CdCO_3形貌控制及CdS/CdCO_3复合材料的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过简单的沉淀法对CdCO_3形貌进行控制,以制备均匀的单分散超细CdCO_3颗粒;对CdCO_3颗粒进行表面改性,使CdCO_3颗粒获得良好的润湿性;改性CdCO_3颗粒作为稳定剂,以石蜡或苯乙烯为油相,制备水包油Pickering乳液;将Pickering乳液固化,对暴露部分的CdCO_3进行硫化反应,由此制备分区域复合的CdS/CdCO_3复合材料。本论文制备的CdS/CdCO_3复合材料可通过气氛保护高温锻烧得到CdS/ CdO复合材料,CdS和CdO都是重要的半导体材料,为进一步研究CdS/ CdO复合材料性能做好基础工作。
     先以CdCl_2和Na_2CO_3为原料,采用直接沉淀法制备了多种形貌的CdCO_3颗粒。不同的表面活性剂在反应中均能对CdCO_3颗粒起到良好的分散作用,加入CTAB制备的CdCO_3颗粒最均匀,基本为方形结构。反应中不加入任何表面活性剂或晶形控制剂,当CdCl_2和Na_2CO_3溶液浓度皆为2 mmol/L、4 mmol/L时,CdCO_3颗粒都为双晶结构,前者聚片结构特征明显;当CdCl_2溶液浓度为2 mmol/L,Na_2CO_3溶液过量时,制备的CdCO_3颗粒为花生状双晶;溶液浓度增大,CdCO_3为分散、均匀的方形颗粒,浓度继续增大,颗粒不均匀,有团聚。
     采用均匀沉淀法,以尿素和CdCl_2为原料制备了多种形貌的CdCO_3颗粒。反应前对尿素溶液高温陈化,有利于制备单分散的颗粒。在水浴中以搅拌方式进行反应,尿素过量,CdCl_2溶液浓度为3 mmol/L,制备的CdCO_3颗粒为粒径约1.5μm均匀的方形;CdCl_2溶液增大,颗粒层状结构明显,为棱角不明显的类球形;当CdCl_2溶液增大至0.05 mol/L时,CdCO_3颗粒为球形双晶结构。将反应置于超声波中进行,制备的CdCO_3颗粒层状结构明显,当慢滴尿素溶液时,制备了双晶结构的CdCO_3颗粒。
     以A-151为改性剂对CdCO_3颗粒进行表面改性,采用液滴量高法测量改性CdCO_3的润湿接触角。红外光谱分析说明硅醇单体在CdCO_3颗粒表面自身发生了缩聚,形成了硅烷膜覆盖在CdCO_3颗粒表面,使之获得良好的润湿性。CdCO_3颗粒的润湿接触角随A-151用量的增加而增大,但当A-151与CdCO_3质量比大于1.26时,接触角增加不明显。
     改性CdCO_3颗粒作为Pickering乳液的稳定剂,稳定性受颗粒润湿程度、油相、油水比等多种因素的影响,接触角为79°的CdCO_3颗粒嵌入苯乙烯乳液液滴中,制备了稳定的Pickering乳液。苯乙烯聚合后得到CdCO_3/PS复合球,对暴露在复合球外的CdCO_3进行硫化反应,制备了分区域复合的CdS/CdCO_3单颗粒复合材料,CdS层的厚度随反应时间而不断增加,但由于生成的CdS会阻碍硫化反应的进行,CdS层最终仍为半圆壳状。
Uniform monodispersed CdCO_3 fine particles were prepared through simply precipitation method. Good wettability of CdCO_3 was obtained by surface modification using coupling agent. Using modified CdCO_3 particles as stabilizer, paraffin or styrene as oil phase, a oil-in-water (W/O) Pickering emulsion was prepared. Sulfuration reaction was carried out on exposed CdCO_3 particles in cured Picking emulsion, then CdS/CdCO_3 sub-region complex were prepared. CdS/CdO composite can be prepared by using the obtained CdS/CdCO_3 through high temperature calcination under nitrogen atmosphere. CdS and CdO both are important semiconductor materials, thus this study provide basic information for further investigation of the performances of CdS/CdO composites.
     Firstly, using Na_2CO_3 and CdCl_2 as reagents, a serious of CdCO_3 particles with various morphologies were prepared through direct precipitation method. Good dispersion CdCO_3 can be reached by using different surfactants in the reaction. When cetyltrimethylammonium bromide (CTAB) was added, the prepared CdCO_3 particles were the most uniform with basically cubic shape. Also there can be no surfactants or crystal control agent during the reaction. When the concentration of CdCl_2 and Na_2CO_3 were 2 mmol/L and 4 mmol/L respectivly, polysynthetic twinning CdCO_3 particles were get. While, with excess Na_2CO_3 in 2 mmol/L CdCl_2, peanut-like-twinning of CdCO_3 was obtained. With the increase of concentration of the reagents, uniformly dispersed cubic CdCO_3 was obtained. But further increased reagents concentration led to ununiform particle size and aggregation.
     Then, Using urea and CdCl_2 as reagents, another serious of CdCO_3 particles with various morphology were preparaed through homogeneous precipitation method. High temperature aging of urea before reaction was beneficial to synthesize monodispersed particles. In water bath, stirred 3 mmol/L CdCl_2 with excess urea produced cubic CdCO_3 particles with approximately 1.5μm diameter. Increasing the concentration of CdCl_2 resulted in near spherical CdCO_3 particle with layered structure. When the concentration rose up to 0.05 mol/L, the obtained CdCO_3 existed in spherical-twinning. Whereas reaction system under ultrasonic produced obviously layered structure of CdCO_3. And twinning CdCO_3 was synthesized by slowly adding urea in drops into the ultrasonic reaction system.
     Furthermore, CdCO_3 particles were surface modified by A-151. The wetting contact angle of the modified CdCO_3 was measured by using height-width method. The results of FTIR analysis indicated that silanol monomers had already polymerized on the surface of CdCO_3 particles and formed a thin film around, therefore, gave good wettability to the CdCO_3 particles. The wetting contact angle of the modified CdCO_3 increased with the content of A-151. But it did not increase obviously when the weight ratio of A-151 to CdCO_3 exceeded 1.26.
     The stability of the Pickering emulsion stabilized by modified CdCO_3 particles affected by the degree of wetting of the particle, oil phase, and oil to water ratio. CdCO_3 particles with 79o contact angle embedded in styrene emulsion droplets to prepare stable Pickering emulsion. CdCO_3/PS composite sphere were prepared through polymerization of styrene. Sulfuration reaction was carried out on exposed CdCO_3 particles on the obtained CdCO_3/PS composite surface. Then sub-region complex of monodispersed CdS/CdCO_3 was gained. The thickness of CdS layer increased with reaction time. For the hindrance of CdS to further sulfuration, the CdS layer finally stabilized in semicircle shell.
引文
[1]司徒杰生,王光建,张登高等.无机化工产品.北京:化学工业出版社, 2004, 8~99
    [2]游富英,刘妍.碳酸镉非等温动力学参数的确定.邯郸师专学报, 2004, 19(3): 62~63
    [3]杨立新.蒸发氧化法制备高品质活性氧化镉粉末: [学位论文].中南大学. 2004
    [4] Liu Hongxia , Wang Chaoyang , Gao Qianxing , et al . Fabrication of novel core-shell hybrid alginate hydrogel beads. International Journal of Pharmaceutics, 2008, 351(1): 104~112
    [5] Liu Hongxia , Wang Chaoyang , Gao Qianxing , et al . Fabrication of novel core-shell hybrid alginate hydrogel beads. International Journal of Pharmaceutics, 2008 , 351(1) : 104~112
    [6] Wang Chaoyang , Liu Hongxia , Gao Qianxing , et al . Facile fabrication of hybrid colloidosomes with alginate gel cores and shells of porous CaCO3 microparticles . Chem Phys Chem, 2007 , 8(8): 1157~1160
    [7] Hye Y K, Suk T C , Won S C , et al . Emulsion-based synthesis of reversibly swellable magnetic nanoparticle embedded polymer microcapsules. Chemistry of Materials. 2006, 18(14): 3308~3313
    [8]倪星元,沈军,张志华.纳米材料的理化特性与应用.北京:化学工业出版社, 2006, 100~124
    [9]徐滨士.纳米表面工程.北京:化学工业出版社, 2004, 34~65
    [10]李长全,罗小玲,傅敏恭.直接沉淀法制备纳米ZnO及其抗菌试验的研究.化工新型材料. 2005, 33(5): 55~56
    [11]王松泉,刘晓林,陈建峰等.直接沉淀法制备纳米钛酸钡粉体的表征与介电性能.北京化工大学学报. 2004, 31(4): 32~35
    [12] Masanori Hirano, Shiro Okumura, Yasunori Hasegawa, Michio Inagaki. Direct Precipitation of Spinel-Type Zn(Fe, Ga)2O4 Solid Solutions from Aqueous Solutions at 901C: Influence of Iron Valence of Starting Salt on Their Crystallite Growth. Journal of Solid State Chemistry. 2002, 168(1): 5~10
    [13]史俊霞,倪英萍,高雪艳.超声波—直接沉淀法制备超细氧化铁.无机盐工业. 2006, 38(4): 35~37
    [14] G. Soler-Illia, M. Jobbagy, R.J. Candal, A.E. Regazzoni, M.A. Blesa. Synthesis of metal oxide particles from aqueous media: the homogeneous alkalinization method . Journal of Dispersion Science and Technology. 1998, 19: 207~228
    [15]马凤国,周贵忠,廖双全等.均匀沉淀法合成超细碳酸铅.炸药学报. 2002, 2: 45~46
    [16]陈继智,庆泽.纳米级PbCO_3的制备与应用.机化学学报. 2004, 20(8): 980~982
    [17]汤皎宁,龚晓钟,李均钦.均匀沉淀法制备纳米氧化锌的研究.无机材料学报.2006, 21(1): 65~69
    [18]贺拥军,杨伯伦.微乳液和均匀沉淀耦合法制备CeO2纳米粒子.化学通报. 2003, 2: 120~124
    [19]洪若瑜,沈智豪.微波均相沉淀法制备纳米ZnO及其光催化性能.过程工程学报. 2005, 5(6): 693~696
    [20]徐锁平,朱广军.超声波一均匀沉淀法制备纳米氧化铁.涂料工业. 2005, 35(2): 31~33
    [21]苏凌浩,张校刚.酶诱发均匀沉淀法制备纳米SnO.河南科技大学学报. 2005, 26(2): 1~3
    [22]胡黎明,古宏晨,李春忠.化学工程前沿-超细粉体制备.化工进展. 1996, (2): 1~7
    [23]王宇菲,卓海宇.沉淀法制备纳米粉体及其形貌控制.湖南有色金属. 2002, 18(5): 25~25
    [24]张近.均匀沉淀法制备纳米氧化镁的研究.功能材料. 1999, 30(2): 193~194
    [25]王宝和,张伟,张文博.干燥方法对纳米氧化镁粉体形貌的影响.干燥技术与设备. 2006, 4(3): 139~144
    [26] Jae-Min Oh, Sung-Ho Hwang, Jin-Ho Choy. The effect of synthetic conditions on tailoring the size of hydrotalcite particles, Solid State Ionics, 2002, 151: 285~291
    [27]任引哲,杨瑞林,王建英.不同形貌CaCO_3微粉的制备.化学试剂. 2001, 23(6): 366~367
    [28] Kunio Kawamura, Kazumichi Shibuya, Akitsugu Okuwaki, Morphology of aluminum phosphate by the Al-EDTA mediated particle formation in aqueous solutions at high temperatures, Materials Research Bulletin, 2007, 42: 256~264
    [29]韩业斌,梅燕,聂祚仁.影响纳米CeO2晶粒形貌的因素及机理.精细化工. 2006, 23(7): 631~634
    [30] C. Shivkumara, Preetam Singh, Asha Gupta, M.S. Hegde. Synthesis of vaterite CaCO_3 by direct precipitation using glycine and Lalanine as directing agents. Materials Research Bulletin. 2006, 41: 1455~1460
    [31] Ivan Sondi , Egon Matijevi?.Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction. Journal of Colloid and Interface Science. 2001, 238: 208~214
    [32]李启厚,肖松文,刘志宏.湿法化学制粉中的粉末结构形貌控制研究进展.中国粉体技术. 1999, 5(2): 21~24
    [33] Nonomura Y, Kobayashi N. Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles. Journal of Colloid and Interface Science, 2009, 330: 463~466
    [34] J. Giermanska-Kahn,V. Schmitt,B. P. Binks,and F. Leal-Calderon.A New Method To Prepare Monodisperse Pickering Emulsions, Langmuir, 2002, 18(7): 2515~2518
    [35] Wang C, Zhang C, Li Y, Chen Y, Tong Z. Facile fabrication of nanocomposite microspheres with polymer cores and magnetic shells by Pickering suspension polymerization. Reactive & Functional Polymers, 2009,69: 750~754
    [36] Yongjun He, Xiangyang Yu.Preparation of silica nanoparticle-armored polyaniline microspheres in a Pickering emulsion. Materials Letters, 2007, 61: 2071~2074
    [37] W. Wu, S.-L. Shen, C.-L. Cheng. Investigation on the mechanical strength of magnetic hollow silica prepared from Pickering emulsion route. Materials Chemistry and Physics 2009, 113: 696~701
    [38] B.P. Binks, S.O. Lumsdon, Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity, Physical Chemistry Chemical Physics, 2000, 2: 2959~2967
    [39] B.P. Binks, P.D.I. Fletcher, Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison Between Spheres of Uniform Wettability and "Janus" Particles, Langmuir, 2001,17, 4708~4710
    [40] R.Aveyard,B.P.Binks,J.H. Clint. Emulsions stabilized solely by colloidal Particles. Advances in Colloid and Interface Science, 2003, 100~102: 503~546
    [41] Lenore L. Dai , Sowmitri Tarimala, Chih-yuan Wu, Shashidhar Guttula, Jian Wu. The Structure and Dynamics of Microparticles at Pickerin Emulsion Interfaces.Scanning, 2008, 30 (2): 87~95
    [42]吴嵘,吴素芳.包硅改性纳米碳酸钙应用于高温CO2吸附的性能.化工学报, 2007, 57(7): 1722~1726
    [43]王训遒,蒋登高.纳米CaCO_3改性及其在环氧改性丙烯酸底漆中的应用.材料工程, 2006, 4: 3~7
    [44]沈钟等,胶体与表面化学.北京:化学工业出版社, 1997. 165~166
    [45]黄小凤,龚福忠. Washburn动态渗透压力法测量粉体接触角.实验室研究与探索, 2003, 22(5): 48~50
    [46] Sanghi R, Verma P. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus . Chemical Engineering Journal, 2009, 155: 886~891
    [47]韩健.硫化锌硫化镉微纳米材料的液相控制合成及表征: [学位论文].济南:山东大学, 2008
    [48]闫云辉,章伟光,范军.一种Q态纳米CdS的新型制备法-聚合物分散法.化学学报, 2005, 63: 1303~1306
    [49] Georgi G. Yordanov, Eiki Adachi, Ceco D. Dushkin. Characterization of CdS nanoparticles during their growth in paraffin hot-matrix. Materials Characterization, 2007, 58: 267~274
    [50]席燕燕,周剑章,张彦等.聚苯胺对纳米CdS的光致发光增强效应.高等学校化学学报, 2004, 25: 2322~2326
    [51]王伟,郝彦忠.量子点CdS修饰纳米结构TiO2复合膜的光电化学研究.化学研究与应用, 2007, 19(2): 199~202
    [52] R. M. Navarro, F. del Valle, J .L. G. Fierro. Photocatalytic hydrogen evolution from CdS-ZnO-CdO systems under visible light irradiation:Effect of thermal treatment and presence of Pt and Ru cocatalysts. Hydrogen Energy, 2008, 33: 4265~4273
    [53] WANG Chao-Ming, CHENG Yao, WAN G Yuan-Sheng, BAO Feng. Self-assembly of Quasi-monocrystal CdCO_3 Nanorings. Chinese Journal of Structural Chemistry, 2007, 26(7): 757~762
    [54] Gregory K. Mandell , Peter A. Rock,Lattice Energies of Calcite-Structure Metal Carbonates I. Calculation of Carbonation Charge Distributions From Oxygen Polarizabilities. Journal of Physics and Chemistry of Solids, 1998, 59(5): 695~702
    [55] Gregory K. Mandell, Peter A. Rock, Lattice Energies of Calcite-Structure Metal Carbonates II. Results for CaCO_3, CdCO_3, FeCO_3, MgCO_3, and MnCO_3,Journal of Physics and Chemistry of Solids, 1998, 59(5): 703~712
    [56] Zheng Wen-Chen, Wu Shao-Yi, Dong Hui-Ning, Tang Sheng. Spin Hamiltonian parameters and local structures for Co2+ ions in calcite-type trigonal carbonates MCO_3(M=Co, Cd and Ca).Journal of Magnetism and Magnetic Materials, 2004, 268 : 264~270
    [57] William E. DickJr. Efficiency of Cadmium Carbonate as Anaryl Glycosidation Catalyst: Effects of Lot Variations on Product Compositions. Carbohydrate Research, 1979, 70(2): 313~318
    [58]韩坤,赵志慧,相铮.碳酸镉@二氧化硅菱形体核壳结构以及二氧化硅菱形体空心结构微粒的制备.高等学校化学学报, 2006, 27(6): 1149~1152
    [59]邓建成,罗先平,夏殊.间接沉淀煅烧法制备镉红的研究.无机盐工业, 2000, 32(3): 5~6
    [60]杨华明,张科,史蓉蓉等. CdO纳米晶的固相合成及晶化动力学研究.材料科学与工程学报. 2005, 23(4): 503~506
    [61] S. Ashoka, P. Chithaiah, G.T. Chandrappa.. Studies on the synthesis of CdCO_3 nanowires and porous CdO powder. Materials Letters, 2010, 64: 173~176
    [62] Azadeh Askarinejad, Ali Morsali. Syntheses and characterization of CdCO_3 and CdO nanoparticles by using a sonochemical method. Materials Letters, 2008, 62: 478~482
    [63]吕娟.纳米氧化铜直接沉淀法制备工艺及表面改性研究: [学位论文].西安:西北大学, 2008
    [64] E. E.弗林特.结晶学原理.北京:高等教育出版社, 1956. 151~159
    [65]武汉大学.分析化学.北京:高等教育出版社, 2000. 176~193
    [66]殷立雄,王芬,冯海涛.均匀沉淀法制备纳米粉体的研究的综述.陕西科技大学学报, 2005, 23(6): 135~137
    [67]李煜,王朝阳,陈云华等. Pickering乳液聚合制备核-壳结构PS-SiO2复合微球.功能高分子学报, 2009, 22(2): 154~158
    [68]杜文琴,巫莹柱.接触角测量的量高法和量角法的比较.纺织学报, 2007, 28(7): 29~32
    [69]闻辂等编著.矿物红外光谱学.重庆:重庆出版社, 1989. 55~61
    [70]地质部情报研究所编.矿物岩石的可见-中红外光谱及其应用.北京:地质出版社, 1980, 27~37
    [71]梁淑敏.乙烯基三乙氧基硅烷改性SiO2纳米粒子的研究.化学工程师, 2004, 18(7): 15~17
    [72] Hodroj A, Chaix-Pluchery O, Audier M, Gottlieb U, Deschanvres J-L. Thermal annealing of amorphous Ti-Si-O thin films. Journal of Materials Research, 2008, 23 (3): 755~759
    [73]陈广大,褚海斌,李雪梅.溶剂热法制备硫化镍空心微球.化学学报, 2006, 64: 85~88
    [74] Yongjun He, Kanshe Li. Novel Janus Cu2(OH)2CO_3/CuS microspheres prepared via a Pickering emulsion route. Journal of Colloid and Interface Science, 2007, 306: 296–299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700