纳米氧化锌的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是当今世界尖端技术之一,纳米材料科学是集凝聚态物理学、胶体化学、配位化学、化学反应动力学、表面和界面化学等学科为一体的交叉科学。由于其所具有的特殊结构使得纳米材料具有了许多普通材料不具有的特殊性质,纳米材料在诸多领域有着广泛的应用前景。纳米氧化锌作为一种功能材料与普通氧化锌相比,由于纳米材料所特有的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,使得纳米氧化锌在光、电、磁、化学、生物学等方面具有一系列新的特殊性能。
     当前,关于纳米氧化锌的研究已经进行的非常多,并且在很多方面也取得了很大的进展。目前已经成功研究出很多纳米氧化锌的制备方法,关于纳米氧化锌的应用也开展了其在光催化领域、气敏性、涂料行业和作为发光材料等诸多方面的研究并且取得了很大的成功。本实验在这些研究的基础上对纳米氧化锌的制备和光催化性能进行了深入的研究,主要的研究内容和成果如下:
     1.纳米氧化锌的制备
     (1)、对目前应用广泛的直接沉淀法进行了改进,把超声波引入该方法中,并且选用合适的表面活性剂,制备出了分布均匀颗粒尺寸约为15nm的氧化锌颗粒。通过这种方法大大改善了直接沉淀法所具有的粒子粒径范围分布较宽且团聚现象较严重等缺点。
     (2)、本实验还对用水热分解法制备特殊形貌的纳米氧化锌进行了一定的研究。通过研究发现,锌粉在碱性环境中水热分解产生氧化锌的实验中加入硝酸锌、硝酸锰等溶液可以极大的改善产物的形貌和尺寸,通过这种方法制备出了花簇形氧化锌纳米棒。同时通过实验发现碱度对产物的形貌尺寸有很大的影响,碱度越高,制得的产物氧化锌纳米棒尺寸越小形貌越规则。该实验方法操作简单,很容易制得形貌良好的产物氧化锌纳米棒。
     2.纳米氧化锌的改性
     纳米氧化锌的应用在很多领域中都是将其混合在有机物中,而氧化锌作为无机物要直接添加到有机物中存在着相当大的困难,因此必须对其进行改性研究。本实验在运用直接沉淀法制得纳米氧化锌颗粒的基础上对其进行了改性研究,选择油酸作为改性剂,通过测定改性前后氧化锌的亲油化度对改性效果进行探讨,通过多种方法证明这种改性实际上是纳米氧化锌表面的羟基与油酸通过酯化反应从而把油酸接枝到纳米氧化锌颗粒上形成了单分子层,这样大大提高了纳米氧化锌的亲油性,使它能够更好的分散在有机溶剂中,同时还能有效的阻挡纳米氧化锌的团聚现象发生。
     3.纳米氧化锌的光催化性能研究
     ZnO是一种具有许多卓越性能的新型宽禁带Ⅱ—Ⅵ族化合物半导体材料,而目前利用半导体材料做催化剂,光催化氧化处理有机污染物已经成为研究的热点。本实验在前文研究纳米氧化锌制备方法的基础上,结合最近几年纳米氧化锌在光催化领域的应用情况,用制备的纳米氧化锌产物对亚甲基蓝、品红等有机染料进行光催化实验,对纳米氧化锌的光催化性能以及影响其光催化性能的几个因素进行综合性的研究。结果表面纳米氧化锌对于很多的有机物都有良好的光催化降解作用,并得出最佳的反应条件。
Nanotechnology is the world's cutting-edge technology, nano-materials science is set condensed matter physics, colloidal chemistry, coordination chemistry, chemical reaction dynamics, chemical and other surfaces and interfaces for the integration of cross-disciplinary science. Because of the special structure which makes nano-materials with many special nature that common materials do not have have a wide application. Nano-Zinc Oxide as a functional materials compared with ordinary zinc oxide, nano-materials because of the unique surface effect, small size effect, the quantum effect and the macro quantum tunnel effect, making nano-Zinc Oxide in the light, electricity, magnetic, chemical, Biology has a new series of special performance.
     At present, research on nano-zinc oxide has conducted many, and in many ways has also made great progress. We have successfully developed a lot of the preparation method of nano-Zinc Oxide, nano-zinc oxide on the applications for its photocatalytic fields, gas sensing, and the paint industry as a luminous materials, and so on and achieved great success. In this experiment on the basis of these studies for the preparation of nano-Zinc Oxide and photocatalytic properties of an in-depth study, the main research and results are as follows:
     1. The preparation of nano ZnO
     We have done research on nano-Zinc Oxide by two different methods of preparation. At present the simple application of a wide range of direct precipitation has improved, the introduction of the ultrasound method, and selected the right surfactant, a uniform distribution of particle sizes of about 15 nm zinc oxide particles. Through these improvements has greatly improved by a direct precipitation of the particle size distribution of a wide scope of the phenomenon and reunion, and other more serious shortcomings.
     Apart from direct precipitation, this study also thermal decomposition of water prepared by special morphology of nano-zinc oxide to a certain amount of research. Through the study found that zinc powder in alkaline water environment in the thermal decomposition of zinc oxide produced in the experiment by adding zinc nitrate, manganese, such as nitric acid solution can greatly improve the shape and size of the product, this way of a flower-shaped clusters Zinc oxide nano-rods. At the same time, found that the alkalinity of the morphology of the impact of significant size, the higher alkalinity, the product of a system of zinc oxide nanorods morphology of the smaller size of the rules. The experimental method is simple, easy system in good shape the product of zinc oxide nanorods.
     2. The surface modification of nano ZnO
     The application of nano-zinc oxide in many areas are mixed in their organic matter, and zinc oxide as a non - of direct-to add to organic matter, there are considerable difficulties, it is necessary to modify their research. This experiment in the use of direct precipitation method in nano-zinc oxide particles on the basis of a modified its research, choose oleic acid as a modifier, through the modification of zinc oxide before and after the oil-degree effect of the modification, Through a variety of ways that this modification is in fact the surface of the nano-zinc oxide and hydroxy acid etherification through to the oleic acid grafted nano-zinc oxide particles formed a single-molecule level, this has greatly enhanced the nano-zinc oxide The pro-oil to enable it to better spread in organic solvents, while effective in blocking the reunion phenomenon in nano-zinc oxide.
     3. The study on the catalytic capability of nano ZnO
     ZnO is a kind of superior performance in many of the new wide band gap II-VI family compound semiconductor materials and semiconductor materials currently used as catalyst, photocatalytic oxidation of organic pollutants has been a hot research. The text of the first experimental study of methods of nano-zinc oxide on the basis of recent years, nano-zinc oxide catalyst in the field of optical applications, the use of nano-zinc oxide product of methylene blue, magenta, and other organic fuel photocatalytic Experiments on the photocatalytic properties of nano-zinc oxide and the impact of its photocatalytic properties of several factors undertake a comprehensive study. The results of the surface of nano-zinc oxide for many organic compounds have good photocatalytic degradation, and that the best conditions.
引文
[1] . Mitarri Takeshi. Production Of ultrafine powder of zinc oxide[P]. JP: 63288914, 1988—11-25.
    
    [2] . EricA Meulenkamp. The preparation of nano-particle ZnO by precipitation raethod[J]. J Phys Chem B, 1998, 102(29): 5566-5572.
    
    [3] . Hohen. rger G, Tomadl G J. Structure and growth of ZnO smoke particles prepared by chemical precipitation[J]. Mater Res, 1992, 7(3): 546—548.
    
    [4] . RABINI J B. Quenching ofAqueous Conoidd ZnO Fluorescence by Electron and Hole Scavengers Efect O Positive Poly Electrolyte[J]. J. Phys. Chem. , 1989, (93): 2559—2561.
    
    [5] . Kang xueya , Han yin , Tao ming , et al, Analysis of ZnO varistors prepared from nanosize ZnO precursors[J]. Mater Res Bull, 1998, 33(11): 1703-1708.
    
    [6] . OSAMUY. Influence of particle size on the antibacterial activity of zinc oxide [J]. Inorganic Materials , 2001(3):643-646.
    
    [7] . El shall MS, Slack W, Vann W, et al. The nanometer particle preparation in high energy [J]. J Phy Chert, 1994, 98(12): 3067. 3070.
    
    [8]. Ding Shiwen, Zhang Shaoyan, Liu shu-juan , Ding yu, Kang ,Quanying, Liu yanchao. Synthesis and Photocatalyzing Protection of Nano-ZnO[J]. CHINESE JOURNAL OF INORGANICCHEMISTRY, 2002, 18 (10) : 1015-1018.
    
    [9] . Meng A-Lan, Lin Yu-sheng, Wang Guang-Xin. Preparation of ZnO Nanowires by Electrochemical Method[J]. CHINESE JOURNAL OF NORGANIC CHEMISTRY, 2005, 21 (4) : 583-587.
    
    [10]. LiDanzhen, Chen Yilin, LinXi, WangXuxu, Fu xianzhi. Preparation of Nano-size ZnO and its Luminescent Spectum[J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2002 (12) : 1229.
    [11] . Wang Zhenxing, Ding Shiwen, Zhang Weihong, Zhang Yuzhou. Self-assembled Synthesis and Photocalysis of Nano-TiO2-ZnOMesoporousMaterial[J]. ACTACHMICASINCA, 2005, 63 (3) : 243-248.
    
    [12] . Xu Xiaoliang, Shi Chaohui. Nano-Size Crystalline Structured ZnO and its UV laster. [J]. PROGRESSIN PHYSICS, 2000, 20 (4) : 356.
    [13] . Xu Yanxia, Hou Qinghua, Zhang Jianqiu. Performanceand Application of Nano-zinc Oxide its on Rubber[J].Shanghai Chemicao Industry,2003,4:31-33.
    [14].KOICHI DHTSU,NORIAKI SATO.Ultraviolet rays-absorbing composition and process for producingthe same[P].US:5976511,1999-11-02.
    [15].王小丹,铁绍龙.纳米氧化锌的性能及其在涂料中的应用[J].电镀与涂饰,2005(3):27-30.
    [16].姚超,吴凤芹,林西平,汪信.纳米技术与纳米材料—纳米氧化锌在防晒化妆品中的应用[J].日用化学工业,2003(12):393-398.
    [17].马正先,韩跃新,郑龙熙,刘建彬.纳米氧化锌的应用研究[J].化工进展,2002(1):60-62.
    [18].王久亮,刘宽,秦秀娟,邵光杰.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004(2):226-230.
    [19].郁平,房鼎业.纳米氧化锌的制备[J].化学世界,2000,6(4):293-298.
    [20].俞建群,徐政,贾殿赠.纳米氧化物的合成新方法[J].功能材料,1998,29(6):598-600.
    [21].李国栋.无团聚纳米氧化锌的制备与机理研究[J].中国陶瓷,2003,39(4):6-9.
    [22].安崇伟,郭艳丽,王晶禹.纳米氧化锌的制备和表面改性技术进展[J].应用化工,2005,34(3):141-146.
    [23].葛岭梅.纳米氧化锌粉的表面改性研究[J].湘潭矿业学院学报,2002,(12):31-34.
    [24].王国宏.纳米的表面改性研究[J].湖北师范学院学报(自然科学版),2004,(1):10.14.
    [25].洪若瑜,徐丽萍,任志强等.纳米氧化锌的制备及其光催化活性研究[J].化工环保,2005,25(3):231-234.
    [26].赵新宇,郑柏存,李春忠,等.喷雾热解合成ZnO超细粒子工艺及机理研究[J].无机材料学报,1996,11(4)611-616.
    [27].廖莉玲.刘吉平.纳米氧化锌制备方法比较[J].贵州化工.2002.27(3):1-3.
    [28].张永康.刘建本.易保华等.常温固相反应合成纳米氧化锌[J].精细化工,2000.17(6):343-344.
    [29].刘春光,罗青松.纳米氧化锌的制备技术与应用进展[J].纳米科技, 2005,第1期:13-16.
    [30].马正先,韩跃新等.纳米氧化锌的制备与应用研究进展[J].矿产保护与利用,2002,第1期:37-43.
    [31].李强,高镰,奕伟玲.纳米ZnO的应用研究进展[J].无机材料学报,1999,14(5):813-817.
    [32].华伟刚,崔学民等.纳米ZnO材料制备技术研究进展[J].Equipment Manufactring Technology NO.6,2007,124-129.
    [33].李秀梅.纳米氧化锌的性质和用途.通化师范学院学报,2004,25(4):54-56.
    [34].程敬泉.纳米氧化锌的性质和用途.衡水师专学报,2001,2:42.
    [35].周祚万,楚珑盛,张再昌.纳米氧化锌在橡胶复合材料中的初步应用.橡胶工业,2002,49:403
    [35].张卫强,邓宇.纳米氧化锌研究进展.精细石油化工进展,2001,2:42
    [36].詹国平,黄可龙,刘素琴.纳米氧化锌的制备及应用.化学工程师,2001,86(5):26.
    [37].贾漫珂,王俊,郑思静,等.纳米氧化锌的制备新方法.武汉大学学报,2002,48(4):420.
    [38].王久亮,刘宽,秦秀娟,邵光杰.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004(2):226-230.
    [39].Y.Du,M S.ZHANG,J.HONG.Structural and optical properties of nanophase zinc oxide[J].Applied Physics A,2003,76:171-176.
    [40].李国栋,李本林等.无团聚纳米氧化锌的制备与机理研究[J].中国陶瓷,2003,39(4):6-9.
    [41].李国栋.氧化物超细粉体团聚机理的研究[J].硅酸盐学报,2002,30(5):645-648.
    [42].祖庸,李晓娥,樊安等.沉淀法制备纳米氧化锌的研究[J].西北工业大学学报,2001,31(3):232-234.
    [43].张旭东,邢英杰,奚中和等.类单晶氧化锌纳米棒的制备与表征[J].真空科学与技术学报,2004,24(1):16218.
    [44].马宏文,矫立男,杨雪等.固相法合成纳米氧化锌及其光催化性能研究[J].化学与生物工程,2006,23(4):17-19.
    [45].王小丹,铁绍龙等.纳米氧化锌的性能及其在涂料中的应用[J].电镀与涂饰,2005,24(3):27-30.
    [46].徐甲强,潘庆宜,孙雨安等.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,1998,14(3):355-359
    [47].刘雪宁,杨治中.表面改性的纳米氧化锌的制备及其吸收特性[J].物理化学学报,2000,16(8):746-748.
    [48].祖庸,王洲,吴金龙等.新型元机抗菌剂——超微细氧化锌[J].化工时刊,1999,13(1):7-9.
    [49].李彦峰,汪斌华,黄婉霞等.纳米氧化锌改性内墙涂料抗菌性研究[J].涂料工业,2003,33(8):3-6.
    [50].刘福春,韩恩厚,柯伟.抗紫外线纳米氧化锌复合丙烯酸酯涂料[J].材料研究学报,2003,17(2):138-144
    [51].高翠芹,安从俊等.纳米氧化锌的制备和电化学性能研究[J].电池工业,2006,11(1):5-7.
    [52].汪荣华,刘宏芳,许立铭,等.Ag+/ZnO纳米材料表面苯酚的光催化降解[J].华中科技大学学报2003,31(8):68-70.
    [53].马宏文,矫立男,杨雪等.固相法合成纳米氧化锌及其光催化性能研究[J].化学与生物工程,2006,23(4):17-19
    [54].井立强.ZnO超微粒子的量子尺寸效应和光催化性能[J].哈尔滨工业大学学报,2001,33(3).
    [54].刘雪宁,杨治中,唐康泰等.高分子模板法合成特殊形态的氧化锌纳米结构材料[J].化学通报,2000.11:46-48.
    [1].Mondelaers D,Vanhoyland G,Vanden R H,et al.Synthesis of ZnO nanopowder via an aqueous acetate citrate gelation method[J].Mater Res Bull,2002,37(5):901-914
    [2].Zhang Xitang,Zhuang Jiaqi,Xu Jinjie,et al.Studies of surface photovoltage spectnoscopy on quantum-sized ZnO nanoparticles[J].Chem J Chin Univ,1999,20(12):1945-1947.
    [3].Li D,Haneda H.Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J].J Photochem Photobiol A:Chemistry,2003,155(1-3):171-178.
    [4].Tsuzuki T G P.ZnO nanoparticles synthesized by mechanochemical processing[J].Scripta Mater,2001,44(8-9):1731-1734.
    [5]..斯琴高娃,照日格图,姚红霞,嘎日迪.直接沉淀法纳米氧化锌的制备和表征[J].内蒙古师范大学学报,2006年3月,第35卷第1期,70-73.
    [6].钱建中,洪若瑜,王健.纳米氧化锌的合成及表面改性[J].化学研究,2004年6月,第15卷第2期,18-20.
    [7].安崇伟,郭艳丽,王晶禹.纳米氧化锌的制备和表面改性技术进展[J].应用化工,2005年3月,第34卷第3期,141-146.
    [8].赵心怡,叶明泉,韩爱军.无机超细粒子表面改性技术研究进展[J].塑料工业,2006年5月,第34卷增刊,16-19.
    [9].史俊霞,倪英萍,高雪艳.超声波—直接沉淀法制备超细氧化铁[J].无机盐工业,2006年4月,第38卷第4期,35-37.
    [10].井立强。袁福龙,侯海鸽等.ZnO纳米粒子的表面氧空位与其光致发光和光催化l生能的关系[J].中国科学(B辑)化学,2004.34(4):310-314.
    [11].刘卫平,周建萍,丘克强。等.氧化锌晶须表面改性及表征[J].塑料工业.2004.32(5):47-50.
    [12].Music S,Dragcevi D,Popovic S.et al.Precipitation of ZnO particles and their properties[J].Materials Letters,2005(59):2 388-2 393.
    [13].丁永红,林西平.纳米TiO_2表面有机改性的研究[J].无机化学学报,2005,21(5):640-642.
    [14].周燕,邓建成等.硅烷偶联剂对纳米氧化锌表面改性的机理研究[J].湘潭大学自然科学学报,2006,28(4):53-56.
    [15].朱磊,江红,王滨等.纳米氧化锌的表面修饰及其机理的研究[J].无机材料学报,2007,22(2):219-222.
    [16].薛涛,曾舒等.纳米氧化锌表面包覆改性及其表征[J].功能材料,2007,38(3):469-471.
    [17].张绍岩,丁士文,刘淑娟,等.均相沉淀法合成纳米ZnO及其光催化性能研究[J].化学学报,2002,60(7):1225-1229.
    [18].周吉高,李包顺,黄校先等.纳米氧化锆粉体的表面改性研究[J].无机材料学报,1996,11(2):237-240.
    [19].张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.141.
    [20].庄涛,周丽玲,杨林泰等.钛酸酯偶联剂改性纳米氧化锌及在天然橡胶中的应用[J].特种橡胶制品,2006,12(6):25-27.
    [21].马正先,韩跃新,印万忠,等.纳米氧化锌的表面改性[J].矿冶,2004,13(2):50-52.
    [22].余爱萍,陈雪花,陈忠伟,等.抗紫外纳米ZnO粉体的制备和表面改性[J].上海化工,2001(20):13-16.
    [23].李群,姜万超,陈水林.低聚丙烯酸钠用于纳米氧化锌表面改性的研究[J].青岛大学学报,2003,16(1):12-14.
    [24].杨卉,张幼珠.纳米氧化锌的分散性研究[J].印染助剂,2005,12:12-14.
    [25].陈忠伟,余爱萍,罗美芳等.抗紫外线纳米ZnO粉体的表面改性与脂肪酸改性机理探讨[J].化学世界,2002(5);227-229.
    [26].闵惠玲,黄雅婷等.纳米氧化锌表面改性及应用研究[J].印染,2004,16:7-9.
    [27].祖庸,刘超峰,陈晓东等.纳米氧化锌的制备与研究[J].化工新型材料,1995,23(11):13-15.
    [28].刘雪宁,杨治中.表面改性的纳米氧化锌的制备及其吸收特性[J].物理化学学报,2000,16(8):746-748.
    [1].LIONEL V.Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J].Adv Mater,2003,15(5):464-466.
    [2].WANG Zhonglin.Zinc oxide nanostructures:growth,properties and applications[J].J Phys Condens Matter,2004,(16):829-858.
    [3].ZHANG J,LING D S,YIN J L,et al.Control of ZnO morphology via a simple solution route[J].Chem Mater,2002,14:4172-4177.
    [4].LIU Bin,ZENG Hua2chun.Fabrication of ZnO "Dandelions" via a modified kirkendall process[J].J Am Chem Soc,2004,26:16744-16746.
    [5].FENG P,WANG Q,WANG T H.Contact2cont rolled sensing properties of flowerlike ZnO nanostructures[J].Applied Physics Letters,2005,87:213111-1-213111-3.
    [6].WEN Xiao2gang,FANG Yue2ping,FANG Q,et al.ZnO nano-belt arrays grown directly from and on zinc substrates synthesis,characterization,and application[J].J Phy Chem B,2005,109:15303-15308
    [7].Redriguez-Paez J E,Caballero A c,Villegas M.et al.Controlled precipitation methods:formation mechanism of ZnO nanoparticles[J].European Ceramic Society,2001.21:925-930.
    [8].Wang Y W,Zhang L D,Wang G Z,et al.Catalytic growth of Semi-conducting zinc oxide nanowires and their photoluminescence properties[J].Journal of Crystal Growth,2002,234:171-175.
    [9].Minne S C,Manalis S R,Quate C F.Parallel atomic force microscopy using cantilevers with integerated piezoresistive sensors and integrated piezoelectric actuators[J].Appl Phys Lett,1995.67(26):3918-3920.
    [10].姜国华,姜继森.金属氧化物纳米线和纳米棒的制备及应用[J].材料科学与工程学报,2003,21(5):753-75.
    [11].刘雪宁,杨治中,唐康泰等.高分子模板法合成特殊形态的氧化锌纳米结构材料[J].化学通报,2000.11:46-48.
    [12].张立德,牟季美.纳米材料科学[M]沈阳:辽宁科技出版社,1994:20-21.
    [13].仲维卓,华素坤.纳米材料及其水热法制备[J].上海化工,1998, 23(11):25.
    [14].徐甲强,王焕新,张建荣,等.微波水解法制备纳米ZnO及其气敏特性研究[J].无机材料学报,2004,19(6):1441-1445.
    [15].徐甲强,纪朋,李志伟.水热法合成氧化锌亚微米棒及气敏性能研究[J].郑州轻工业学院学报,2005,20(3):1-3.
    [16].牛新书,杜卫平,杜卫民,等.微乳液法制备ZnO纳米粉体及其气敏性能研究[J].电子元件与材料,2003,22(8):12-14.
    [17].李健,白素杰,通拉嘎.稀土Nd掺杂纳米ZnO薄膜气敏特性[J].传感器技术,2004,23(5):9-14.
    [18].Zhang H,Yang D,Ma X,et al.Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process[J].Nanotechnology,2004,15:622-626.
    [19].Lu C H,Yeh C H.Influence of hydrothermal conditions on the morphology and particle size of zinc oxide power[J].Ceramics International,2000,26:351-357.
    [20].Wang Z,Qian X,Yin J,et al.Large-scale fabrication of tower-like,flower-like,and tube-like ZnO arrays by a simple chemical solution route[J].Langmuir,2004,20:3441-3448.
    [21].胡平,徐甲强.氧化物掺杂对氧化锡酒敏性能的影响[J].郑州轻工业学院学报,1998,13(2):52-56.
    [22].王文亮,李东升.超声辐射沉淀法纳米ZnO的制备与表征[J].化学研究与应用.2001,4:157-159.
    [23].张立德,解思深.纳米材料与纳米结构[M].北京:化学工业出版社.2005.1-11.
    [24].杨青林,郭林,吴中华等.室温下纳米氧化锌新相的合成及表征[J].高等学校化学学报,2003,24(1):82.85
    [25].曾宪华,樊慧庆,李国才等.聚合物包覆热分解制备纳米氧化锌的工艺研究[J].纳米科技,2007,2:35-37.
    [26].F Li,Y Ding,P X Gao.Single-Crystal Hexagonal Disks and Rings of ZnO:Low -Temperature,Large -Scale Synthesis and Growth Mechanism [J].Angew Chem.,2004。1 16:5350-5354.
    [1] . KANG Huimin, KANG Xihu. The Investigation on Photocatalytic Treatment of Waste W ater Containing PhenolOver ZnO [J]. Transactions of Tianjin University, 1996, 11(2):2.
    
    [2] . Li D. Haneda H. Photocatalysis of Sprayed Nitrogen containing Fe_2O_3-ZnO and WO_3-ZnO Composite Powders in Gas—phase Acetaldehyde Decomposition [J]. J Photo chem Photobio. A: Chemistry, 2003, 160(3): 203-212.
    
    [3] . Kiriakidou F, Kondarides D I, Verykios X E. The Effect of Operational Parameters and TiO_2-doping on the Photo catalytic Degradation of Azo-dyes[J]. Catal Today, 1999, 54(1): 119.
    
    [4] . A. Akyol, M. Bayramoglu. Photocatalytic Degradation of Remazol Red F3B Using ZnO Catalyst[J]. J. Hazardous Materials B: 124, 2005, 241-246.
    
    [5]. Hofmann, M R, et al. Photocatalytic Oxidation of Organic Acids on Quantum—sized Semiconductor Colloids [J]. Environ. Sci. Technol. 1994, 28(4): 786.
    
    [6] . Ishibashi K I, Fujishima A, Watanabe T, et al. Quantum Yields of Active Oxidative Species Formed on TiO_2 Photocatalyst [J]. J. Photochem. Photobio. A: Chem. , 2000. 134:139.
    
    [7]. Assabane A. Yahia A I. TahiriHetal. Photocatalytic Degradation of Polycarboxylic Benzoic Acids in UV—irradiated Aqueous Suspensions of Titania. : Identification of Interm ediates and Reaction Pathway of the Photomineralization of Trimellitic Acid f1, 2, 4-benzene Tricarboxylic Acid)[J]. Appl. Catal. B: Environ. , 2000, 24: 71.
    
    [8] . Horikoshi S, Hidaka H, Serpone N. Environmental Remediation by an Integrated Microwave/UV—illumination method. 1. Microwave— assisted Degradation of Rhodamine-B dye in Aqueous Ti02 Dispersions [J]. Environ. Sci. Technol. , 2002, 36: 1357—1366.
    
    [9] . Zhang Z, Wang CC, Zakaria Retal. Role of. Particle Size Nanocrystalline TiO2-based Photocatalysts[J]. J. Phys. Chem. 1998, 102: 10871
    
    [10]. 张金龙. 光催化[M]. 上海: 华东理工大学出版社,2004, 145—152.
    [11].赵春,钟顺和.Cu/ZnO—TiO_2复合半导体光催化材料的制备与表征fJ].无机化学学报,2004,20(9).
    [12].白波,赵景联,冯宵.纳米TiO光催化降解酸性粒子元青溶液的研究.环境污染与防治,2002,24(3):140-143
    [13].胡春.ZnO催化剂对苯胺光降解的研究[J].环境科学学报,1998,18(1).
    [14].高俊敏等.TiO_2/ZnO光催化降解四环素的研究[J].重庆环境科学,2003,25(1)
    [15].井立强.ZnO超微粒子的量子尺寸效应和光催化性能[J].哈尔滨工业大学学报,2001,33(3).
    [16].潘吉浪等.纳米ZnO光催化降解有机物研究进展[J].纳米材料与应用,2006年第3卷第5期:18-21.
    [17].万益群等.网络状纳米氧化锌光催化降解水中有机染料的研究[J].分析科学学报,2007年第1期:48-50.
    [18].洪若瑜等.纳米氧化锌的制备及其光催化活性研究[J].化工环保,2005年第3期:231-234.
    [19].钟己未等.纳米氧化锌光催化降解有机染料性能的研究[J].分析实验室,2006年第12期:30-34.
    [20].金伟等.氧化锌的制备及其光催化性能研究[J].材料与冶金学报,2007年第1期:30-32.
    [21].尚汴卿等.纳米氧化锌晶体的制备与光催化性质[J].东华大学学报,2004年第5期:29-33.
    [22].刘宏芳等.纳米氧化锌晶须的制备及光催化降解苯胺研究[J].武汉科技大学学报,2006年第2期:126-128.
    [23].周英.ZnO纳米材料抗紫外与抗菌织物的研究[J].棉纺织技术,2001,29(10):588-590.
    [24].汪荣华,刘宏芳,许立铭等.Ag~+/ZnO纳米材料表面苯酚的光催化降解[J].华中科技大学学报,2003,31(8):68-70.
    [25].韩冬,任湘菱,陈东等.纳米氧化锌的制备及其光催化性能研究[J].感光科学与光化学,2005,23(6):414-420.
    [26].丁士文,张绍岩,刘淑娟等.直接沉淀法制备纳米氧化锌及其光催化性能[J].无机化学学报,2002,18(10):1015-1019.
    [27].李霞,照日格图等.纳米氧化锌的制备及光催化活性的研究[J].分子催化,2007,21(1):82-84.
    [28].沈勇等.改性纳米氧化物的抗紫外整理研究[J].印染,2003,29(9):1-4.
    [29].马宏文,矫立男,杨雪等.固相法合成纳米氧化锌及其光催化性能研究[J].化学与生物工程,2006,23(4):17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700