微阵列比较基因组杂交在临床细胞遗传诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨微阵列比较基因组杂交(array-CGH)在临床细胞遗传诊断中应用的可行性和优越性。
     方法收集10例细胞遗传病病例,以常规G显带核型分析作为对照,同时采用全基因组array-CGH芯片对这些病例及相关亲属进行核型分析,应用荧光定量PCR(FQ-PCR)和荧光原位杂交(FISH)对芯片结果进行验证。
     结果通过比较G显带核型分析和array-CGH两种方法的检测结果发现:①array-CGH显示病例1存在18p11.21→pter缺失合并18p11.21→qter重复,断裂点位于12104527 bp - 12145199 bp之间,因此,其衍生染色体被确定为idic(18)(p11.21→qter)而非G显带核型分析诊断的i(18q);②G显带核型分析显示病例2存在一条似X染色体短臂的衍生染色体,然而,array-CGH证实此衍生染色体为Y染色体,且不存在异常,另外发现患儿8p23.1嗅觉受体/防卫素重复(ORDRs)之间(位于10245882 bp - 11676699 bp之间)存在一~ 1.43 mb的重复,与其异常表型相关。因此,病例2被诊断为一罕见的8p23.1重复综合征病例,其重复区域缩小了8p23.1重复综合征的关键区域,其心脏缺陷与GATA4基因重复相关;③G显带核型分析显示病例3的核型为涉及4, 5, 15三条染色体的复杂染色体重排(CCR),但无法确定断裂点区域(4q23, 5p15和15q23)是否存在亚显微基因组不平衡;由于方法本身的局限,array-CGH未检测出病例3的CCR,但证实CCR断裂点区域并不存在亚显微基因组不平衡,表明此CCR是平衡的;④G显带核型分析认为病例4是一单纯的4q25→qter部分三体患儿,其父亲及祖母是平衡易位t(4;10)(q25;q26)携带者;然而,通过array-CGH检测发现病例4不仅存在4q26→qter重复,断裂点被定位于4q26(位于115596658 bp - 118785802 bp之间)而非4q25,而且还存在一~ 0.54 mb的微缺失del(10)(q26.3)(位于134750859 bp - 135286223 bp之间)。QF-PCR和FISH证实患儿父亲和祖母同样存在此缺失。由于父亲及祖母表型均正常,因此可以认为del(10)(q26.3)并不导致表型异常,病例4的异常表型可仅归因于4q26→qter三体;⑤G显带核型分析显示病例5, 6的核型均正常,然而,array-CGH检测发现两病例均存在一~ 80 kb的微缺失del(4)(q13.2)(位于70183990 bp - 70264889 bp之间),此缺失区仅含有UGT2B28基因,此基因缺失与两病例患有原发性闭经和高雄激素血症相关;⑥病例7是一例未报道过的新型面骨发育不良综合征病例,G显带核型分析未发现异常,然而,array-CGH检测发现患儿存在2个微重复:dup(1)(p36.33)(位于784258 bp - 1556626 bp之间, ~ 722 kb)和dup(1)(q21.3-22)(位于153182506 bp - 153318761 bp之间, ~ 136 kb)。分别定位于这两个微重复区域中的VWA1基因和PYGO2基因可能是患儿异常表型的致病基因;⑦病例8, 9同时患有智力低下、发育迟缓、语言障碍、无法站立和行走等异常表型,类似的病例未见报道,因此,这种异常很可能是一种新型综合征。G显带核型分析显示两病例核型均无异常,但array-CGH检测发现两病例均存在~ 378 kb的微缺失del(2)(p13.2)(位于73007487 bp - 73385899 bp之间),此缺失含有9个蛋白编码基因,与两病例的异常表型相关,其中EMX1基因可能是致病基因;⑧G显带核型分析显示病例10存在一嵌合微小多余标记染色体(sSMC),但无法确定其来源和性质,只有在array-CGH检测后,此sSMC才被确定为18q21.1→pter。
     此外,array-CGH还从10例病例中检测出了大量常规G显带核型分析法无法检测到的亚显微拷贝数变化(copy number variations, CNVs),最小的仅12.87 kb。Array-CGH精确地确定了这些CNVs的大小、断裂点及基因组定位,并与相应的基因联系起来,便于性质鉴定及表型效应分析。其中5个CNVs,包括dup(8)(p23.1)(病例2)、del(4)(q13.2)(病例5, 6)、dup(1)(p36.33)(病例7)、dup(1)(q21.3-q22)(病例7)和del(2)(p13.2)(病例8, 9),很可能是病理性的,与相应病例的异常表型相关;其余的CNVs可能是良性的,不产生表型效应。FQ-PCR和FISH证实array-CGH的检测结果是准确的。
     结论由于分辨率的限制,G显带核型分析的检测能力有限,难以确定衍生染色体及标记染色体的性质,被诊断为“正常”结果的核型可能隐藏有亚显微基因组不平衡。与G显带核型分析相比,array-CGH具有高分辨率、高敏感性、高通量、快速准确、易于自动化、样品用量少等优点,能准确地进行核型分析,有利于衍生染色体和标记染色体性质的确定,有利于病理性CNVs/致病基因的筛查,有利于核型-表型的相关性研究。因此,尽管目前还存在费用和技术方面的问题,但array-CGH可以作为常规G显带核型分析的有益补充应用于临床细胞遗传诊断中。
Object: To investigate the possibility and superiority of array-based comparative genomic hybridization (array-CGH) in clinical cytogenetic diagnosis.
     Method: Both G-banding karyotype analysis (reference method) and whole genomic array-CGH were performed on 10 clinical cytogenitic disorder cases to ascertain their karyotypes, fluorescence quantitative polymerase chain reaction (FQ-PCR) and fluorescence in situ hybridization (FISH) were used to verify the results of G-banding karyotype analysis and array-CGH.
     Results: By comparing the results between G-banding karyotype analysis and array-CGH, we found that:①array-CGH indicated that 18p11.21→pter was deleted and 18p11.21→qter was duplicated in case 1, and the breakpoint was located at 18p11.21 (between 12104527 bp - 12145199 bp), thus, the derivative chromosome in case 1 was ascertained to be idic(18)(p11.21→qter) rather than i(18q) showed by G-banding karyotype analysis;②G-banding karyotype analysis showed a derivative chromosome similar to short arm of X chromosome was presented in case 2, however, array-CGH confirmed that the derivative chromosome was normal Y chromosome and indicated an ~ 1.43 mb duplication of 8p23.1 between the olfactory receptor/defensin repeats (ORDRs) (between 10245882 bp - 11676699 bp) in case 2, which was associated with the abnormal phenotypes of case 2. Therefor, the case 2 was diagnosed to be a rare 8p23.1 duplication syndrome patient, whose duplicated region reduced the 8p23.1 duplication syndrome critical region and whose heart defect was associated with GATA4 gene duplication;③G-banding karyotype analysis showed that the karyotype of case 3 was complex chromosomal rearrangement (CCR) involving 4, 5, 15 chromosomes, but it can not be determined whether there were submicroscopic genomic imbalances presented in the breakpoint regions (4q23, 5p15, and 15q23); as natural limitation, array-CGH could not detect the CCR, but confirmed that no submicroscopic genomic imbalances presented in the breakpoint regions, indicating the CCR was balanced;④G-banding karyotype analysis showed that case 4 was a pure 4q25→qter partial trisomy patient, both her father and grandmother were balanced translocation t(4;10)(q25;q26) carriers; however, array-CGH not only indicated that 4q26→qter was duplicated in case 4, the breakpoint was located at 4q26 (between 115596658 bp - 118785802 bp) rather than 4q25, but also detected an ~ 0.54mb microdeletion del(10)(q26.3) (between 134750859 bp - 135286223 bp) from the case 4. QF-PCR and FISH confirmed that del(10)(q26.3) was also presented in her father and grandmother. Because the phenotypes of both father and grandmother were normal, it seem that no phenotypic effect was produced by del(10)(q26.3), therefor, the abnormal phenotypes of case 4 could only be attributed to 4q26→qter trisomy;⑤G-banding karyotype analysis showed that both karyotypes of cases 5, 6 were normal, however, array-CGH detected an ~ 80 kb microdeletion del(4)(q13.2) (between 70183990 bp - 70264889 bp) from both cases, this deletion only contains UGT2B28 gene, the deletion of which was associated with two patients’primary amenorrhea and hyperandrogenism;⑥case 7 might be a new type of acrofacial dysostosis syndrome patient, G-banding karyotype analysis was normal, however, two microduplications were detected by array-CGH: dup(1)(p36.33)(between 784258 bp - 1556626 bp, ~ 722 kb) and dup(1)(q21.3-22)(between 153182506 bp - 153318761 bp, ~ 136 kb). Two genes, PYGO2 and VWA1, located in both duplicated regions repectively, may be the pathogenic genes of patient’s abnormal phenotypes;⑦both cases 8, 9 suffered from mental retardation, developmental delay, speech impairment, standing and walking disability, no similar cases have been reported, which means this condition might be a new syndrome. No abnormalities were determined by G-banding karyotype analysis, but array-CGH detected a microdeletion del(2)(p13.2) (between 73007487 bp - 73385899 bp, ~ 378 kb) from both cases. This deletion, containing 9 protein coding genes, was associated with the abnormal phenotypes of both cases, the EMX1 gene might be the pathogenic gene;⑧G-banding karyotype analysis indicated a mosaic small supernumerary marker chromosome (sSMC) in case 10, but the origin and characteristics could not be determined, only after array-CGH analysis, this sSMC was ascertained to be 18q21.1→pter.
     In addition, array-CGH also detected a large number of submicroscopic copy number variations (CNVs) undetectable by G-banding karyotype analysis from 10 cases, the minimal was only 12.87 kb. The sizes, breakpoints and genomic locations of these CNVs were accurately determined by array-CGH, which contributed to the connection between these CNVs and corresponding genes and facilitated the characteristics identification and phenotypic effects analysis of CNVs. Among these CNVs, 5 CNVs, including dup(8)(p23.1) (case 2), del(4)(q13.2) (cases 5, 6), dup(1)(p36.33) (case 7), dup(1)(q21.3-q22) (case 7) and del(2)(p13.2) (cases 8, 9), were potential pathogenic CNVs and may be association with abnormal phenotypes of corresponding cases; the rest of CNVs might be benign and did not produce phenotypic effects. FQ-PCR and FISH confirmed that the results of array-CGH were accurate.
     Conclusions: Due to limited resolution, the detectivity of G-banding karyotype analysis is unsatisfactory, so that it is difficult for G-banding karyotype analysis to determine the derivative chromosomes and marker chromosomes, and the "normal" results diagnosed by G-banding karyotype analysis may be unreliable and posses submicroscopic genomic imbalances. Compared with conventional cytogenetic technique, array-CGH has many advantages. Array-CGH can be comprehensive (genome-wide), high resolution, sensitive, rapid, accurate, amenable to automation, and less sample demand, which facilitates accurately determining karyotype, identifying derivative chromosome, screening out pathogenic CNVs/genes and investigating karyotype-phenotype correlation. Although there are still the cost and technical problems, array-CGH can serve as a useful complement for G-banding to be used in the clinical cytogenetic diagnosis.
引文
[1] Lejeune J, Gautier M, Turpin R. Study of somatic chromosomes from 9 mongoloid children[J]. C R Hebd Seances Acad Sci. 1959, 248(11):1721–1722.
    [2] Jacobs PA, Baikie AG, Court Brown WM, et al. The somatic chromosomes in mongolism[J]. Lancet. 1959, 1(7075): 710
    [3] Gordon RR. The cri du chat syndrome[J]. Dev Med Child Neurol. 1965, 7(4): 423-5.
    [4] Verma RS, Dosik H, Lubs HA. Size variation polymorphisms of the short arm of human acrocentric chromosomes determined by R-banding by fluorescence using acridine orange (RFA) [J]. Hum. Genet. 1977, 38(2): 231–234.
    [5] Edwards A, Civitello A, Hammond HA, et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats[J]. Am. J. Hum. Genet. 1991, 49(4): 746–756.
    [6] Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science.1998, 280(5366): 1077–1082.
    [7] Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome[J]. Nat. Genet. 2004, 36(9): 949–951.
    [8] Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome[J]. Science. 2004, 305(5683): 525–528.
    [9] Scherer SW, Lee C, Birney E, et al. Challenges and standards in integrating surveys of structural variation[J]. Nat. Genet. 2007, 39 (7 Suppl): S7–S15.
    [10] Lee C, Iafrate AJ, Arthur RB. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders[J]. Nat Genet. 2007, 39 (7 Suppl): 48-54.
    [11] Zahir F, Friedman JM. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility[J]. Clin Genet. 2007, 72 (4): 271-287.
    [12] Herrera L, Kakati S, Gibas L, et al. Gardner syndrome in a man with an interstitial deletion of 5q[J]. Am. J. Med. Genet. 1986, 25(3): 473–476.
    [13] Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism[J]. Science. 2007, 316(5823): 445–49.
    [14] Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associatedwith schizophrenia[J]. Nature. 2008, 455(7210): 232–36.
    [15] McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease[J]. Nat Genet. 2008, 24(9): 24.
    [16] Hollox EJ, Huff meier U, Zeeuwen PL, et al. Psoriasis is associated with increased beta-defensin genomic copy number[J]. Nat Genet. 2008, 40(1): 23–25.
    [17] Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity[J]. Nat Genet. 2007, 39(6): 721–23.
    [18] Blauw HM, Veldink JH, van Es MA, et al. Copy number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen[J]. Lancet Neurol. 2008, 7(4): 319–26.
    [19] Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science. 2005, 307(5714): 1434–40.
    [20] Kuhn L, Schramm DB, Donninger S, et al. African infants’CCL3 gene copies influence perinatal HIV transmission in the absence of maternal nevirapine[J]. AIDS. 2007, 21(13): 1753–61.
    [21] Ahuja SK, Kulkarni H, Catano G, et al. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals[J]. Nat Med. 2008, 14(4): 413–20.
    [22] Slager RE, Newton TL, Vlangos CN, et al. Mutations in RAI1 associated with Smith–Magenis syndrome[J]. Nat. Genet. 2003, 33(4): 466–468.
    [23] Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome[J]. Nat. Genet. 1997, 15(1): 70–73.
    [24] Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice[J]. Nature. 2001, 410(6824):97–101.
    [25] Barber JC, Maloney VK, Huang S, et al. 8p23.1 duplication syndrome; a novel genomic condition with unexpected complexity revealed by array CGH[J]. Eur J Hum Genet. 2008, 16(1):18–27.
    [26] Lisa GS, Bassem AB. A cytogeneticist's perspective on genomic microarrays[J]. Human Reproduction Update. 2004, 10(3): 221-226.
    [27] Baart EB, Martini E, Van Opstal D. Screening for aneuploidies of ten different chromosomes in two rounds of FISH: A short and reliable protocol[J]. Prenat Diagn. 2004, 24(12): 955-961.
    [28] Reddy UM, Mennuti MT. Incorporating first-trimester Down syndrome studies into prenatal screening: Executive summary of the National Institute of Child Health and Human Development workshop[J]. Obstet Gynecol. 2006, 107(1): 167-173.
    [29] Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J]. Nucleic Acids Res. 2002, 30(12): e57.
    [30] Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors[J]. Science. 1992, 258(5083): 818-821.
    [31] Locke DP, Segraves R, Nicholls RD. BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications[J]. J Med Genet. 2004, 41(3): 175-182.
    [1] Zahir F, Friedman JM. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility[J]. Clin Genet. 2007, 72 (4): 271-287.
    [2] Herrera L, Kakati S, Gibas L, et al. Gardner syndrome in a man with an interstitial deletion of 5q[J]. Am. J. Med. Genet.1986, 25(3): 473–476.
    [3] Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism[J]. Science. 2007, 316(5823): 445–49.
    [4] Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia[J]. Nature. 2008, 455(7210): 232–36.
    [5] McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease[J]. Nat Genet. 2008, 24(9): 24.
    [6] Hollox EJ, Huff meier U, Zeeuwen PL, et al. Psoriasis is associated with increased beta-defensin genomic copy number[J]. Nat Genet. 2008, 40(1): 23–25.
    [7] Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity[J]. Nat Genet. 2007, 39(6): 721–23.
    [8] Blauw HM, Veldink JH, van Es MA, et al. Copy number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen[J]. Lancet Neurol. 2008, 7(4): 319–26.
    [9] Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science. 2005, 307(5714): 1434–40.
    [10] Slager RE, Newton TL, Vlangos CN, et al. Mutations in RAI1 associated with Smith–Magenis syndrome[J]. Nat. Genet. 2003, 33(4): 466–468.
    [11] Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome[J]. Nat. Genet. 1997, 15(1): 70–73.
    [12] Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice[J]. Nature. 2001, 410(6824): 97–101.
    [13] Barber JC, Maloney VK, Huang S, et al. 8p23.1 duplication syndrome; a novel genomic condition with unexpected complexity revealed by array CGH[J]. Eur J Hum Genet[J]. 2008, 16(1):18–27.
    [14] Rickman L, Fiegler H, Shaw-Smith C, et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet[J]. 2006, 43(4): 353-361.
    [15] Fuhrmann C, Schmidt-Kittler O, Stoecklein NH, et al. High-resolution array comparative genomic hybridization of single micrometastatic tumor cells[J]. Nucleic Acids Res. 2008, 36(7): e39.
    [16] Lin CC, Li YC, Liu PP, et al. Identification and characterization of a new type of asymmetrical dicentric chromosome derived from a single maternal chromosome 18[J]. Cytogenet Genome Res. 2007, 119(3-4): 291–296.
    [17] Wulfsberg EA, Sparkes RS, Klisak IJ, et al. Trisomy 18 phenotype in a patient with an isopseudodicentric 18 chromosome[J]. Med. Genet.1984, 21(2):151–153.
    [18] Kohlhase J, Hausmann S, Stojmenovic G, et al. SALL3, a new member of the human spalt-like gene family, maps to 18q23[J]. Genomics, 1999, 62 (2): 216–222.
    [19] Barber J C, Maloney V K, Huang S, et al. 8p23.1 duplication syndrome; a novel genomic condition with unexpected complexity revealed by array CGH[J]. Eur J Hum Genet. 2008, 16(1):18-27
    [20] Pichon B, Vankerckhove S, Bourrouillou G, et al. A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly [J]. Eur J Hum Genet. 2004, 12(5): 419–421.
    [21] Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease [J]. Am J Hum Genet. 2005, 76(1): 8–32.
    [22] Gribble SM, Prigmore E, Burford DC, et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes [J]. J Med Genet. 2005, 42(1): 8–16.
    [23] Tyson C, McGillivray B, Chijiwa C, et al. Elucidation of a cryptic interstitial 7q31. 3 deletion in a patient with a language disorder and mild mental retardation by array-CGH [J]. Am J Med Genet. 2004, 129A(3): 254–260.
    [24] Borg K, Nowakowska B, Obersztyn E, et al. Complex Balanced Translocation t(1;5;7)(p32.1;q14.3;p21.3) and Two Microdeletions del(1)(p31.1p31.1) and del(7)(p14.1p14.1) in a Patient With Features of Greig Cephalopolysyndactyly andMental Retardation [J]. Am J Med Genet. 2007, 143A(22): 2738-2743.
    [25] Cheung SW, Shaw CA, Yu W, et al. Development and validation of a CGH microarray for clinical cytogenetic diagnosis[J]. Genet Med. 2005, 7(6): 422–432.
    [26] Lukusa T, Fryns JP. Pure distal monosomy 10q26 in a patient displaying clinical features of Prader-Willi syndrome during the infancy and distinct behavioural phenotype in adolensence[J]. Genet Couns. 2000, 11(2): 119-26.
    [27] Martin CL, Waggoner DJ, Wong A, et al: "Molecular rulers" for calibrating phenotypic effects of telomere imbalance[J]. J Med Genet. 2002, 39(10): 734–40.
    [28] Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11,688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities[J]. J Med Genet. 2005, 43(6): 478–489.
    [29] Balikova I, Menten B, de Ravel T, et al. Subtelomeric imbalances in phenotypically normal individuals[J]. Hum Mutat. 2007, 28(10): 958–67.
    [30] Kowalczyk M, Srebniak M, Tomaszewska A. Chromosome abnormalities without phenotypic consequences[J]. J Appl Genet. 2007, 48(2):157–66.
    [31] Hum DW, Bélanger A, Lévesque E, et al. Characterization of UDP-glucuronosyltransferases active on steroid hormones[J]. Steroid Biochem Mol Biol. 1999, 69(1-6): 413–23.
    [32] Lévesque E, Turgeon D, Carrier JS, et al. Isolation and characterization of the UGT2B28 cDNA encoding a novel human steroid conjugating UDP-glucuronosyltransferase[J]. Biochemistry. 2001, 40(13): 3869–81.
    [33] Hotchkiss AK, Lambright CS, Ostby JS, et al. Prenatal testosterone exposure permanently masculinizes anogenital distance, nipple development, and reproductive tract morphology in female Sprague-Dawley rats[J]. Toxicol Sci. 2007, 96(2): 335–45.
    [34] Vandenbergh JG, Huggett CL. The anogenital distance index, a predictor of the intrauterine position effects on reproduction in female house mice[J]. Lab. Anim. Sci 1995; 45(5): 567–573.
    [35] Ansart-Franquet H, Houfflin-Debarge V, Ghoumid J, et al. Prenatal diagnosis of Nager syndrome in a monochorionic-diamniotic twin pregnancy[J]. Prenat Diagn. 2009, 29(2):187-9.
    [36] Overell JR, Willison HJ. Recent developments in Miller Fisher syndrome andrelated disorders. Curr Opin Neurol[J]. 2005, 18(5):562-6.
    [37] Fontaine G, Farriaux JP, Delattre P, et al. Familial case of the syndrome of ectrodactyly and mandibulo-facial dysostosis[J]. J Genet Hum. 1974, 22(4): 289-307.
    [38] Pilotto RF, Marcallo FA, Opitz JM. Study of a child with an“idiopathic”malformation/mental retardation syndrome[J]. Birth Defects Orig Artic Ser. 1975, 11(2): 51-53.
    [39] Kelly TE, Cooke RJ, Kesler RW. Acrofacial dysostosis with growth and mental retardation in three males, one with simultaneous Hermansky-Pudlak syndrome[J]. Birth Defects Orig Artic Ser. 1977,13(3B): 45-52.
    [40] Rodriguez JI, Palacios J, Urioste M. New acrofacial dysostosis syndrome in 3 sibs[J]. Am J Med Genet. 1990, 35(4): 484–489.
    [41] Fitzgerald J, Tay Ting S, Bateman JF. WARP is a new member of the von Willebrand factor A-domain superfamily of extracellular matrix proteins[J]. FEBS Lett. 2002(1-3), 24: 61-6.
    [42] Allen JM, Bateman JF, Hansen U, et al. WARP is a novel multimeric component of the chondrocyte pericellular matrix that interacts with perlecan[J]. J Biol Chem. 2006, 281(11): 7341-9.
    [43] Allen JM, Brachvogel B, Farlie PG, et al. The extracellular matrix protein WARP is a novel component of a distinct subset of basement membranes[J]. Matrix Biol. 2008, 27(4): 295-305.
    [44] Belenkaya TY, Han C, Standley HJ, et al. Pygopus Encodes a nuclear protein essential for wingless/Wnt signaling[J]. Development. 2002, 129(17): 4089-101.
    [45] Mani P, Jarrell A, Myers J et al. Visualizing canonical Wnt signaling during mouse craniofacial development[J]. Dev Dyn. 2010, 239(1): 354-63.
    [46] Kawahara A, Dawid IB. Developmental expression of zebrafish emx1 during early embryogenesis[J]. Gene Expr Patterns. 2002, 2(3-4): 201-6.
    [47] Bishop KM, Rubenstein JL, O'Leary DD. Distinct Actions of Emx1, Emx2, and Pax6 in Regulating the Specification of Areas in the Developing Neocortex[J]. J Neurosci. 2002, 22(17):7627-38.
    [48] Chan CH, Godinho LN, Thomaidou D, et al. Emx1 is a Marker for Pyramidal Neurons of the Cerebral Cortex[J]. Cereb Cortex. 2001, 11(12):1191-8.
    [49] Guo H, Christoff JM, Campos VE, et al. Normal Corpus Callosum in Emx1 MutantMice with C57BL/6 Background[J]. 2000, 276(2): 649-53.
    [50] Cecchi Cand, Boncinelli E. Emx homeogenes and mouse brain development[J]. Trends Neurosci. 2000, 23(8): 347-52.
    [51] Cao BJ, Li Y. Reduced anxiety- and depression-like behaviors in Emx1 homozygous mutant mice[J]. Brain Res. 2002, 937(1-2): 32-40.
    [52] Hong SM, Liu Z, Fan Y, et al. Reduced hippocampal neurogenesis and skill reaching performance in adult Emx1 mutant mice[J]. Exp Neurol. 2007, 206(1):24-32.
    [53] Sung PL, Chang SP, Wen KC,et al. Small Supernumerary Marker Chromosome Originating From Chromosome 10 Associated With an Apparently Normal Phenotype[J]. Am J Med Genet A. 2009, 149A(12):2768-74.
    [54] Buckton KE, Spowart G, Newton MS, et al. Forty four probands with an additional‘‘marker’’chromosome[J]. Hum Genet. 1985, 69(4): 353–370.
    [55] Crolla JA, Long F, River H, et al. FISH and molecular study of autosomal supernumerary marker chromosomes excluding those derived from chromosomes 15 and 22. I. Results of 26 new cases[J]. Am J Med Genet. 1998, 75(4):355–366.
    [56] Starke H, Nietzel A, Weise A, et al. Small supernumerary marker chromosomes (SMCs): Genotype-phenotype correlation classification[J]. Hum Genet. 2003, 114(1):51–67.
    [57] Rodríguez L, Liehr T, Mrasek K, et al. Small supernumerary chromosome marker generating complete and pure trisomy 18p, characterized by molecular cytogenetic techniques and review[J]. Am J Med Genet A. 2007,143A(22):2727-32.
    [58] Mabboux P, Brisset S, Aboura A,et al.Pure and complete trisomy 18p due to a supernumerary marker chromosome associated with moderate mental retardation[J]. Am J Med Genet A. 2007,143(7):727-33.
    [59] Chen CP, Chern SR, Lee CC, et al. Isochromosome 18q in a fetus with congenital megacystis, intra-uterine growth retardation and cloacal dysgenesis sequence[J]. Prenat Diagn. 1998, 18(10): 1068-1074.
    [1] Lee C, Iafrate AJ , Arthur RB. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders[J]. Nat Genet. 2007, 39(7 Suppl): 48-54.
    [2] Zahir F, Friedman JM. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility[J]. Clin Genet. 2007, 72(4): 271-287.
    [3] Gajecka M, Mackay KL, Shaffer LG. Monosomy 1p36 deletion syndrome[J]. Am J Med Genet C Semin Med Genet. 2007, 145(4): 346-356.
    [4] Sharp AJ, Mefford HC, Li K, et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures[J]. Nat Genet. 2008, 40(3): 322-328.
    [5] Lisa GS, Bassem AB. A cytogeneticist's perspective on genomic microarrays[J].Human Reproduction Update. 2004, 10(3): 221-226.
    [6] Baart EB, Martini E, Van Opstal D. Screening for aneuploidies of ten different chromosomes in two rounds of FISH: A short and reliable protocol[J]. Prenat Diagn. 2004, 24(12): 955-961.
    [7] Reddy UM, Mennuti MT. Incorporating first-trimester Down syndrome studies into prenatal screening: Executive summary of the National Institute of Child Health and Human Development workshop[J]. Obstet Gynecol. 2006, 107(1): 167-173.
    [8] Schouten JP, McElgunn CJ, Waaijer R,et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J]. Nucleic Acids Res. 2002, 30(12): e57.
    [9] Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors[J]. Science. 1992, 258(5083): 818-821.
    [10] Locke DP, Segraves R, Nicholls RD. BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications[J]. J Med Genet. 2004, 41(3): 175-182.
    [11] Rickman L, Fiegler H, Shaw-Smith C, et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH[J]. J Med Genet. 2006, 43(4): 353-361.
    [12] Fuhrmann C, Schmidt-Kittler O, Stoecklein NH, et al. High-resolution array comparative genomic hybridization of single micrometastatic tumor cells[J]. Nucleic Acids Res. 2008, 36(7): e39.
    [13] Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome[J]. Nature. 2006, 444(7118): 444-454.
    [14] Shaffer LG, Kashork CD, Saleki R, et al. Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases[J]. J Pediatr. 2006, 149(1): 98-102.
    [15] Shaffer LG, Bejjani BA, Torchia B, et al. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future[J]. Am J Med Genet C Semin Med Genet. 2007, 145(4): 335-345.
    [16] De Gregori M, Ciccone R, Magini P, et al. Cryptic deletions are a common finding in "balanced" reciprocal and complex chromosome rearrangements: a study of 59patients[J]. J Med Genet. 2007, 44(12): 750-762.
    [17] South ST, Whitby H, Battaglia A, et al. Comprehensive analysis of Wolf-Hirschhorn syndrome using array CGH indicates a high prevalence of translocations[J]. Eur J Hum Genet. 2008, 16(1): 45-52.
    [18] Murthy SK, Nygren AO, El Shakankiry HM, et al. Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and speech impairment[J]. Cytogenet Genome Res. 2007, 116(1-2): 135-140.
    [19] Ballif BC, Kashork CD, Saleki R, et al. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization[J]. Prenat Diagn. 2006, 26(4): 333-339.
    [20] Ballif BC, Hornor SA, Suipizio SG, et al. Development of a high-density pericentromeric region BAC clone set for the detection and characterization of small supernumerary marker chromosomes by array CGH[J]. Genet Med. 2007, 9(3): 150-162.
    [21] Feenstra I, Vissers LE, Orsel M, et al. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array CGH: an update of the phenotypic map[J]. Am J Hum Genet A. 2007, 143(16): 1858-1867.
    [22] Klein OD, Cotter PD, Moore MW, et al. Interstitial deletions of chromosome 6q: genotype-phenotype correlation utilizing array CGH[J]. Clin Genet. 2007, 71(3): 260-266.
    [1] Lisa GS, Bassem AB. A cytogeneticist's perspective on genomic microarrays[J]. Human Reproduction Update. 2004, 10(3): 221-226.
    [2] Ishkanian AS, Malloff CA, Watson SK, et al. A tiling resolution DNA microarray with complete coverage of the human genome[J]. Nat Genet. 2004, 36(3): 299-303.
    [3] Snijders AM, Pinkel D, Albertson DG. Current status and future prospects of array-based comparative genomic hybridisation[J]. Brief Funct Genomic Proteomic. 2003, 2(1): 37-45.
    [4] Antoine MS, Daniel P, Donna GA. Current status and future prospects of array-based comparative genomic hybridization[J]. Brief Funct Genomic Proteomic. 2003, 2(1): 37-45.
    [5] Snijders AM, Nowak N, Segraves R, et al. Assembly of microarrays for genome-wide measurement of DNA copy number by CGH[J]. Nature Genet. 2001, 29: 263-264.
    [6] Wessendorf S, Fritz B, Wrobel G, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization[J]. Lab. Invest. 2002, 82(1): 47-60.
    [7] Bauke Y, Paul van den IJssel, Beatriz C. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH)[J]. Nucleic Acids Research. 2006, 34(2): 445-450.
    [8] Pollack JR, Perou CM, Alizadeh AA. Genome-wide analysis of DNA copy number changes using cDNA microarrays[J]. Nat. Genet. 1999, 23(1): 41-46.
    [9] Locke DP, Segraves R, Nicholls RD. BAC microarray analysis of 15q11–q13 rearrangements and the impact of segmental duplications[J]. J Med Genet. 2004, 41(3): 175-182.
    [10] Zhao X, Li C, Paez JG. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays[J]. Cancer Res. 2004, 64(9): 3060-3071.
    [11] Brennan C, Zhang Y, Leo C,et al. High-resolution global profiling of genomic alterations with long oligonucleotide microarray[J]. Cancer Res. 2004, 64(14): 4744-4748.
    [12] Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation[J]. Genome Res. 2003, 13(10): 2291-2305.
    [13] Lupski JR. Structural variation in the human genome[J]. N Engl J Med. 2007, 356(11):1169-1171.
    [14] Ballif BC, Rorem E, Sundin K,et al. Detection of low level mosaicism by array CGH in routine diagnostic specimens[J]. Am J Med Genet A. 2006, 140(24): 2757–2767.
    [15] Qiao Y, Liu XD, Chansonette H, et al. Large-scale copy number variants (CNVs): Distribution in normal subjects and FISH/real-time qPCR analysis[J]. BMC Genomics. 2007, 8: 167.
    [16] Lee C, Iafrate AJ, Arthur RB. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders[J]. Nat. Genet. 2007, 39(7 Suppl): 48-54.
    [17] Rassekh SR, Chan S, Harvard C, et al. Screening for submicroscopic chromosomal rearrangements in Wilms tumor using whole-genome microarrays[J]. Cancer Genet Cytogenet. 2008, 182(2): 84-94.
    [18] Idbaih A, Marie Y, Lucchesi C, et al. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas[J]. Int J Cancer. 2008, 122(8):1778-86.
    [19] Christiaan K, Henne H, Jeroen DR, et al. Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data[J]. Nucleic Acids Research. 2008, 36(2): e13.
    [20] Fiegler H, Geigl JB, Langer S, et al. High resolution array-CGH analysis of single cells[J]. Nucleic Acids Research. 2007, 35(3): e15.
    [21] De Gregori M, Ciccone R, Magini P, et al. Cryptic deletions are a common finding in "balanced" reciprocal and complex chromosome rearrangements: a study of 59 patients[J]. J Med Genet. 2007, 44(12): 750-62.
    [22] Caselli R, Speciale C, Pescucci C,et al. Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH[J]. J Hum Genet. 2007, 52(6): 535-42.
    [23] Rickman L, Fiegler H, Shaw-Smith C, et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH[J]. J Med Genet. 2006, 43(4): 353-61.
    [24] Ballif BC, Hornor SA, Sulpizio SG, et al. Development of a high-density pericentromeric region BAC clone set for the detection and characterization of small supernumerary marker chromosomes by array CGH[J].Genet Med, 2007, 9(3): 150-62.
    [25] Ballif BC, Kashork CD, Saleki R, et al. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization[J].Prenat Diagn, 2006, 26(4): 333-9.
    [26] Redon R, Ishikawa S, Fitch KR,et al. Global variation in copy number in the human genome[J]. Nature, 2006, 444(7118): 444–454.
    [27] Park JK, Lee JI, Jo HC, et al. Molecular cytogenetic investigation of a balanced complex chromosomal rearrangement carrier ascertained through a neonate with partial trisomies of 13 and 22[J]. Am J Med Genet A, 2007, 143(13): 1502-9.
    [28] Locke DP, Segraves R, Carbone L,et al. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization[J]. Genome Res,2003 ,13(3): 347-57.
    [29] Fortna A, Kim Y, MacLaren E,et al. Lineage-specific gene duplication and loss in human and great ape evolution[J]. PLoS Biol, 2004, 2(1): E207.
    [30] Dumas L, Kim YH, Karimpour-Fard A,et al. Gene copy number variation spanning 60 million years of human and primate evolution[J]. Genome Research, 2007, 17(9): 1266-1277.
    [31] Vissers LE, Veltman JA, van Kessel AG, et al. Identification of disease genes by whole genome CGH arrays[J]. Human Molecular Genetics, 2005, 14(2): 215-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700