基于解析结构的模糊控制系统设计及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1965年美国教授Zadeh提出模糊集的概念、1975年英国工程师Mamdani成功的将模糊理论应用于蒸汽机控制以来,模糊控制技术在化工、冶金、航天航空、交通运输、机器人和家用电器等各种领域得到了广泛应用。模糊控制是智能控制的一个重要分支,已经证明,它对于非线性、大滞后、无精确或无法建立数学模型的被控系统具有良好的控制效果。
     与经典控制和现代控制方法相比,模糊控制的结构具有特殊性和复杂性,因此缺乏系统化的分析和设计方法,比如模糊论域的划分、模糊子集隶属函数的设计、模糊规则的获取等问题,尤其是与系统可行性密切相关的模糊系统稳定性分析等问题。这些问题使得模糊控制器的设计处于“黑箱”状态,这样既不能对模糊系统的特性进行有效的数学分析,也不能说明模糊控制优于常规控制的本质。因此,模糊控制领域的一个研究重点是如何从模糊控制的本质出发,完善模糊控制理论,建立系统化的模糊控制设计和分析方法,特别是建立一般性的、便于工程应用的模糊控制系统化方法是摆在研究人员面前的一项迫切任务。
     模糊控制解析结构建立了模糊控制器输入-输出的明晰表达式,揭示了模糊控制的本质,为模糊控制的理论和应用研究提供了强有力的平台,是发展模糊控制理论的一条有效途径。目前,许多学者从不同的角度,研究了各种模糊控制器的解析结构,并得到了重要结论。但是,由于模糊控制器结构和参数设置的多样性和复杂性,关于模糊控制器的解析结构的研究还不够完善,特别是关于不同类型模糊控制器的解析结构研究、基于解析结构的模糊控制器系统化分析和设计以及模糊系统稳定性分析等问题需要进一步深入研究。本文从建立模糊控制系统的解析分析和设计方法、简化模糊控制器的设计过程和发挥模糊控制的工程应用价值的角度出发,基于模糊控制器的解析结构推导,探讨了模糊控制器的本质和工作机理,运用成熟的经典控制理论研究了模糊控制器设计和稳定性分析等关键问题。首先,研究了模糊系统的稳定性问题,将模糊Lyapunov函数用于T-S模糊系统的状态观测器和最优控制器的设计,并基于典型模糊控制器的解析结构,分析了Mamdani模糊控制系统的H∞鲁棒稳定性;然后,基于输入、输出隶属函数的系统化分析,提出了一种广义线性隶属函数并研究了其通用逼近性;最后,结合工业生产中常用的PID控制技术,提出了一种新模糊控制器系统化设计方法。总结全文,本文的主要研究工作如下:
     (1)将模糊Lyapunov方法用于T-S和Mamdani模糊系统的稳定性分析和设计。通过构造模糊Lyapunov函数,基于并行分布补偿原理和线性矩阵不等式,推导了T-S模糊系统的状态观测器、最优控制器的稳定性充分条件和参数化设计方法,并提出了一种带有补偿量的并行分布补偿控制器的设计方法。在此基础上,基于典型模糊控制器的解析结构,将模糊Lyapunov方法应用于模糊系统的稳定性分析,得出了一个新的判断Mamdani模糊系统H∞稳定性的充分条件。
     (2)提出了一种关于输入、输出隶属函数的系统化设计方法。系统分析了输入、输出隶属函数各个设计要素对控制系统性能的影响,为隶属函数的设计提供了理论基础。
     (3)在总结工程中常用的三角形和梯形隶属函数的基础上,提出了一种将这两种隶属函数作为特例的广义线性隶属函数。基于模糊控制器的解析结构,分析了广义线性隶属函数的结构特性,证明了输入为广义线性隶属函数的模糊控制器的解析结构是一个带有控制补偿量的全局多值继电器和局部PD(PI)控制器之和,并推导了其极限特性和非线性特点。
     (4)研究了具有广义线性输入隶属函数的Mamdani模糊控制器的通用逼近性,证明了该类模糊控制器在论域范围内能以任意精度逼近任意连续实函数,并提出了该类模糊控制器作为通用逼近器的一个充分条件。从模糊控制器通用逼近性的角度,分析和验证了所设计隶属函数的有效性。
     (5)设计了一种具有加权因子的PID型模糊控制器并提出了基于普通PID控制器参数整定模糊控制器参数的方法。首先,推导了模糊控制器的解析结构,揭示了具有加权因子PID型模糊控制器的控制本质,并基于模糊Lyapunov方法分析了具有加权因子模糊控制系统的闭环稳定性,从稳定性分析的角度证明了所设计模糊控制器的控制性能优于常规PID控制器。在此基础上,针对大惯性、大滞后等被控对象易出现积分饱和的现象,提出了一种变积分PID型模糊控制器。最后,将所设计两种模糊控制器用于过程控制实验系统的温度控制和液位控制,仿真和实验结果表明了所设计的模糊控制器设计简单、易于实现、具有较强的鲁棒性和稳定性。
Since American professor Zadeh firstly proposed the concept of fuzzy set in 1965 and English engineer Mamdani applied fuzzy theory in steamer control successfully in 1975, fuzzy control has been widely used in many fields such as chemical engineering, metallurgy, aerospace engineering, communication and transportation etc. Compared with the traditional control, it is proved that fuzzy control has a better control effect on those systems which has the features of nonlinear, big time delay, and non-mathematical model etc. It has become an important branch of intelligence control.
     Compared with the traditional control, fuzzy control lacks enough research on the systematic analysis and design, due to its special control theory and complicated structure, for example, the dividing of fuzzy universe, the design of membership function, and acquisition of fuzzy rules etc., specially, the stability analysis of fuzzy system which is relative to the feasibility of system. These problems make fuzzy controller be a“black-box”. So it is hard to mathematically analyze the characters of fuzzy systems and to explain the better nature of fuzzy control. As a result, these above shortages make the development of fuzzy control theory fall behind its application. Thus, how to make a research on fuzzy theory and systematic design method of fuzzy controller, has become an important research issue in fuzzy control field. Specially, how to establish a kind of design method for the general, applicable and engineering application of fuzzy controller, is an challengable job for designers.
     The analytical structure of fuzzy controller builds the explicit expression between input and output of fuzzy controller, and establishes the relationship between fuzzy controller and traditional PID controller. So with the analytical structure of fuzzy controller, it is possible to reveal the essence of fuzzy control. The analytical structure of fuzzy controller provides a useful theoretical tool to design and analyze fuzzy controller. At present, many researchers have proposed many kinds of analytical structures of fuzzy controllers at different perspectives and attain a lot of important results. It is valuable to deeply study on the analytical structures of the different fuzzy controllers, and specially, on the systematic analysis and design of fuzzy controllers with their analytical structures.
     In order to develop analytical theory, simplify design process and make full use of engineering application of fuzzy controller, some key issues on the design and stability analysis of fuzzy controller are researched in detail in the paper, based on the derivation of analytical structure of fuzzy controllers. Firstly, the fuzzy Lyapunov function is used in stability analysis of T-S fuzzy control systems and H∞stability of Mamdani fuzzy control systems by the analytical structure of a typical fuzzy controller. Secondly, with the discussion of input and output membership function, a kind of general linear membership function is put forward and its universal approximation is discussed. Finally, a new method for the design of fuzzy controller is presented, whose parameters are defined according to the traditional PID control technology. Simulation and experiment results manifest the effect of the researches in the paper. As a conclusion, the main contents of the paper are as follows:
     (1) Apply fuzzy Lyapunov function in the stability analysis and design of T-S and Mamdani fuzzy system. For T-S fuzzy control system, the sufficient conditions and parameters design method, for the state observer, optimal controller and a parallel distributed compensation controller with a compensator, are derived by formulating the fuzzy Lyapunov function of the fuzzy system, the parallel distributed compensation strategy and linear matrix inequality. Based on the above researches, the fuzzy Lyapunov function is adopted in the H∞stability analysis of Mamdani fuzzy system, and a new sufficient condition is derived on the basis of the analytical structure of the fuzzy controller.
     (2) A kind of systematic design method is put forward about the input and output membership function. The design factors of membership function are analyzed in detail on the basis of analytical structure of a typical fuzzy controller. And the research provides theoretical foundation for the design of fuzzy controller.
     (3) Based on the summary of the characteristic of triangle and trapezoid membership function, a kind of general linear membership function is put forward, and triangle and trapezoid membership function can be look as its special cases. It is proved that the controller with general linear membership function is the sum of a global multi-delay controller with an offset and a local PD(or PI) controller. Meanwhile, the limiting structure and nonlinear character are derived.
     (4) The universal approximation and sufficient condition of Mamdani fuzzy controller with general linear membership function is derived and proved that the controller can approximate any continuous real function with arbitrary precision in discourse. The effect of the designed membership function is verified by the research of universal approximation of fuzzy controller. (5) A kind of PID fuzzy controller with a weighted factor is designed and a systematic design method is proposed to set parameters of fuzzy controller according to the ordinary PID controller. On the basis of analytical structure of fuzzy controller, the control essence of PID fuzzy controller is revealed and the stability of fuzzy system is researched with the fuzzy Lyapunov method. These results manifest that the performance of the designed fuzzy controller is better than that of ordinary PID controller. Secondly, a kind of PID fuzzy controller with a changeable integral parameter is designed to control these systems with big inertial and delay, etc. Finally, the designed fuzzy controllers are used in temperature and level control of the process control experiment system. Simulation and experiment results show that the designed fuzzy controllers are simple and easy to be realized, and meanwhile, they have some advantages of robustness and stability.
引文
[1] L A Zadeh. Fuzzy sets in information and control. 1965,8:338-353.
    [2] E H Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEEE, 1974,121:1585-1588.
    [3] Takagi. T and Sugeno. M Fuzzy identification of systems and its applications to modeling and control. IEEE Trans.Systems,Man, and Cybernetics,1985(15):116-132.
    [4] B .Kosko. Fuzzy Engineering. New Jersey: Prentice Hall,1997.
    [5] L.X. Wang. Adaptive Fuzzy System ans Control Design and Stability Analysis. New Jersey: Prentice Hall,1994 .
    [6] Quaranta, Therese F. Fuzzy systems for simulating human-like reasoning and control. Johns H opkins APL Technical Digest(Applied Physics Laboratory). 1995(16):43-58.
    [7]李士勇.三维模糊控制系统的仿真研究.哈尔滨工业大学学报. 1987(3):129-131.
    [8]胡洋新,邵惠鹤,蒋慰孙.两种新型模糊控制器及其应用.自动化仪表,1991,12(5):7-9.
    [9] G R Chen. Conventional and fuzzy PID controllers: An overview. Int J Intelligent Control and Systems, 1996,1(2): 235-246.
    [10]刘向杰,柴天佑,张焕水.三维模糊控制器的结构研究.自动化学报,1998, 24(2): 230-235.
    [11]胡包钢,G K I Mann, R G Gosine.关于模糊PID控制器推理机维数的研究.自动化学报,1998, 24(5): 608-615.
    [12] D Misir, HA Malki, G R Chen. Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets and Systems, 1996, 79(3): 297-314.
    [13] H A Malki, D Misir, D Feigenspanet al. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time - varying loads. IEEE Trans on Control Systems Technology, 1997, 5(3): 371-378.
    [14] L X Wang. Universal approximation by hierarchical fuzzy systems. Fuzzy Sets and Systems, 1998, 93(2):223-230.
    [15]张香燕,张乃尧.一般二叉树型分层模糊系统的通用逼近性.清华大学学报(自然科学版), 2007 ,47(1):331-347.
    [16]张化光,吕剑虹,李来九.模糊义预测控制及其应用.自动化学报,1993,19(1):9-16.
    [17]张乃尧,阎平凡.神经网络与模糊控制.清华大学出版社,1998.
    [18] Haris E. Psillakis. High-Order Fuzzy Switching Neural Networks:Application to the Tracking Control of a Class of Uncertain SISO Nonlinear Systems, ICANN 2009, Part I, LNCS 5768:648–657.
    [19] Xiao-hui Li, Hui-yu Yang and Yan-jun Ren,Application of Fuzzy Genetic Algorithm in Control for Heating Furnace,Fuzzy Info. and Eng., 2009(2), AISC 62:1149–1156.
    [20] W.Yu, H.He and N.Zhang. Fuzzy Immune PID Temperature Control of HVAC Systems, 2009, Part II, LNCS 5552:1138-1144.
    [21] Georgi M. Dimirovski, Yuanwei Jing and Tao Ren. Fuzzy Immune Controller Synthesis for ABR Traffic Control in High-Speed Networks,Aspects of Soft Compu., Intel. Robo. & Ctrl.,2009: 205–222.
    [22] Antonio A. Márquez, Francisco A. Márquez and Antonio Peregrín. Rule base and adaptive fuzzy operators cooperative learning of Mamdani fuzzy systems with multi-objective genetic algorithms, Evolutionary Intelligence , 2009(2):39-51.
    [23]修智宏,任光.模糊控制的近期研究热点及分析.计算机测量与控制,2002(10):771-775.
    [24] H Ying, W Siler, J J Buckley. Fuzzy control theory: A nonlinear case. Automatica, 1990,26(3): 513-520.
    [25] H Ying. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains. Automatica, 1993(29): 1579-1589.
    [26] H Ying. A fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller. Automatica, 1993(29): 499-505.
    [27] C L Chen, S N Wang, C C Hsiehet al. Theoretical analysis of crisp-type fuzzy logic controllers using vari-oust-norm sum-gravity inference methods. IEEE Trans on Fuzzy Systems, 1998,6(1): 122-136.
    [28] H Ying. Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with un-known mathematical models. Automatica, 1994,30(7): 1185-1195.
    [29] H Ying. Analytical structure of a two-input, two-output fuzzy controller and its relation to PI and multi-level relay controllers. Fuzzy Sets and Systems, 1994(63): 21-33.
    [30]滕树杰,张乃尧.分层模糊控制器的解析表达式及自适应控制方法.清华大学学报(自然科学版). 2002, 42(9):1248-1252.
    [31]滕树杰,张乃尧,崔震华.核动力装置蒸汽发生器水位的分层模糊自适应控制.控制与决策. 2002(11): 933-937.
    [32]范醒哲,张乃尧.采用非线性规则和不均匀分布的输入输出隶属函数时典型模糊控制器的结构分析.控制理论与应用. 2002(2):48-51.
    [33]于娜,张乃尧. SISO高阶非线性系统的模糊滑模控制方法.清华大学学报(自然科学版). 2005, 45(10): 1320-1323.
    [34] Sinha, Arpita. Analytical structures for fuzzy PID controllers? Mohan, B.M. (Department of Electrical Engineering, Indian Institute of Technology). IEEE Transactions on Fuzzy Systems, 2008(16): 52-60.
    [35] Ning Wang, Xianyao Meng. Analytical Structures and Stability Analysis of Three-Dimensional Fuzzy Controllers. 2008 IEEE International Conference on Fuzzy Systems. 2008:64-69.
    [36] Y S Ding, H Ying, S H Shao. Structure and stability analysis of a Takagi-Sugeno fuzzy PI controller with application to tissue hyperthermia therapy. Soft Com-puting, 1999, 2(4): 183-190.
    [37] H Ying. The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica, 1998,34(2): 157-167.
    [38] H Ying. Constructing nonlinear variable gain con-trollers via the Takagi-Sugeno fuzzycontrol. IEEE Trans on Fuzzy Systems. 1998,6(2): 226-234.
    [39] Ying, Hao, Shao, Shihuang, Ding, Yongsheng. Typical Takagi-Sugeno PI and PD fuzzy controllers: Analytical structures and stability analysis. Information Sciences, 2003(151):245-262.
    [40] Xiang-Jie Liu, Xiaoxin Zhou. Structure Analysis of Fuzzy Controller with Gaussian Membership Function. The 14th IFAC World Congress. Beijing China. 1999:367-371.
    [41]曾珂,张乃尧,徐文立.采用伪梯形隶属函数的一类模糊控制器的结构分析.中国科学E辑. 2000(4): 320-330.
    [42] Amin H A, Ying H. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica, 2004,40(9):1551~1559.
    [43]王宁,孟宪尧,输入采用广义梯形隶属函数的两维最简模糊控制器结构分析.自动化学报, 2008(4):466-471.
    [44]张香燕,张乃尧.π型隶属函数的典型模糊控制器的解析结构.智能系统学报. 2008(1):31-37.
    [45] Zhang Xiang-yan; Zhang Nai-yao. Analytical structure of a classic fuzzy controller with pi membership functions. CAAI Transactions on Intelligent Systems.2008:31-37.
    [46] Ying H. Deriving analytical input-output relationship for fuzzy controllers using arbitrary input fuzzy sets and Zadeh fuzzy AND operator. IEEE Transactions on Fuzzy Systems, 2006,14(5):654~662.
    [47]刘向杰,周孝信,柴天佑.模糊控制研究现状与新发展.信息与控制. 1999(8):282-292.
    [48] King. P.T. The application of fuzzy control systems to industrial processes, special interest discussion on fuzzy automata and decision processes 6th IFAC world congr.1975.
    [49] Tong, RM. A analysis and control of Fuzzy systems using finite discrete relations. Int. J Control, 1978,27(2):431-440.
    [50] Brace, M et al. Theoretical and linguistic aspects of the fuzzy logic control. Automatica, 1979,15(4):553-557.
    [51]邓聚龙. Fuzzy控制的稳定性问题.模糊数学. 1983(3):71-84.
    [52] Kiszka J B, Gupta M M, NIkiforeuk P N. Energetistic Stability of Fuzzy Dynamic Systems. IEEE Trans. on Syst. Man and Cybern, 1985,15(5):583~792.
    [53] Gupta M M, Trojan G M, Kiszka J B. Controllability of Fuzzy Control Systems. IEEE Trans. on Syst. Man and Cybern, 1986, 16(4):576~582.
    [54] Takagi. T and Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man, and Cybernetics,1985(15):116-132.
    [55] Kazuo Tanaka, Michio Sugeno. Stability Analysis and Design of Fuzzy Control Systems. Fuzzy Sets and Systems, 1992(45):135~156.
    [56] K Tanaka, M Sano. Trajectory stabilization of a model car via fuzzy control. Fuzzy Sets and Systems, 1995(70):155-170.
    [57] Kazuo Tanaka, Manabu Sano. A Robust Stabilization Problem of Fuzzy Control Systems and Its Application to Backing up Control of a Truck-Trailer. IEEE Tran. on Fuzzy Systems, 1994, 2(2):119~133.
    [58] C. C. Ful and P.C.Tung, Robust stability analysis of fuzzy control systems, Fuzzy sets and systems, 1997(88): 289-298.
    [59] Maravall Darío, Zhou Changjiu, Alonso Javier. Hybrid fuzzy control of the inverted pendulum via vertical forces. International Journal of Intelligent Systems, 2005,20(2):195-211.
    [60] Tanaka K, Hori T. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2003,11(4):582-589.
    [61] Sala A, Guerra TM. Perspectives of fuzzy systems and control. Fuzzy sets and systems,2005,156(3):432-444.
    [62] Zhicheng Ji, Yinghuan Zhou. Stabilization of a class of fuzzy control systems via piecewise fuzzy Lyapunov function approach. American Control Conf. New York. 2007:4065-4070.
    [63] S. S. Farinwata et al.,“Stability analysis of the fuzzy logic controller designed by the phase portrait assignment algorithm,”in Proc. 2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, CA, Apr. 1993:1377-1382.
    [64] Mikael Johansson, Anders Rantzer, and Karl-Erik A Piecewise Quadratic Stability of Fuzzy Systems. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7(6):713-723.
    [65] Xiu, Zhihong, Wang, Yanhui; Cheng, Zhanxin. Stability analysis and design of type-II fuzzy controllers. Chinese Control and Decision Conference, 2008, CCDC 2008, Chinese Control and Decision Conference, 2008: 2054-2059.
    [66] Tanaka K, Hori T, Wang H O. A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems. IEEE Trans. on Fuzzy Systems (S1063-6706), 2003,11(4):582-589.
    [67] Lam H.K. Narimani M, Lai J.C.Y.,Leung, F.H.F. Stability analysis of T-S fuzzy-model-based control systems using fuzzy Lyapunov function. IEEE International Conference on Fuzzy Systems, 2008:931-938.
    [68]纪志成,周英焕,沈艳霞.基于分段模糊Lyapunov函数的模糊系统稳定性分析和保性能设计.自动化学报. 2008(8):721-728.
    [69] Tanaka K, Hori T. A dual design problem via multiple Lyapunov functions. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems. Melbourne, Australia:IEEE, 2001:388-391.
    [70] Tanaka K, Hori T. A fuzzy Lyapunov approach to fuzzy control system design. In: Proceddings of the American control conference. Arlington, USA: IEEE,2001:4790-4795.
    [71] Tanaka K, Hori T. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems,2003,11(4):582-589.
    [72] Wang Y, Zhang Q L, Sun z Q, Sun F C. Analysis and design of discrete fuzzy system with fuzzy Lyapunov approach. Acta Automatica Sinica, 2004,30(2):255-260.
    [73]王岩,张庆灵等.离散模糊系统分析与设计的模糊Lyapunov方法,自动化学报2004(3):255-259.
    [74]刘志康,纪志成.基于模糊Lyapunov函数的模糊不确定系统保性能控制.系统仿真学报2007(11):5178-5181.
    [75]袁宇浩,张庆灵等.基于模糊Lyapunov函数方法的模糊广义系统H∞控制.自动化学报,2008(8):930-935.
    [76] Wang W J, Sun C H. A relaxed stability criterion for T-S fuzzy discrete systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004,34(5):2155-2158.
    [77]张松涛,任光.基于分段模糊Lyapunov方法的离散模糊系统分析与设计.自动化学报. 2006(9):813-818.
    [78]曾珂,张乃尧,徐文立.典型T-S模糊系统的通用逼近性.控制理论与应用. 2001(4):294-297.
    [79]刘福才,陈超等.模糊系统万能逼近理论研究综述智能系统学报2007(2):26-32.
    [80] Wang L-X. Fuzzy Systems are Universal Approximators. Proc. of IEEE International Conference on Fuzzy Systems, San Diego, CA, 1992:1163~1170.
    [81] WANG Lixin. Fuzzy systems are universal approximators. IEEE Conf Fuzzy Systems. San Diego, USA.1992: 1163-1170.
    [82] WANG Lixin, JERRY M. Mendel fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. on Neural Networks, 1992, 3(5): 807-814.
    [83] HAO Ying. General fuzzy systems are universal approximators. Pro of the 32nd Conf on Decision and Control. San Antonio,USA. 1993: 1739-1742.
    [84] HAO Ying. Sufficient condition on general fuzzy systems as function approximatiors. Automatic, 1994, 30(3): 521-525.
    [85] Zeng X-J, Singh M G. A Relationship Between Membership Functions and Approximation Accuracy in Fuzzy Systems.IEEE Trans. on Systems, Man and Cybernetic, 1996,26(1):176~180.
    [86] Zeng X-J, Singh M G. Approximation Accuracy Analysis of Fuzzy Systems as Function Approximators. IEEE Trans. on Fuzzy Systems, 1996,4(1):44~63.
    [87]张恩勤,施颂椒,翁正新.采用三角型隶属度函数的模糊系统的插值特性.自动化学报. 2001(11):784-790.
    [88]范醒哲,张乃尧.采用非线性规则和不均匀分布的输入输出隶属函数时典型模糊控制器的结构分析.控制理论与应用. 2002(2):48-51.
    [89]孙多青,霍伟.具有任意形状隶属函数的分层模糊系统逼近性能研究.控制理论与应用, 2003, 20(3): 377-381.
    [90]邱中华,李雷. D.C.隶属函数模糊集及其应用(II)-D.C.隶属函数模糊集的万能逼近性.模糊系统与数学, 2006,20(2):50-60.
    [91] HAO Ying. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Transaction on Fuzzy Systems, 1998, 6(4): 582-587.
    [92] HAO Ying. General Takagi- Sugeno fuzzy systemswith simplified linear rule consequent are universal controllers, models and filters. IEEE Transaction on Fuzzy Systems, 1998(108):91-107.
    [93] HAO Ying. Sufficient conditions on uniform approximation of multivariate function by T-S fuzzy systems with linear rule consequent.IEEE Transaction on Systems Man and Cybernetics-Part A: Systems and Humans, 1998, 28(4): 515-520.
    [94] DING Y S, YING H, SHAO SH. Necessary Conditions on Minimal System Configurationfor General MISO Mamdani Fuzzy Systems as Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics, 2000, 30(6): 857-863.
    [95] Wang P Z, Tan S H, Song F Met al. Constructive theory for fuzzy systems.Fuzzy Sets and Systems, 1997(88):195~203.
    [96] Zeng X J, Singh M G. Approximation accuracy analysis of fuzzy systems as function approximators.IEEE Trans.on Fuzzy Systems, 1996,4(1):44~63.
    [97]曾珂,徐文立,张乃尧.特定Mamdani模糊系统的通用逼近性.控制与决策, 2000,15(4):435~438.
    [98] YINGH, DING Y S, LISK, SHAO SH. Comparison of Necessary Conditions for Typical Takagi-sugeno and Mamdani Fuzzy Systems as Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics, 1999, 29(3): 508-514.
    [99]刘慧林.具有通用逼近性的T-S模糊系统的充分条件.哈尔滨理工大学学报. 2006(5):21-23.
    [100] Zeng K, Zhang N Y, Xu W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy system as universal approximators. IEEE Trans.on Fuzzy System,2000,8(6):773~780.
    [101] Chen W T. Sufficient conditions on Fuzzy Logic Controllers as universal approximators. IEEE Trans. On Systems, Man and Cybernetics,2001,2(4):270~274.
    [102]刘福才,孙立萍,邵慧.两类模糊系统作为通用逼近器的充分条件的比较与分析.模糊系统与数学. 2006(10):102-106.
    [103] Ding Y-S, Ying H, Shao S-H. Necessary Conditions for General MISO Fuzzy Systems as Universal Approximators. Proc. 1997 IEEE Int. Conf. Systems, Man, and Cybernetics, Orlando, Florida, USA, October 12~15, 1997(4):3176~3181.
    [104] Ying H, Chen G-R. Necessary Conditions for Some Typical Fuzzy Systems as Universal Approximators. Automatica,1997(33):1333~1338.
    [105] Ying H, Ding Y-S, Li S-Ker al. Comparison of Necessary Conditions for Typical Takagi-Sugeno and Mamdani Fuzzy Systems as Universal Approximators. 1998 IEEE Int. Conf. Fuzzy systems, Anchorage, Alaska, USA, 1998:824-828.
    [106]修智宏,任光. TS-PID模糊控制器的IO稳定性分析.系统工程与电子技术. 2004(4):509-513.
    [107]修智宏,王伟.. T-S模糊系统输出反馈控制器的稳定性分析与设计.控制理论与应用. 2006(4): 508-514.
    [108] Yuying Wang and Xingshe Zhou, Fuzzy-Smith Control for QoS-Adaptive Notification Service, UIC 2007:1140–1147.
    [109]李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社. 2004
    [110]丁永生,应浩.解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策. 2000(3):129-135.
    [111] H Ying. General analytical structure of typical fuzzy controllers and their limiting structure theorems. Automatica. 1993 29(4): 1139-1143.
    [112] Wang Y, Zhang Q L, Sun Z Q. Sun F C. Analysis and design of discrete fuzzy systemfor General MISO Mamdani Fuzzy Systems as Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics, 2000, 30(6): 857-863.
    [95] Wang P Z, Tan S H, Song F Met al. Constructive theory for fuzzy systems.Fuzzy Sets and Systems, 1997(88):195~203.
    [96] Zeng X J, Singh M G. Approximation accuracy analysis of fuzzy systems as function approximators.IEEE Trans.on Fuzzy Systems, 1996,4(1):44~63.
    [97]曾珂,徐文立,张乃尧.特定Mamdani模糊系统的通用逼近性.控制与决策, 2000,15(4):435~438.
    [98] YINGH, DING Y S, LISK, SHAO SH. Comparison of Necessary Conditions for Typical Takagi-sugeno and Mamdani Fuzzy Systems as Universal Approximators. IEEE Trans. on Systems, Man and Cybernetics, 1999, 29(3): 508-514.
    [99]刘慧林.具有通用逼近性的T-S模糊系统的充分条件.哈尔滨理工大学学报. 2006(5):21-23.
    [100] Zeng K, Zhang N Y, Xu W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy system as universal approximators. IEEE Trans.on Fuzzy System,2000,8(6):773~780.
    [101] Chen W T. Sufficient conditions on Fuzzy Logic Controllers as universal approximators. IEEE Trans. On Systems, Man and Cybernetics,2001,2(4):270~274.
    [102]刘福才,孙立萍,邵慧.两类模糊系统作为通用逼近器的充分条件的比较与分析.模糊系统与数学. 2006(10):102-106.
    [103] Ding Y-S, Ying H, Shao S-H. Necessary Conditions for General MISO Fuzzy Systems as Universal Approximators. Proc. 1997 IEEE Int. Conf. Systems, Man, and Cybernetics, Orlando, Florida, USA, October 12~15, 1997(4):3176~3181.
    [104] Ying H, Chen G-R. Necessary Conditions for Some Typical Fuzzy Systems as Universal Approximators. Automatica,1997(33):1333~1338.
    [105] Ying H, Ding Y-S, Li S-Ker al. Comparison of Necessary Conditions for Typical Takagi-Sugeno and Mamdani Fuzzy Systems as Universal Approximators. 1998 IEEE Int. Conf. Fuzzy systems, Anchorage, Alaska, USA, 1998:824-828.
    [106]修智宏,任光. TS-PID模糊控制器的IO稳定性分析.系统工程与电子技术. 2004(4):509-513.
    [107]修智宏,王伟.. T-S模糊系统输出反馈控制器的稳定性分析与设计.控制理论与应用. 2006(4): 508-514.
    [108] Yuying Wang and Xingshe Zhou, Fuzzy-Smith Control for QoS-Adaptive Notification Service, UIC 2007:1140–1147.
    [109]李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社. 2004
    [110]丁永生,应浩.解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策. 2000(3):129-135.
    [111] H Ying. General analytical structure of typical fuzzy controllers and their limiting structure theorems. Automatica. 1993 29(4): 1139-1143.
    [112] Wang Y, Zhang Q L, Sun Z Q. Sun F C. Analysis and design of discrete fuzzy system
    [134] Astrom, K J,Hagglund T. PID controllers: theory, design, and tuning. 2nd ed. Reasearch Triangle Park, NC: Instrument Society of America,1995.
    [135]刘金琨.先进PID控制MATLAB仿真.电子工业出版社.2004
    [136]胡慧琴,李少远.模糊控制系统的解析结构与鲁棒性分析.上海交通大学学报, 2005(12):2029-2033.
    [137]王宁,孟宪尧.两维最简模糊控制器结构分析.信息与控制,2008(01):34-39.
    [138] Patel, Ambalal V. Mohan, B.M. Analytical structures and analysis of the simplest fuzzy PI controllers. Automatica, v 38, n 6, June, 2002:981-993.
    [139] Mohan, B.M., Sinha, Arpita Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing Journal, v 8, n 1, January, 2008:749-758.
    [140] Li, Z; Wang, WG; Shao, SH. Analytical structure of fuzzy controllers with adjusting membership function or control rules. PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, 2002(1-4):385-390.
    [141] Du, XY; Zhang, NY; Ying, H. Structure analysis and system design for a class of Mamdani fuzzy controllers. Source: INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 2008, 37(1):83-101.
    [142] Haj-Ali, Amin Adel, Ph.D. Structure analysis of Mamdani fuzzy controllers with nonlinear input fuzzy sets. Wayne State University, 2002.
    [143]郑大钟.线性系统理论.北京:清华大学出版社. 2002.
    [144] Li J, Wang H O, Niemann D. Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems. An LMI approach. Information Sciences. 2002,123(3/4):201-221.
    [145]刘亚,胡寿松.基于模糊模型的时滞不确定系统的模糊H∞鲁棒反馈控制.控制理论与应用,2004,20(4):497-502.
    [146]修志宏,任光. T-S模糊控制系统的稳定性分析及系统化设计.自动化学报. 2004,30(5):731-741.
    [147] Yoneyama J, Masahiro N. H∞control for Takagi-Sugeno fuzzy systems. International Journal of Systems Science. 2001,32(7):915-924.
    [148] Huang C P. Stability analysis of discrete singular fuzzy systems. Fuzzy Sets and Systems,2005,151(1):155-165.
    [149] Mitaim S, Kosko B. The shape of fuzzy sets in adaptive function approximation. IEEE Transactions on Fuzzy Systems. 2004,9(4):637-656.
    [150]李少远,田永青.模糊控制器的结构化分析及系统化设计方法.控制与决策. 2001,16(4):435-438.
    [151] Du X Y, Zhang N Y. Structure analysis of MISO typical fuzzy controller. Advances in System Science and Applications. 2004,4(2): 169-174.
    [152]王立新.模糊系统与模糊控制教程.北京:清华大学出版社. 2003.
    [153] Hassine R, Karray F. Approximation properties of piecewise parabolic functions fuzzy logic systems. Fuzzy Sets and Systems. 2006(157):501-515.
    [154] Chen W T. Sufficient conditions on fuzzy logic controllers as universal approximators. IEEE Trans.on Systems,Man and Cybernetics, 2001,2(4):270-274.
    [155]刘福才,马丽叶,邵慧.一类非线性T-S模糊系统的通用逼近性.自动化与仪器仪表. 2007(1):8-11.
    [156]张宇卓,李洪兴.广义递阶Mamdani模糊系统及其泛逼近性.控制理论与应用. 2006,23(3):450-454.
    [157] Zeng Xiaojun, John A. Approximation capabilities of hierarchical fuzzy systems. IEEE Transaction on Fuzzy Systems. 2005,13(5):659-672.
    [158]刘慧林,冯汝鹏.模糊系统作为通用逼近器的10年历程.控制与决策. 2004,19(4):367-371.
    [159] X J Ban, X Z Gao. Analysis of one dimensional and two dimensional fuzzy controllers. Journal of Systems Engineering and Electronics, 2006,17(2):362-373.
    [160] G Feng. A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. on Fuzzy Systems. 2006(10):676-697.
    [161] N Wang, X Y Meng. Analysis structure of three dimensional fuzzy controller. IEEE Proc. Int Conf Control and Automation, 2007:2349-2354.
    [162]方康玲,王新民,潘炼,孙灵芳,吴怀宇.过程控制与集散系统.北京:电子工业出版社. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700