G, et al. GC-MS analysis andecotoxicological risk assessment of triclosan, carbamazepine and parabensin Indian rivers[J]. Journal of Hazardous Materials,2011,186(2-3):1586-1593.
    [47] Terasaki M, Makino M. Determination of chlorinated by-products ofparabens in swimming pool water[J]. International Journal ofEnvironmental Analytical Chemistry,2008,88(13):911-922.
    [48] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The occurrence ofpharmaceuticals, personal care products, endocrine disruptors and illicitdrugs in surface water in South Wales, UK[J]. Water Research,2008,42(13):3498-3518.
    [49] Jonkers N, Kohler H, Dammshauser A, et al. Mass flows of endocrinedisruptors in the Glatt River during varying weather conditions[J].Environmental Pollution,2009,157(3):714-723.
    [50] Zhang Y J, Geissen S U, Gal C. Carbamazepine and diclofenac: Removal inwastewater treatment plants and occurrence in water bodies[J].Chemosphere,2008,73(8):1151-1161.
    [51]喻峥嵘.东江下游某市饮用水中药品和个人护理用品分布及净化[D].清华大学,2011:40-55.
    [52] Vernouillet G, Eullaffroy P, Lajeunesse A, et al. Toxic effects andbioaccumulation of carbamazepine evaluated by biomarkers measured inorganisms of different trophic levels[J]. Chemosphere,2010,80(9):1062-1068.
    [53] Trovo A G, Silva T, Comes O, et al. Degradation of caffeine byphoto-Fenton process: Optimization of treatment conditions usingexperimental design[J]. Chemosphere,2013,90(2):170-175.
    [54] Sodre F F, Locatelli M, Jardim W F. Occurrence of emerging contaminantsin Brazilian drinking waters: A sewage-to-tap Issue[J]. Water Air and SoilPollution,2010,206(1-4):57-67.
    [55] Furhacker M, Scharf S, Weber H. Bisphenol A: Emissions from pointsources[J]. Chemosphere,2000,41(5):751-756.
    [56] Yamamoto T, Yasuhara A, Shiraishi H, et al. Bisphenol A in hazardouswaste landfill leachates[J]. Chemosphere,2001,42(4):415-418.
    [57]邵晓玲.城市水循环中环境激素的变化规律与KMnO4控制效能研究[D].哈尔滨工业大学,2009:21-35.
    [58] Suzuki T, Nakagawa Y, Takano I, et al. Environmental fate of bisphenol Aand its biological metabolites in river water and their xeno-estrogenicactivity[J]. Environmental Science&Technology,2004,38(8):2389-2396.
    [59] Deborde M, Rabouan S, Mazellier P, et al. Oxidation of bisphenol A byozone in aqueous solution[J]. Water Research,2008,42(16):4299-4308.
    [60]宋炀.国内外苯胺生产现状与市场分析[J].氯碱工业,2006,09:22-28.
    [61]香杰新,张赵田,范洪波,等. US/O3/TiO2/UV氧化处理苯胺废水实验研究[J].环境科学与技术,2010,12:81-85.
    [62]王电站,周立祥.好氧颗粒污泥法降解苯胺的特性[J].中国环境科学,2010,04:527-532.
    [63] Cancilla D A, Martinez J, Van Aggelen G C. Detection of aircraftdeicing/antiicing fluid additives in a perched water monitoring well at aninternational airport[J]. Environmental Science&Technology,1998,32(23):3834-3835.
    [64] Pillard D A, Cornell J S, Dufresne D L, et al. Toxicity of benzotriazole andbenzotriazole derivatives to three aquatic species[J]. Water Research,2001,35(2):557-560.
    [65] Hart D S, Davis L C, Erickson L E, et al. Sorption and partitioningparameters of benzotriazole compounds[J]. Microchemical Journal,2004,77(1):9-17.
    [66] Weiss S, Jakobs J, Reemtsma T. Discharge of three benzotriazole corrosioninhibitors with municipal wastewater and improvements by membranebioreactor treatment and ozonation[J]. Environmental Science&Technology,2006,40(23):7193-7199.
    [67] Weiss S, Reemtsma T. Determination of benzotriazole corrosion inhibitorsfrom aqueous environmental samples by liquidchromatography-electrospray ionization-tandem mass spectrometry[J].Analytical Chemistry,2005,77(22):7415-7420.
    [68] Reemtsma T, Miehe U, Duennbier U, et al. Polar pollutants in municipalwastewater and the water cycle: Occurrence and removal ofbenzotriazoles[J]. Water Research,2010,44(2SI):596-604.
    [69]董艳红,王立军,闫钰,等.臭氧/生物活性炭工艺深度处理微污染原水中试[J].中国给水排水,2013,09:45-48.
    [70] Guo H, Wyart Y, Perot J, et al. Low-pressure membrane integrity tests fordrinking water treatment: A review[J]. Water Research,2010,44(1):41-57.
    [71]赵雷.超声强化臭氧/蜂窝陶瓷催化氧化去除水中有机物的研究[D].哈尔滨工业大学,2008:1-20.
    [72] Ma Y, Gao N Y, Li C. Degradation and pathway of tetracyclinehydrochloride in aqueous solution by potassium ferrate[J]. EnvironmentalEngineering Science,2012,29(5):357-362.
    [73] Li C, Li X Z, Graham N, et al. The aqueous degradation of bisphenol A andsteroid estrogens by ferrate[J]. Water Research,2008,42(1-2):109-120.
    [74] Chen J J, Yeh H H. The mechanisms of potassium permanganate on algaeremoval[J]. Water Research,2005,39(18):4420-4428.
    [75] Rodriguez E, Majado M E, Meriluoto J, et al. Oxidation of microcystins bypermanganate: Reaction kinetics and implications for water treatment[J].Water Research,2007,41(1):102-110.
    [76] Waldemer R H, Tratnyek P G. Kinetics of contaminant degradation bypermanganate[J]. Environmental Science&Technology,2006,40(3):1055-1061.
    [77] Lee E S, Seol Y, Fang Y C, et al. Destruction efficiencies and dynamics ofreaction fronts associated with the permanganate oxidation oftrichloroethylene[J]. Environmental Science&Technology,2003,37(11):2540-2546.
    [78] Yan Y E, Schwartz F W. Kinetics and mechanisms for TCE oxidation bypermanganate[J]. Environmental Science&Technology,2000,34(12):2535-2541.
    [79]张锦,李圭白,马军,等.高锰酸钾复合药剂去除水中微量酚类化合物的效能研究[J].哈尔滨建筑大学学报,2001,03:65-67.
    [80] Guan X H, He D, Ma J, et al. Application of permanganate in the oxidationof micropollutants: A mini review[J]. Frontiers of Environmental Science&Engineering in China,2010,4(4):405-413.
    [81] Hu L, Martin H M, Arcs-Bulted O, et al. Oxidation of carbamazepine byMn(VII) and Fe(VI): Reaction kinetics and mechanism[J]. EnvironmentalScience&Technology,2009,43(2):509-515.
    [82] Huber M M, Korhonen S, Ternes T A, et al. Oxidation of pharmaceuticalsduring water treatment with chlorine dioxide[J]. Water Research,2005,39(15):3607-3617.
    [83] Du J S, Sun B, Zhang J, et al. Parabola-like shaped pH-rate profile forphenols oxidation by aqueous permanganate[J]. Environmental Science&Technology,2012,46(16):8860-8867.
    [84] Huang K C, Hoag G E, Chheda P, et al. Oxidation of chlorinated ethenes bypotassium permanganate: A kinetics study[J]. Journal of HazardousMaterials,2001,87(1-3):155-169.
    [85] Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation oforganics[J]. Environmental Science&Technology,2010,44(11):4270-4275.
    [86] Jiang J, Pang S Y, Ma J, et al. Oxidation of phenolic endocrine disruptingchemicals by potassium permanganate in synthetic and real waters[J].Environmental Science&Technology,2012,46(3):1774-1781.
    [87]杜鹃山. pH和腐殖酸对高锰酸钾氧化酚类化合物动力学的影响[D].哈尔滨工业大学,2012:1-5.
    [88] Heng L, Yanling Y L, Weijia G J, et al. Effect of pretreatment bypermanganate/chlorine on algae fouling control for ultrafiltration (UF)membrane system[J]. Desalination,2008,222(1-3):74-80.
    [89] Hall T, Hart J, Croll B, et al. Laboratory-scale investigations of algal toxinremoval by water treatment[J]. Journal of the Chartered Institution of Waterand Environmental Management,2000,14(2):143-149.
    [90] Dong H R, Guan X H, Lo I. Fate of As(V)-treated nano zero-valent iron:Determination of arsenic desorption potential under varying environmentalconditions by phosphate extraction[J]. Water Research,2012,46(13):4071-4080.
    [91] Guan X H, Dong H R, Ma J, et al. Removal of arsenic from water: Effectsof competing anions on As(III) removal in KMnO4-Fe(II) process[J]. WaterResearch,2009,43(15):3891-3899.
    [92] Guan X H, Ma J, Dong H R, et al. Removal of arsenic from water: Effect ofcalcium ions on As(III) removal in the KMnO4-Fe(II) process[J]. WaterResearch,2009,43(20):5119-5128.
    [93]王娟珍,薛长安,王志勇,等.高锰酸钾应用于地下水除铁锰试验研究与探讨[J].城镇供水,2013,03:78-80.
    [94]姜利.高锰酸钾预氧化—新生态铁联用去除As(III)的效能及机理[D].哈尔滨工业大学市政工程,2008:1-5.
    [95]孙丽华,李星,夏圣骥,等.高锰酸钾强化混凝/砂滤/超滤组合工艺处理松花江水试验研究[J].膜科学与技术,2008,01:77-80.
    [96]李多,苗时雨,张怡然,等.高锰酸钾预氧化-强化混凝控制饮用水消毒副产物的研究[J].水处理技术,2014,02:26-30.
    [97] Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(VII)):Importance of ligands and in Situ formed manganese oxides[J].Environmental Science&Technology,2009,43(21):8326-8331.
    [98]何頔.腐殖酸对高锰酸钾氧化酚类化合物的影响及机理探讨[D].哈尔滨工业大学,2010:1-5.
    [99]Sun B, Zhang J, Du J S, et al. Reinvestigation of the role of humic acid in theoxidation of phenols by permanganate[J]. Environmental Science&Technology,2013,47(24):14332-14340.
    [100]Zeng H S, Inazu K, Aika K. Dechlorination process of activecarbon-supported, barium nitrate-promoted ruthenium trichloride catalystfor ammonia synthesis[J]. Applied Catalysis a-General,2001,219(1-2):235.
    [101]Gallezot P, Nicolaus N, Fleche G, et al. Glucose hydrogenation onruthenium catalysts in a trickle-bed reactor[J]. Journal of Catalysis,1998,180(1):51-55.
    [102]周云瑞,祝万鹏,陈迅.铈掺杂Ru/Al2O3催化臭氧氧化降解邻苯二甲酸二甲酯[J].中国环境科学,2006,04:445-448.
    [103]Wang J B, Zhu W P, Yang S X, et al. Catalytic wet air oxidation of phenolwith pelletized ruthenium catalysts[J]. Applied Catalysis B-Environmental,2008,78(1-2):30-37.
    [104]Kini A K, Farokhi S A, Nandibewoor S T. A comparative study ofruthenium(III) catalysed oxidation of L-leucine and L-isoleucine byalkaline permanganate. A kinetic and mechanistic approach[J]. TransitionMetal Chemistry,2002,27(5):532-540.
    [105]Mulla R M, Hiremath G C, Nandibewoor S T. Kinetics mechanistic andspectral investigation of ruthenium(III) catalysed oxidation of atenolol byalkaline permanganate (stopped-flow technique)[J]. Journal of ChemicalSciences,2005,117(1):33-42.
    [106]Hosahalli R V, Savanur A P, Nandibewoor S T, et al. Kinetics andmechanism of uncatalysed and ruthenium(III)-catalysed oxidation ofd-panthenol by alkaline permanganate[J]. Transition Metal Chemistry,2010,35(2):237-246.
    [107]Abbar J C, Lamani S D, Nandibewoor S T. Ruthenium(III) catalyzedoxidative degradation of amitriptyline-A tricyclic antidepressant drug bypermanganate in aqueous acidic medium[J]. Journal of Solution Chemistry,2011,40(3):502-520.
    [108]Yang X, Chen F, Meng F G, et al. Occurrence and fate of PPCPs andcorrelations with water quality parameters in urban riverine waters of thePearl River Delta, South China[J]. Environmental Science and PollutionResearch,2013,20(8):5864-5875.
    [109]Fang J Y, Shang C. Bromate formation from bromide oxidation by theUV/persulfate process[J]. Environmental Science&Technology,2012,46(16):8976-8983.
    [110]蔡迎军.多硫化碳炔作为锂二次电池正极材料的研究[D].北京化工大学材料科学与工程,2008:15-40.
    [111]庞素艳.铁锰催化H2O2、KHSO5、KMnO4氧化降解酚类化合物的效能与机理研究[D].哈尔滨工业大学,2011:139-140.
    [112]Zhang T, Li W W, Croue J P. Catalytic ozonation of oxalate with a ceriumsupported palladium oxide: An efficient degradation not relying onhydroxyl radical oxidation[J]. Environmental Science&Technology,2011,45(21):9339-9346.
    [113]Lv A H, Hu C, Nie Y L, et al. Catalytic ozonation of toxic pollutants overmagnetic cobalt-doped Fe3O4suspensions[J]. Applied CatalysisB-Environmental,2012,117:246-252.
    [114]Monteagudo J M, Duran A, Lopez-Almodovar C. Homogeneusferrioxalate-assisted solar photo-Fenton degradation of Orange II aqueoussolutions[J]. Applied Catalysis B-Environmental,2008,83(1-2):46-55.
    [115]Wang Y, Feng C X, Zhang M, et al. Enhanced visible light photocatalyticactivity of N-doped TiO2in relation to single-electron-trapped oxygenvacancy and doped-nitrogen[J]. Applied Catalysis B-Environmental,2010,100(1-2):84-90.
    [116]He D, Guan X H, Ma J, et al. Influence of humic acids of different originson oxidation of phenol and chlorophenols by permanganate[J]. Journal ofHazardous Materials,2010,182(1-3):681-688.
    [117]He D, Guan X H, Ma J, et al. Influence of different nominal molecularweight fractions of humic acids on phenol oxidation by permanganate[J].Environmental Science&Technology,2009,43(21):8332-8337.
    [118]Jaky M, Szammer J, Simon-Trompler E. Kinetics and mechanism of theoxidation of ketones with permanganate ions[J]. Journal of the ChemicalSociety-Perkin Transactions,2000,7:1597-1602.
    [119]Xu X R, Li H B, Wang W H, et al. Decolorization of dyes and textilewastewater by potassium permanganate[J]. Chemosphere,2005,59(6):893-898.
    [120]Gallard H, Leclercq A, Croue J P. Chlorination of bisphenol A: kinetics andby-products formation[J]. Chemosphere,2004,56(5):465-473.
    [121]Garoma T, Matsumoto S. Ozonation of aqueous solution containingbisphenol A: Effect of operational parameters[J]. Journal of HazardousMaterials,2009,167(1-3):1185-1191.
    [122]Priya N P, Arunachalam S, Manimaran A, et al. Mononuclear Ru(III) Schiffbase complexes: Synthesis, spectral, redox, catalytic and biological activitystudies[J]. Spectrochimica Acta Part A-Molecular and BiomolecularSpectroscopy,2009,72(3):670-676.
    [123]de Paula Q A, Franco R, Ribeiro M B, et al. Analyzing Ru(III)-DMSO andRu(III)-DMS motifs in compounds used in the synthesis of theantimetastatic agents[J]. Journal of Molecular Structure,2008,891(1-3):64-74.
    [124]Ribamar J O, Silva W C, Pereira J, et al. Binding of cysteine andglutathione to Ru(II) and Ru(III) centers: Formation and productsreactivities[J]. Inorganica Chimica Acta,2006,359(9):2888-2895.
    [125]El-Shahawi M S, Shoair A F. Synthesis, spectroscopic characterization,redox properties and catalytic activity of some ruthenium(II) complexescontaining aromatic aldehyde and triphenylphosphine or triphenylarsine[J].Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2004,60(1-2):121-127.
    [126]Bozoglian F, Romain S, Ertem M Z, et al. The Ru-Hbpp water oxidationcatalyst[J]. Journal of the American Chemical Society,2009,131(42):15176-15187.
    [127]Lam W, Man W L, Leung C F, et al. Solvent effects on the oxidation ofRuIV=O to O=RuVI=O by MnO-4. Hydrogen-atom versus oxygen-atomtransfer[J]. Journal of the American Chemical Society,2007,129(44):13646-13652.
    [128]Che C M, Tang W T, Wong W T, et al. Novel ruthenium-oxo complexes ofsaturated macrocycles with nitrogen and oxygen donors and x-ray crystalstructure of trans-[Ru(IV)(L)O(H2O)][ClO4]2[J]. Journal of the AmericanChemical Society,1989,111(25):9048-9056.
    [129]Greenwood N N, Earnshaw A. Chemistry of the Elements[M]. Oxford:Pergamon Press,1997:80-110.
    [130]Grebel J E, Pignatello J J, Mitch W A. Effect of halide ions and carbonateson organic contaminant degradation by hydroxyl radical-based advancedoxidation processes in saline waters[J]. Environmental Science&Technology,2010,44(17):6822-6828.
    [131]Nanny M A, Maza J P. Noncovalent interactions between monoaromaticcompounds and dissolved humic acids: A deuterium NMR T-1relaxationstudy[J]. Environmental Science&Technology,2001,35(2):379-384.
    [132]Smejkalova D, Spaccini R, Fontaine B, et al. Binding of phenol anddifferently halogenated phenols to dissolved humic matter as measured byNMR spectroscopy[J]. Environmental Science&Technology,2009,43(14):5377-5382.
    [133]Cui Y H, Li X Y, Chen G H. Electrochemical degradation of bisphenol A ondifferent anodes[J]. Water Research,2009,43(7):1968-1976.
    [134]Wang C Y, Zhang H, Li F, et al. Degradation and mineralization ofbisphenol A by mesoporous Bi2WO6under simulated solar lightirradiation[J]. Environmental Science&Technology,2010,44(17):6843-6848.
    [135]Liu W P, Zhang H H, Cao B P, et al. Oxidative removal of bisphenol A usingzero valent aluminum-acid system[J]. Water Research,2011,45(4):1872-1878.
    [136]Adamczyk P, Paneth P. Theoretical evaluation of isotopic fractionationfactors in oxidation reactions of benzene, phenol and chlorophenols[J].Journal of Molecular Modeling,2011,17(9):2285-2296.
    [137]Gardner K A, Mayer J M. Understanding C-H bondoxidations: H· and H-transfer in the oxidation of toluene by permanganate[J]. Science,1995,269(5232):1849-1851.
    [138]Garoma T, Matsumoto S A, Wu Y, et al. Removal of bisphenol A and itsreaction-intermediates from aqueous solution by ozonation[J].Ozone-Science&Engineering,2010,32(5):338-343.
    [139]Katsumata H, Kawabe S, Kaneco S, et al. Degradation of bisphenol A inwater by the photo-Fenton reaction[J]. Journal of Photochemistry andPhotobiology A-Chemistry,2004,162(2-3):297-305.
    [140]Murugananthan M, Yoshihara S, Rakuma T, et al. Mineralization ofbisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD)electrode[J]. Journal of Hazardous Materials,2008,154(1-3):213-220.
    [141]Gozmen B, Oturan M A, Oturan N, et al. Indirect electrochemical treatmentof bisphenol A in water via electrochemically generated Fenton’s reagent[J].Environmental Science&Technology,2003,37(16):3716-3723.
    [142]Pereira R O, Postigo C, de Alda M L, et al. Removal, of estrogens throughwater disinfection processes and formation of by-products[J]. Chemosphere,2011,82(6):789-799.
    [143]Fang H, Tong W D, Shi L M, et al. Structure-activity relationships for alarge diverse set of natural, synthetic, and environmental estrogens[J].Chemical Research in Toxicology,2001,14(3):280-294.
    [144]Alum A, Yoon Y, Westerhoff P, et al. Oxidation of bisphenol A,17beta-estradiol, and17alpha-ethynyl estradiol and byproductestrogenicity[J]. Environmental Toxicology,2004,19(3):257-264.
    [145]Lin K, Liu W, Gan J. Oxidative removal of bisphenol A by manganesedioxide: Efficacy, products, and pathways[J]. Environmental Science&Technology,2009,43(10):3860-3864.
    [146]Guo Z B, Feng R. Ultrasonic irradiation-induced degradation oflow-concentration bisphenol A in aqueous solution[J]. Journal of HazardousMaterials,2009,163(2-3):855-860.
    [147]Torres R A, Nieto J I, Combet E, et al. Influence of TiO2concentration onthe synergistic effect between photocatalysis and high-frequency ultrasoundfor organic pollutant mineralization in water[J]. Applied CatalysisB-Environmental,2008,80(1-2):168-175.
    [148]Barbieri Y, Massad W A, Diaz D J, et al. Photodegradation of bisphenol Aand related compounds under natural-like conditions in the presence ofriboflavin: Kinetics, mechanism and photoproducts[J]. Chemosphere,2008,73(4):564-571.
    [149]Rodriguez E, Sordo A, Metcalf J S, et al. Kinetics of the oxidation ofcylindrospermopsin and anatoxin-A with chlorine, monochloramine andpermanganate[J]. Water Research,2007,41(9):2048-2056.
    [150]Tsai W T, Lee M K, Su T Y, et al. Photodegradation of bisphenol-A in abatch TiO2suspension reactor[J]. Journal of Hazardous Materials,2009,168(1):269-275.
    [151]Yamamoto H, Tamura I, Hirata Y, et al. Aquatic toxicity and ecological riskassessment of seven parabens: Individual and additive approach[J]. Scienceof the Total Environment,2011,410:102-111.
    [152]Wang S P, Chang C L. Determination of parabens in cosmetic products bysupercritical fluid extraction and capillary zone electrophoresis[J].Analytica Chimica Acta,1998,377(1):85-93.
    [153]Melo L P, Queiroz M. Simultaneous analysis of parabens in cosmeticproducts by stir bar sorptive extraction and liquid chromatography[J].Journal of Separation Science,2010,33(12):1849-1855.
    [154]Bledzka D, Miller J S, Ledakowicz S. Kinetic studies of n-butylparabendegradation in H2O2/UV system[J]. Ozone-Science&Engineering,2012,34(5):354-358.
    [155]Tay K S, Rahman N A, Bin Abas M R. Ozonation of parabens in aqueoussolution: Kinetics and mechanism of degradation[J]. Chemosphere,2010,81(11):1446-1453.
    [156]Gryglik D, Lach M, Miller J S. The aqueous photosensitized degradation ofbutylparaben[J]. Photochemical&Photobiological Sciences,2009,8(4):549-555.
    [157]Dahl T W, Chappaz A, Fitts J P, et al. Molybdenum reduction in a sulfidiclake: Evidence from X-ray absorption fine-structure spectroscopy andimplications for the Mo paleoproxy[J]. Geochimica Et Cosmochimica Acta,2013,103:213-231.
    [158]Hosokawa S, Nogawa S, Taniguchi M, et al. Oxidation characteristics ofRu/CeO2catalyst[J]. Applied Catalysis A-General,2005,288(1-2):67-73.
    [159]Zhang Y J, Wang J H, Yin J, et al. Enhanced catalytic activities andcharacterization of ruthenium-grafted halogenous hydroxyapatite nanorodcrystallites[J]. Journal of Physical Chemistry C,2010,114(39):16443-16450.
    [160]Choy J H, Kim J Y, Hwang S H, et al. Soft XAFS study on the4d electronicstructure of ruthenium in complex perovskite oxide[J]. International Journalof Inorganic Materials,2000,2(1):61-70.
    [161]Ressler T, Wienold J, Jentoft R E, et al. Kinetics of solid-state reactions inheterogeneous catalysis from time-resolved X-ray absorptionspectroscopy[J]. Topics in Catalysis,2002,18(1-2):45-52.
    [162]Zhao Y P, Hu J Y, Jin W. Transformation of oxidation products andreduction of estrogenic activity of17beta-estradiol by a heterogeneousphoto-Fenton reaction[J]. Environmental Science&Technology,2008,42(14):5277-5284.
    [163]Ohko Y, Iuchi K I, Niwa C, et al.17beta-estrodial degradation by TiO2photocatalysis as means of reducing estrogenic activity[J]. EnvironmentalScience&Technology,2002,36(19):4175-4181.
    [164]Valdes H, Zaror C A. Heterogeneous and homogeneous catalytic ozonationof benzothiazole promoted by activated carbon: Kinetic approach[J].Chemosphere,2006,65(7):1131-1136.
    [165]Li W W, Qiang Z M, Zhang T, et al. Kinetics and mechanism of pyruvicacid degradation by ozone in the presence of PdO/CeO2[J]. AppliedCatalysis B-Environmental,2012,113(SI):290-295.
    [166]Canosa P, Rodriguez I, Rubi E, et al. Formation of halogenated by-productsof parabens in chlorinated water[J]. Analytica Chimica Acta,2006,575(1):106-113.
    [167]von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics andproduct formation[J]. Water Research,2003,37(7):1443-1467.
    [168]Casbeer E M, Sharma V K, Zajickova Z, et al. Kinetics and mechanism ofoxidation of tryptophan by ferrate(VI)[J]. Environmental Science&Technology,2013,47(9):4572-4580.
    [169]李翔.费氏弧菌生物发光在水质毒性检测上的应用研究[D].华南理工大学.2012:5-6.
    [170]Rossner A, Snyder S A, Knappe D. Removal of emerging contaminants ofconcern by alternative adsorbents[J]. Water Research,2009,43(15):3787-3796.
    [171]la Farre M, Perez S, Kantiani L, et al. Fate and toxicity of emergingpollutants, their metabolites and transformation products in the aquaticenvironment[J]. Trac-Trends in Analytical Chemistry,2008,27(11SI):991-1007.[172]Lee Y, von Gunten U. Oxidative transformation of micropollutants duringmunicipal wastewater treatment: Comparison of kinetic aspects of selective(chlorine, chlorine dioxide, ferrate(VI), and ozone) and non-selectiveoxidants (hydroxyl radical)[J]. Water Research,2010,44(2SI):555-566.[173]Huber M M, Canonica S, Park G Y, et al. Oxidation of pharmaceuticalsduring ozonation and advanced oxidation processes[J]. EnvironmentalScience&Technology,2003,37(5):1016-1024.
    [174]Bedner M, Maccrehan W A. Transformation of acetaminophen bychlorination produces the toxicants1,4-benzoquinone andN-acetyl-p-benzoquinone imine[J]. Environmental Science&Technology,2006,40(2):516-522.
    [175]Rivas F J, Sagasti J, Encinas A, et al. Contaminants abatement by ozone insecondary effluents. Evaluation of second-order rate constants[J]. Journal ofChemical Technology and Biotechnology,2011,86(8):1058-1066.
    [176]Bisby R H, Tabassum N. Properties of the radicals formed by one-electronoxidation of acetaminophen-A pulse-radiolysis study[J]. BiochemicalPharmacology,1988,37(14):2731-2738.
    [177]Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicalsbisphenol A, ethinyl estradiol, and estradiol during UV photolysis andadvanced oxidation processes[J]. Environmental Science&Technology,2004,38(20):5476-5483.
    [178]Lee Y, Zimmermann S G, Kieu A T, et al. Ferrate (Fe(VI)) application formunicipal wastewater treatment: A novel process for simultaneousmicropollutant oxidation and phosphate removal[J]. Environmental Science&Technology,2009,43(10):3831-3838.
    [179]Li B, Zhang T. pH significantly affects removal of trace antibiotics inchlorination of municipal wastewater[J]. Water Research,2012,46(11):3703-3713.
    [180]Dodd M C, Kohler H, Von Gunten U. Oxidation of antibacterial compoundsby ozone and hydroxyl radical: Elimination of biological activity duringaqueous ozonation processes[J]. Environmental Science&Technology,2009,43(7):2498-2504.
    [181]Acero J L, Benitez F J, Real F J, et al. Chlorination and brominationkinetics of emerging contaminants in aqueous systems[J]. ChemicalEngineering Journal,2013,219:43-50.
    [182]Yang B, Ying G G, Zhang L J, et al. Kinetics modeling and reactionmechanism of ferrate(VI) oxidation of benzotriazoles[J]. Water Research,2011,45(6):2261-2269.
    [183]Hollender J, Zimmermann S G, Koepke S, et al. Elimination of organicmicropollutants in a municipal wastewater treatment plant upgraded with afull-scale post-ozonation followed by sand filtration[J]. EnvironmentalScience&Technology,2009,43(20):7862-7869.
    [184]Rodriguez-Alvarez T, Rodil R, Quintana J B, et al. Oxidation ofnon-steroidal anti-inflammatory drugs with aqueous permanganate[J].Water Research,2013,47(9):3220-3230.
    [185]Soufan M, Deborde M, Legube B. Aqueous chlorination of diclofenac:Kinetic study and transformation products identification[J]. Water Research,2012,46(10):3377-3386.
    [186]Dodd M C, Huang C H. Transformation of the antibacterial agentsulfamethoxazole in reactions with chlorine: Kinetics mechanisms, andpathways[J]. Environmental Science&Technology,2004,38(21):5607-5615.
    [187]Sharma V K, Mishra S K, Nesnas N. Oxidation of sulfonamideantimicrobials by ferrate(VI)[(FeO2-4)-O-VI][J]. Environmental Science&Technology,2006,40(23):7222-7227.
    [188]Soh L, Connors K A, Brooks B W, et al. Fate of sucralose throughenvironmental and water treatment processes and impact on plant indicatorspecies[J]. Environmental Science&Technology,2011,45(4):1363-1369.
    [189]Shu Z Q, Bolton J R, Belosevic M, et al. Photodegradation of emergingmicropollutants using the medium-pressure UV/H2O2advanced oxidationprocess[J]. Water Research,2013,47(8):2881-2889.
    [190]Bernabeu A, Palacios S, Vicente R, et al. Solar photo-Fenton at mildconditions to treat a mixture of six emerging pollutants[J]. ChemicalEngineering Journal,2012,198:65-72.
    [191]Lee Y, von Gunten U. Quantitative structure-activity relationships (QSARs)for the transformation of organic micropollutants during oxidative watertreatment[J]. Water Research,2012,46(19):6177-6195.
    [192]Calza P, Sakkas V A, Medana C, et al. Photocatalytic degradation study ofdiclofenac over aqueous TiO2suspensions[J]. Applied CatalysisB-Environmental,2006,67(3-4):197-205.[193]Deborde M, Rabouan S, Gallard H, et al. Aqueous chlorination kinetics of
    some endocrine disruptors[J]. Environmental Science&Technology,2004,38(21):5577-5583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700