环保型水泥预分解系统优化及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预分解技术是目前国际上最先进的水泥制造技术。尽管近年来我国水泥预分解技术取得了较快的发展,但在热耗、电耗及污染物如氮氧化物排放等方面同国际最先进水平仍存在一定的差距。对水泥预分解系统进行优化是实现水泥生产线节能、降耗、减少污染物排放的重要途径之一。因此开展水泥窑预分解系统节能减排技术的优化研究并将之应用于实际工程项目中,对实现水泥工业的低碳经济以及与资源环境的协调发展具有重大的现实意义。
     本文采用实验室实验、理论分析、计算机模拟研究及工程实际检测等方法对环保型水泥预分解系统进行了优化研究。主要内容如下:
     (1)采用撒料装置实验平台研究了不同结构的撒料装置及不同撒料板角度、插入深度等情况下的物料分散状况。通过数学分析的方法得知,撒料板角度为5°、插入深度为200 mm时,物料的分散性最佳。通过工程实践应用证明改进型的撒料装置能使预热器出口温度降低15~20℃。
     (2)通过旋风筒冷模实验的数据修正了计算流体动力学(CFD)计算模型中的湍流模型参数,采用雷诺应力模型(RSM)和离散相模型(DPM)对天津水泥工业设计研究院有限公司开发的六级预热器优化前后的流场、热交换效率和分离效率进行了研究。改进后的六级预热器系统总体压损降低了13.8%,系统换热效果降低1.7%,说明优化后的六级预热器系统节能减排效果更好。
     (3)通过理论分析推导得到了旋风筒阻力特性的计算公式,提出了旋风筒能量利用效率的有效能及无效能的概念,指出旋风筒开发既要考虑降低其阻力同时又要尽可能提高旋风筒的有效能量利用率。
     (4)通过实验和CFD模拟研究了燃料燃烧特性与分解炉开发设计的相关性。合理有效的分解炉既要能满足各种燃料的充分安全着火燃烧并燃尽的要求,同时又需阻力低、结构简单且运行可靠。
     (5)研究了不同煤焦还原NO的动力学,将得到的动力学参数用于分解炉模拟计算。在分解炉计算机辅助试验平台上了模拟了TTF三喷腾型分解炉采用三次风分风措施降低氮氧化物排放浓度的研究。水泥厂实际检测数据显示,三次风分风方式可降低氮氧化物排放10~36%。
The most advanced technology in modern cement industry so far is the precalcining technique in the world. Although China’s cement industry has achieved great development in recent years, there still exists a gap with the international most advanced level in heat consumption, power consumption, pollutants such as NOx emission etc. The optimization of cement precalcining system is one of the main approaches to realize energy saving, consumption reducing, and pollutant emission decreasing. As a result, research on the technology of energy saving and emission reduction of the precalcining system in cement industry and applying these technologies in practical projects are of practical significance for the cement industry to realize low-carbon economy and harmonious development with resources and environment.
     Based on the laboratory experiments, theoretical analysis, computer simulation and practical measurement in cement industry, environmentally-friendly cement precalcining system were studied thoroughly. Major contents include:
     (1) The dispersing performance of splash boxes with various structures, with dispersion plates with different angle and insertion depth and so on was carried out using the experimental platform of splash box. From the mathematical analysis results, the optimum dispersion can be obtained for the material when the dispersion plate has an angle measuring 5 degrees and the insertion depth of 200 mm. Engineering application confirms that preheater exit gas temperature is 15~20oC lower after the optimization of splash box.
     (2) The parameters for the turbulence model in the computational fluid dynamics were corrected with the data from cold condition test of cyclone. The flow field, heat exchange efficiency and separation efficiency of the six-stage preheater system developed by Tianjin Cement Industry Design and Research Institute Company Limited (TCDRI) before and after optimization were simulated and analyzed with Reynolds stress model (RSM) and discrete phase model (DPM). The computational results indicate that the pressure loss of the optimized six-stage preheater system drops by 13.8% when compared with that of the previous one, while the heat exchange efficiency decreases by 1.7%, indicating that the optimized six-stage preheater system exhibits a better energy-saving result.
     (3) Based on the theoretical analysis and derivation, a formula to calculate the pressure loss of a cyclone used for cement production has been put into forward. This paper presents concepts of effective energy and non-effective energy, dictating the energy utilization efficiency for cyclones. Both reducing the pressure loss and raising utilization efficiency of effective energy should be considered for the cyclone development.
     (4) The correlation between the combustion characteristics of fuel and the design of calciner was studied with the lab tests and CFD modeling. The requirement for a reasonable and efficient calciner is to guarantee the ignition and complete combustion for various fuels and a high burnout rate. Meanwhile low pressure loss, simple structure and high operation reliability should be compatibly considered for the calciner.
     (5) The kinetic study of NO reduction over coal chars was carried out and kinetic parameters obtained were introduced into the numerical simulation in the calciner. The NOx emission concentration for tri-spouted TTF calciner, introducing the staged tertiary air to reduce NOx emission, was simulated through the computer auxiliary test platform for calciner. The practical measuring data in cement plants show that the method of staged tertiary air can decrease NOx emission by 10~36%.
引文
[1]曾学敏.“十一五”水泥节能减排知多少[J].水泥, 2007, 11: 9~13.
    [2]韩仲琦.我国水泥工业节能减排的技术支撑[J].水泥技术, 2007, 5: 21~26.
    [3]陶从喜,彭学平,胡芝娟等.第三代5500t/d预分解系统的研究开发及应用[J].水泥技术, 2007, 3: 21~25.
    [4]张福滨.水泥窑纯低温余热发电有机工质循环技术的应用探讨[J].节能技术, 2003, 04: 23~25.
    [5]陈全德,曹辰.新型干法水泥生产技术[M].北京:中国建筑工业出版社, 1987,96:130.
    [6]徐德龙.水泥悬浮预热预分解技术理论与实践[M].北京:科学技术文献出版社, 2002 , 11~43.
    [7] FLSmidth公司. Dry process kiln systems
    [8] Polysius公司. DOPOL?’90 preheater and PREPOL calcining system
    [9]陈全德,兰明章.德国水泥工业及洪堡公司技术发展,现状与启示[J].新世纪水泥导报, 2005, 5(5): 9~13.
    [10]陶从喜,彭学平.天津院预分解技术发展的分代[J].水泥技术, 2007, 1: 22~23.
    [11]陶从喜.关于六级预热器推广应用问题的探讨[J].水泥技术, 2009, 2: 19~21.
    [12]陶从喜.低能耗型5500 t/d烧成技术装备的研究开发及应用[J].中国水泥2007, 1: 47~51.
    [13]陶从喜,胡芝娟,彭学平等.5000 t/d烧成系统技术开发[J].水泥技术, 2002, 4: 4~9.
    [14]陈涛. CDC脱氮型预热预分解系统[J].新世纪水泥导报, 2006, 3: 55.
    [15]陈涛. 5000 t/d CDC预分解系统的开发与设计[J].新世纪水泥导报, 2006, 3: 14~18.
    [16]陆庆惠,聂纪强.山东烟台东源5000t/d熟料生产线的工艺设计[J].中国水泥, 2005, 10: 47~49.
    [17]赵建涛. UCC日产万吨熟料水泥生产线的工艺设计及调试[J].新世纪水泥导报, 2005增, 10: 22~25.
    [18]蔡玉良,潘炯,郑启权等.铜陵海螺5000t/d烧成系统的技术配置与操作运行情况分析[J].水泥工程, 2003, 2: 14~20.
    [19]陈作炳.用DPM模型模拟预热器内两相流场研究[J].机械工程化与自动化, 2007, 2: 51~55.
    [20]陈作炳.旋风预热器热态性能模拟研究—风速的选择[J].机械设计与制造, 2008, 6: 110~112.
    [21]张佑林,刘伟华.旋风预热器气固两相流场的数值模拟[J].中国水泥, 2006, 8: 45~47.
    [22]张佑林,刘伟华.斜顶偏心旋风筒的数值模拟研究[J].新世纪水泥导报, 2007, 4: 7~10.
    [23]豆海建.窑尾预分解系统热态流场的数值模拟算法与工程应用[D].武汉:武汉理工大学博士学位论文, 2009.
    [24]陈作炳,李波,豆海建等.基于Fluent的旋风预热器模型热态性能的数值模拟分析[J].水泥工程, 2008, (2):15~18.
    [25]陈冬梅,王晓峰.高温级旋风筒的分离效率与预热器系统热耗关系的研究[J].中国建材装备, 1999, (3): 9~11.
    [26]张礼华,陈延信,徐德龙.高固气比旋风预热器提升管内物料分散的试验研究[J].水泥,2006, (2):19~21.
    [27]陶从喜,彭学平,胡芝娟等.TWD型分解炉的研究开发及工程应用[J].水泥, 2007, 4: 20~22.
    [28]陶从喜,彭学平,胡芝娟等.TSD型分解炉的研究开发及工程应用[J].水泥技术, 2006, 4: 25~27.
    [29]黄来,陆继东,胡芝娟等.旋喷结合分解炉内流场在不同结构和入口条件下的数值模拟[J].水泥技术, 2006, 6: 5~8.
    [30] KHD公司资料. PYROCLON? Calciners
    [31]丁苏东.低NOx型分解炉内部过程的数值模拟研究[J].中国水泥, 2007, 4: 46~50.
    [32]叶旭初.喷旋管道式分解炉内燃烧、分解过程的CFD模拟[J].南京工业大学学报, 2006, 1: 62~66.
    [33]曾汉才.燃烧与污染[M].武汉:华中理工大学出版社, 1992, 5~8.
    [34]李莉.水泥分解炉内氮氧化物释放特性及生成机理研究[硕士学位论文].广州:华南理工大学, 2010.
    [35]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学, 2003, 22(3): 47~50.
    [36]国家环境保护总局.国家质量监督检验检疫总局, GB4915-2004,中华人民共和国国家标准,北京:中国环境科学出版社出版, 2005-1-01.
    [37]吴兵.燃煤电站锅炉运行中氮氧化物排放的控制[J].电力设备, 2008, 8: 47~50.
    [38] C. P. Fenimore, Studies of fuel-nitrogen species in rich flame gases [C], The 17th Symposium on Combustion, The Combustion Institute, 1979, 661.
    [39] G. D. E. Soete, Overall reaction of NO and N2 formation from fuel nitrogen [C].The 15th Symposium on Combustion, The Combustion Institure, 1975, 1093~1102
    [40] Edgardo Coda Zabetta, Improved NO submodel for in-cylinder CRD simulation of low-and medium-speed compression ignition engines [J]. Energy&Fuels, 2001, 15: 1425~1433.
    [41]Tommy Norstrm, Comparisons of the validity of different simplified NH3-oxidation mechanisms for combustion of biomass [J]. Energy & Fuels, 2000, 14: 947~952.
    [42] H. Xu, Computational model for NO reduction by advanced reburning [J]. Energy&Fuels, 1999, 13: 411~420.
    [43] A.N.Hayhurst, A.D. Lawrence, Emissions of Nitrous Oxide from Combustion Sources, Progess in Engery and Combustion Science [J], 1992 , 18(6): 529~552
    [44] P. Brown, 11th Int. Conf. on Fluidized Bed Combustion, Montreal, Ed.Anthony E.J., ASME Book No:10312B, 1991, 719.
    [45] E. A. Bramer, 11th Int. Conf. on Fluidized Bed Combustion, Montreal, Ed.Anthony E.J., ASME Book No:10312B, 1991:701~707
    [46] M.A.Wojtowicz, 11th Int. Conf. on Fluidized Bed Combustion, Montreal, Ed.Anthony E.J., ASME Book No:10312B, 1991:1013~1020;
    [47] M.Hiltunen, 11th Int. Conf. on Fluidized Bed Combustion, Montreal, Ed.Anthony E.J., ASME Book No:10312B, 1991:687~694
    [48] A. Boemer, Emission of N2O from four different large scale circulating fluidized bed combustors [C]. 12th Int. Conf. on Fluidized Bed Combustion, ASME, 1993.
    [49] L. E. Amand, Formation of N2O in circulation formation from fluidized bed boilers [J]. Energy& Fuels, 5,1991:815~823.
    [50] R. Salzmann, Fuel staging for NO reduction in biomass combustion:Experiments and modeling [J]. Energy&Fuels, 2001, 15: 575~582.
    [51]高长明,水泥工业废气脱氮技术[J].水泥技术, 2007, 2: 19~20.
    [52] Jerry Yuan, Pirooz Darabi, Martha Salcudean, Modelling of flow, combustion, clinker formation and NOx emissions in long rotary cement kilns [J], ZKG, 2007,60(12):54-67..
    [53]Z. Wang, Effect of mineral matter on NO reduction in coal reburning process [J]. Energy&Fuel, 2007, 21: 2038~2043.
    [54]黄霞,刘辉,吴少华.选择性非催化还原(SNCR)技术及其应用前景[J].电站系统工程, 2008, 24(1): 12~14.
    [55] M. Moser, NOx reduction through a combination of“reburn and SNCR”[J]. ZKG, 2008, 61(5): 46~57.
    [56] Y. S. Mok, Nonthermal plasma-enhanced catalytic removalof nitrogen oxidesover V_2O_5/TiO_2 and Cr_2O_3/TiO_2 [J], Ind. Eng. Chem. Res., 2003, 42: 2960~2967.
    [57] A. B. Stiles, Selective catalytic reduction of NOx in the presence of oxygen [J], Ind. Eng. Chem. Res., 1994, 33: 2259~2264.
    [58]蔡小峰. SNCR-SCR烟气脱硝技术及其应用[J].电力环境保护, 2008, 24(3): 26~29.
    [59]张国华.神华煤低氧燃烧技术在锅炉运行中的应用[J].电力科学与工程, 2007, 11: 1~4.
    [60] Edgardo Coda Zabetta, Reducing NOx emissions using fuel staging, air staging, and selective noncatalytic reduction in synergy [J]. Ind. Eng. Chem. Res., 2005, 44: 4552~4561.
    [61]胡道和,徐德龙,蔡玉良.气固过程工程学及其在水泥工业中的应用[M].武汉:武汉理工大学出版社, 2003, 112~118.
    [62] K. Pant, C. T. Crowe, P. Irving, On the design of miniature cyclones for the collection of bioaerosols [J]. Powder Technol., 2002, 125(2-3): 260-265.
    [63]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社, 2004: 4~10.
    [64]何海燕,张良,刘江海等.一种新型粉体分散装置的实验研究[J].中国粉体技术, 2009, 15(6): 35~37.
    [65]任俊,卢寿慈,沈健等.超细颗粒的静电抗团聚分散[J].科学通报, 2000, 45(21): 2286~2292.
    [66]朱祖培.朱祖培水泥科技论文选[M].北京:中国建材工业出版社, 2007: 89~93.
    [67]刘述祖.水泥悬浮预热与窑外分解技术[M].武汉,武汉工业大学出版社, 1993: 14~16.
    [68]王瑞金,张凯,王刚等. Fluent技术基础与应用实例[M]. 2007.
    [69] R. M. Bowen. Theory of mixtures [M]. In A. C. Eringen, editor, Continuum Physics, pages 1~127. Academic Press, New York, 1976.
    [70] D. A. Drew, R. T. Lahey. In particulate two-phase flow [M]. Butterworth-Heinemann, Boston, 1993, p509-566.
    [71] P. A. Durbin, Separated flow computations with the k-e-v2 model [J]. AIAA Journal, 1995, 33(4): 659~664.
    [72] S. E. Elgobashi, T. W. Abou-Arab. A two-equation turbulence model for two-phase flows [J]. Phys. Fluids, 1983, 26(4): 931~938.
    [73] J. L. Ferzieger, M. Peric, Computational methods for fluid dynamics [M]. Springer-Verlag, Heidelberg, 1996.
    [74]陈作炳,陈思维,豆海建等.五级旋风预热器冷模单体流场数值研究[J].武汉理工大学学报, 2005, 27(5): 56~58.
    [75]陈作炳,李德峰,豆海建等.减阻板对五级旋风预热器冷模系统流场的影响[J].煤矿机械, 2006, 27(2): 249~251.
    [76] K. A. Pericleous. Mathematical simulation of hydrocyclone [J]. Appl. Math. Modelling, 1987, 11(4): 242~255.
    [77] A. J. Hoekstra, J. J. Derksen, H. E. A. Van Den Akker, An experimental and numerical study of turbulent swirling flow in gas cyclones [J]. Chem. Eng. Sci., 1999, 54(13): 2055~2065.
    [78] J. Y. Chen, M. X. Shi, A universal model to calculate cyclone pressure drop [J]. Powder Technol., 2007, 171(3): 184~191.
    [79] M. Sommerfeld, C. A. Ho. Numerical calculation of particle transport in turbulent wall bounded flows powder technology[J], Powder Technol., 2003, 131(1): 1~6.
    [80] A. Raoufi, M. Shams, H. Kanani, CFD Analysis of flow field in square cyclones [J]. Powder Technol., 2009, 191(3): 349~357.
    [81] J. D. McConochie, T. A. Hardy, L. B. Mason, Modelling tropical cyclone over-water wind and pressure fields [J]. Ocean Eng., 2004, 31(13): 1757~1782.
    [82] C. Cortes, A. Gil, Modeling the gas and particle flow inside cyclone separators [J]. Prog. Energy Combust. Sci., 2007, 33(5): 409~452.
    [83] J. Gimbun, T. G. Chuah, A. Fakhru'l-Razi, et al. The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study [J]. Chem. Eng. Process., 2005, 44(1): 7~12.
    [84] B. T. Zhao, Modeling pressure drop coefficient for cyclone separators: A support vector machine approach [J]. Chem. Eng. Sci., 2009, 64(19): 4131~4136.
    [85]刘淑艳,张雅,王保国.用RSM模拟旋风分离器内的三维湍流流场[J].北京理工大学学报, 2005, 25(5): 377~379.
    [86]刘子红,肖波,杨家宽.旋风分离器两相流研究综述[J].过滤与分离, 2003, 13(1): 42~45.
    [87] R. B. Xiang, K. W. Lee, Numerical study of flow field in cyclones of different height [J]. Chem. Eng. Process, 2005, 44(8): 877~883.
    [88]胡元,时铭显,周力行等.旋风分离器三维强旋湍流流动的数值模拟[J].清华大学学报(自然科学版), 2004, 44(11): 1501~1505.
    [89]李文东,王连泽.旋风分离器内流场的数值模拟及方法分析[J].环境工程, 2004, 22(2): 37~40.
    [90]蒲舸,张力,辛明道. CFBC旋风分离器气固两相流数值模拟与优化[J].工程热物理学报, 2006, 27(2): 268~270.
    [91]彭学平,陶从喜.旋风预热器阻力特性机理的研究[J].水泥, 2008, 6: 13~15.
    [92]付中斌.旋风器阻力损失分析及其低阻型旋风器的研究[J].水泥, 1993, 9:1~6.
    [93] A. K. Coker. Understand cyclone design [J]. Chem. Eng. Prog., 1993, 89 (12): 51~55.
    [94] D. F. Ciliberti, B. W. Saneaster. Fine dust collection in a rotary flow cyclone [J]. Chem. Eng. Sci., 1976, 31(6): 499-503.
    [95]谢泽,周仁兴,赵正一.旋风预热器的结构型式与气流运动[J].水泥, 1982, (11): 12~18.
    [96] C. B. Shepherd, C.E. Lapple. Flow pattern and pressure drop in cyclone dust collectors [J]. Ind. Eng. Chem., 1939, 31(8): 972~984.
    [97] J. Casal, J. M. Martinez, A better way to calculate cyclone pressure drop [J]. Chem. Eng., 1983, 90(2): 99-115.
    [98] J. Dirgo. Relationships between cyclone dimensions and performance [D]. USA: Harvard University, 1988.
    [99] W. Barth, Calculation and layout of cyclone separators based on recent investigations with aid of simplified theories of flow conditions in cyclone [J]. Brennstof-Waerme-Kraft, 1956, 8(1):1~9.
    [100] W. D. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers [J]. J. Aerosol. Sci., 1996, 27(2): 281~304.
    [101] M. I. G. Bloor, D. B. Ingham. The flow in industrial cyclones [J]. J. Fluid Mech., 1987, 178: 507~519.
    [102]陶从喜,俞为民,倪祥平.分解炉中煤粉燃尽特性的实验研究及评价[J].水泥, 2010, (7): 10~13.
    [103] A. Williams, M. Pourkashanian, P. Bysh, Modelling of coal combustion in low-NOx flames [J]. Fuel, 1994, 73(7): 1006~1019.
    [104]傅维标,郑双铭.一种计算在变氧浓度下炭/碳粒燃烧速率的简便方法[J].燃烧科学与技术, 1996, 2(2): 104~110.
    [105]傅维标,张百立.空气在煤灰球中的等效扩散系数的实验测定[J].燃烧科学与技术, 1995, 1(2): 191~195.
    [106]傅维标.煤焦燃烧反应动力学的通用规律研究[J].工程热物理学报, 1994, 15(4): 435~440.
    [107] D. Zhang, T. F. Wall, P. C. Hills, The ignition of single pulverized coal particles: mininum laser power required [J]. Fuel, 1994, 75(10): 647~655.
    [108] D. Zhang, Laser-induced ignition of pulverized fuel particles [J]. Combust. Flame, 1992, 90(22): 134~142.
    [109]顾潘,许晋源,沈红梅.煤颗粒燃烧的空隙特性研究[J].燃料化学学报, 1993, 21(4): 425~429.
    [110] P. Tiggesbaumker, H. Merz. Investigations for determining the burn-out behaviour of finegrained fuels in calciners [J]. ZKG International, 1985, 38(5): 235~238.
    [111]向银花,房倚天,黄戒介等.煤焦的燃烧特性和动力学模型研究[J].煤炭转化, 2000, 23(1): 10~13.
    [112] Y. Yu, M. Xu, H. Yao, et al. Char characteristics and particulate matter formation during Chinese bituminous coal combustion [C]. Proceedings of the Combustion Institute, 2007, 31(2): 1947~1954.
    [113]闵凡飞,张明旭.热分析在煤燃烧和热解及气化动力学研究中的应用[J].煤炭转化, 2004, 27(1): 9~12.
    [114] V. K?k M, Temperature-controlled combustion and kinetics of different rank coal samples [J]. J. Therm. Anal. Calorim, 2005, 79(1): 175~180.
    [115]徐跃年.低质烟煤的燃烧特性研究[J].煤炭转化, 1995, 18(1): 53~56.
    [116] M.V. Kok, An investigation into the thermal behaviour of coals [J]. Energy Sources, 2002, 24(10): 899~906.
    [117]姜秀民,李巨斌,丘建荣等.超细煤粉的物理特性及其对燃烧性能的影响[J].燃料化学学报, 2000, 28(2): 170~173.
    [118]姜秀民,杨海平,刘辉,等.煤粉颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报, 2002, 22(12): 142~160.
    [119]樊越胜,邹峥,高巨宝等.富氧气氛中煤粉燃烧特性改善的实验研究[J].西安交通大学学报, 2006, 40(1): 18~21.
    [120]谢峻林,何峰,宋彦保.水泥分解炉工况下煤焦的燃尽动力学过程研究[J].燃料化学学报, 2002, 30(3): 223~228.
    [121]谢峻林,何峰.水泥窑用无烟煤的催化燃烧[J].硅酸盐学报, 1998, 26(3): 792~795.
    [122] Kolyfotis Atbens E, C. G. Veyannes, Mathematical modeling of separate line precalciners (SLC) [J]. ZKG International, 1988, 41(11): 559~563.
    [123]黄来.水泥分解炉物理化学过程模拟和优化设计研究[D].武汉:华中科技大学博士学位论文, 2006.
    [124]吴君祺.分解炉炉内过程数值模拟研究[D].武汉:华中科技大学硕士学位论文, 2003.
    [125]胡芝娟.分解炉氮氧化物转化机理及其控制技术研究[D].武汉:华中科技大学博士学位论文, 2004.
    [126]叶旭初,胡道和.喷腾分解炉内热态过程的数值模型[J].南京化工学院学报, 1993, 7(15): 24~28.
    [127]黄来,陆继东,李昌军等.双喷腾分解炉内气固两相流场的数值模拟[J].硅酸盐学报, 2003, 31(8): 748~753.
    [128] D. Giddings, C. N. Eastwick, S. J. Pickering, Computational fluid dynamics applied to a cement precalciner [J]. Journal of Power and Energy, 2000, 21 (4): 269~280.
    [129]黄来,陆继东,胡芝娟等.旋喷结合分解炉内流场的数值模拟[J].燃烧科学与技术, 2003, 9(3) : 274~279.
    [130]王少平,曾扬兵,沈孟育.用RNG k-e模型数值模拟180度弯道内的湍流分离流动[J].力学学报, 1996, 28(3): 257~263.
    [131] N. Hu, Alan W. Scaroni, Calcination of pulverized limestone particles under furnace injection conditions [J]. Fuel, 1996, 75(2): 177~186.
    [132]陶从喜,彭守正,狄东仁等.带旁置旋流预燃室的组合式分解炉[P].中国专利, ZL 99 2 05795.7, 1999-03-04.
    [133]陶从喜,徐江东.带下置涡流预燃室的组合式分解炉[P].中国专利, ZL 99 2 05794.9, 1999-03-04.
    [134]陶从喜,彭学平,胡芝娟等.一种三喷腾环保型分解炉[P].中国专利, ZL 99 2 05794.9, 2008-05-04.
    [135]胡芝娟,刘志江,王世杰.水泥分解炉中煤焦燃烧的NO形成[J].硅酸盐学报, 2005, 56 (3): 545~550.
    [136] L. Huang, J. D. Lu, S. J. Wang, et al. Numerical simulation of pollutant formation in precalciner [J]. Can. J. Chem. Eng. , 2005, 83(4): 675~684.
    [137]孙建,陶从喜.天津院第三代预分解系统技术成熟运行可靠[J].中国水泥, 2009, 1: 60~62.
    [138]嵇鹰,田耀鹏,徐德龙.水泥工业NOx排放控制探讨[J].西安建筑科技大学学报:自然科学版, 2009, 41 (3): 397~403.
    [139] W. A. Hahn, F. Shadman, Effect of solid structural change on the rate of NO formation during char combustion [J]. Combust. Sci. Technol., 1983, 30 (1-6): 89~104.
    [140] C. Schonenbeck, R. Gadiou, D. Schwartz, A kinetic study of the high temperature NO–char reaction [J]. Fuel, 2004, 83(4-5): 443~450.
    [141] C. O. S?rensen, J. E. Johnsson, A. Jensen, Reduction of NO over wheat straw char [J]. Energy & Fuels, 2001, 15(6): 1359~1368.
    [142] Y. H. Li, G. Q. Lu, V. Rudolph, The kinetics of NO and N2O reduction over coal chars in fluidized-bed combustion[J]. Fuel, 1998, 53(1): 1~26.
    [143] J. E. Johnsson, Formation and reduction of nitrogen oxides in fluidized bed combustion [J]. Fuel, 1994, 73(9): 1398~1415.
    [144] Molina A, Eddings E G, Pershing D W, et al. Char Nitrogen Conversion: Implication to Emissions from Coal-fired Utility Boilers[J]. Prog. Energy Combust. Sci. , 2000, 26(4): 507~531
    [145] P. Glarborg, A. D. Jensen, J. E. Johnsson, Fuel nitrogen conversion in solid fuelfired systems[J]. Prog. Energy Combust. Sci. , 2003, 29(2): 89~113
    [146]黄来,陆继东,狄东仁等.分解炉中气体分布的数值模拟[J].化工学报, 2004, 55(7): 1161~1167.
    [147]黄来,陆继东,李伟杰等.分解炉中NO生成模拟与优化[J].化工学报, 2006, 57(11): 2624~2630.
    [148]胡芝娟,刘志江,王世杰.模拟分解炉中煤焦燃烧生成特性[J].化工学报, 2005, 56(3): 545~550.
    [149]黄来,陆继东,任合斌等.双喷腾分解炉中燃烧和分解耦合数值的模拟[J].硅酸盐学报, 2004, 32(10): 1271~1275.
    [150] Z. B. Zhao, W. Li, B.Q. Li, Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres [J]. Fuel, 2002, 81(11-12): 1559~1564.
    [151] P. F. B. Hansen, K. Dam-Johansen, J. E. Johnsson, et al. Catalytic reduction of NO and N2O on limestone during sulfur capture under fluidized bed combustion conditions [J]. Chem. Eng. Sci., 1992, 47(9-11): 2419~2424.
    [152] Y. Ohtsuka, Z. H. Wu, E. Furimsky, Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal [J]. Fuel, 1997, 76(14-15): 1361~1367.
    [153] H. Liu, K. Okazaki, Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation [J]. Fuel, 2003, 82(11): 1427~1436.
    [154] H. Stadler, D. Ristic, M. Foerster, et al. NOx-emissions from Flameless Coal Combustion in Air, Ar/O2 and CO2/O2 [C]. Proceedings of the Combustion Institute, 2009, 32(2): 3131-3138.
    [155] L. R. Coelho, J. L. T. Azevedo, M. G. Carvalho, Numerical simulation and comparison conditions [C], Proceedings of the 3rd International Symposium on Coal Combustion Science and Technology, Sep. 18-21, 1995, Beijing, China, 617~624.
    [156]J. W. Mitchell, J. M. Tarbell. A kinetic model of nitric oxide formation during pulverized coal combustion [J]. AIChE J., 1982, 28(2): 302~311.
    [157] M. Tsujimura, T. Furusawa, D. Kunii, Catalytic reduction of nitric oxide by carbon moNOxide over calcined limestone[J]. J. Chem. Eng. Jpn., 1983,16: 132~136.
    [158] J. M. Levy, L. K. Chan, A. F. Sarofim, et al. NO/char reactions at pulverized coal flame conditions [C]. 18th Symp. (Int.) on Combustion, The Combustion Institute, 1981, 111~120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700