碳化法制备硅钢级氧化镁的工艺过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化镁是一种重要的无机化工材料,广泛应用在化工、医药、食品添加、耐火材料、橡胶行业、电子、航天、电力等领域。我国虽然镁资源丰富,但由于长期的开采利用和初级加工产品的出口,高品位矿源越来越少,而且从近些年氧化镁的发展趋势看,产品也趋向于高纯化、精细化。所以改善氧化镁的制备工艺,合理开发利用低品位矿源制备高纯度氧化镁对我国镁质材料工业的发展有着重要意义。
     本论文主要对以轻烧镁为原料碳化法制备硅钢级氧化镁的工艺过程进行了研究,碳化法制备氧化镁的主要过程为:将轻烧镁经过消化、碳化制得碳酸氢镁水溶液(重镁水),采用络合掩蔽的方法脱除钙、铁等杂质,络合掩蔽杂质后的重镁水经热解、煅烧等过程制得产品氧化镁。研究了消化过程固液比和消化时间等因素对重镁水中各组分浸出率的影响;考察了碳化时间和碳化固液比对重镁水中各组分浓度的影响;对络合掩蔽除杂过程中络合剂用量对杂质脱除的效果和络合剂联合使用的效果进行了探讨;并对热解温度、减压热解和热解前加入添加剂对热解产物沉淀率和最终产品的粒度和形貌的影响也进行了探讨。通过以上的研究确定了适宜的工艺条件,即:消化时,固液比为80g/L,消化时间60min;碳化时,固液比为20g/L,碳化时间为60min,可以得到高镁浓度的重镁水。在掩蔽除杂阶段,200mL重镁水中加入10mL1+1三乙醇胺进行掩蔽除铁,热解阶段在常压90℃条件下热解20min,产品氧化镁中的MgO含量为99.3%,CaO含量0.31%,Fe2O3含量0.042%;或使用草酸和柠檬酸作为复合络合剂时,在200ml重镁水中加入1g柠檬酸和2g草酸,最终产品氧化镁中的MgO含量为98.2%,CaO含量0.24%,Fe2O3含量0.030%;在此条件下得到的氧化镁产品的粒径主要分布在3-4μm的范围内,符合硅钢级氧化镁的化学质量标准和粒度指标。在减压状态下65℃热解20min,重镁水中的镁沉淀率可以达到常压0℃热解的水平,但最终产品氧化镁的粒径主要分布在20-40μm的范围内,产品粒度达不到硅钢级氧化镁的标准。
Magnesium oxide is a kind of important inorganic chemical materials, which is widely used in chemical industry, medicine, food adding, refractory materials, rubber industry, electronics and aviation, etc. Although magnesium resources are rich in our country, the high grade sources get less and less due to a long-term exploitation and primary products exporting. In view of developing of magnesium oxide in recent years, the products tend to high purification and fine. Therefore, it has important significance to improve the preparation of magnesium oxide process and reasonablely develop low grade sources for preparing high purity magnesia products.
     This study is involved in the preparation process of silicon-steel magnesium oxide with carbonization method. The main preparation processes of magnesium oxide using light-burned magnesia as raw materials by carbonization method are as follows. Frist, light-burned magnesia was hydrated and carbonated to obtain magnesium bicarbonate liquor.Then impurities Fe and Ca in magnesium bicarbonate liquor were covered by using a complex method. After that, the treated liquid was pyrolyzed to obtain basic magnesium carbonate which was calcined to get magnesia. The effects of hydration recation time and solid-liquid ratio on the component concentrations of magnesium bicarbonate liquor were discussed. The effects of reaction time and solid-liquid ratio of carbonization on the component concentrations of magnesium bicarbonate liquor were also investigated. Meanwhile the impacts of complexing agent addition and composite complexing agent addition on the removing impurities Fe and Ca were also investigated, respectively. We also gave an insight into the effects of pyrolytic temperature, pyrolytic pressure and adding additives on the particle size and deposition rate of magnesium bicarbonate liquor. Baesd on the above mentioned researches, the suitable processing conditions were obtained. The obtained results indicate that the preferred solid-liquid ratio and reaction time of hydration are80g/l and60min, while the favorable solid-liquid ratio and reaction time of carbonization are20g/l and60min. In the process of impurities removing,10ml triethanolamine(1:1) as a complexing agent was added into200ml magnesium bicarbonate liquid to cover impurities Fe, and then the treated liquid was pyrolyzed at90℃for20min to afford basic magnesium carbonate which was calcined to obtained final magnesia with99.3wt.% MgO,0.31wt.%CaO and0.042wt.%Fe2O3. Meanwhile, when using citric acid and oxalic acid as a composite complexing agent, MgO content of the final product magnesia obtained is more than98.2wt.%. CaO content0.24wt.%and Fe2O3content0.030wt.%under the condition of200ml magnesium bicarbonate liquid with adding1g citric acid and2g oxalic acid. Under the above preferred conditions, the grain size of the final product magnesia is mainly around3-4μm which meets the requirement of quality standard for silicon-steel magnesia. When pyrolizing the treated liquid at65℃for20min at low pressure, the magnesium prepicitation rate of magnesium bicarbonate liquor can reach the level of atmospheric. However, the main grain size of the final magnesia ranges from20to40um which can't meet the quality requirement of silicon-steel magnesia.
引文
[1]乌志明,马培华,镁、镁资源与镁质材料概述[J],盐湖研究,2007,04,65-72
    [2]中国产氧化镁左右国际市场[J],建材地质,1997,02,49
    [3]吴玉华,国外氧化镁的供需情况及市场预测[J],国外耐火材料,1999,07,3-15
    [4]胡庆福,镁化合物生产与应用[M],北京,化学工业出版社,2004
    [5]石建军,李银文,王鹏,等,中国菱镁矿选矿现状分析[J],轻金属,2011,S1,51-53
    [6]全跃,镁质材料生产以应用[M],北京,冶金工业出版社,2008
    [7]张兴业,杨林,杨帆,我国镁钙质耐火材料的生产和使用现状[J],山东冶金,2006,04,28-30
    [8]张兴业,我国合成镁钙耐火原料及制品的发展[J],耐火材料,2009,02,131-135
    [9]胡庆福,宋丽英,胡晓湘,2011,镁化合物工业产品及其发展趋势[C],2011年全国镁盐行业年会暨环保·阻燃·镁肥研讨会,中国辽宁营口
    [10]李定成,水镁石开发现状及其生产金属镁的应用前景[J],建材地质,1995,06,43-48
    [11]丁文江,彭立明,付彭怀,等,2007,高性能镁合金发展现状与趋势[C],第五届中国有色合金及特种铸造国际会议,中国上海
    [12]佟国栋,高性能镁合金的研究及其在汽车工业中的开发应用[C],吉林大学,2011,
    [13]左天明,我国金属镁工业的现状及对策[J],中国商检,1996,04,36-37
    [14]刘文龙,王淑琴,镁合金应用及发展论述[J],才智,2011,27,250
    [15]胡庆福,宋丽英,刘宝树,中国工业镁化合物生产现状与展望[J],无机盐工业,2009,04,8-10+34
    [16]Fellner, P., Hives, J., Khandl, V., et al., Preparation of magnesium hydroxide from nitrate aqueous solution[J], Chemical Papers,2011,4,454-459
    [17]戈海文,邓天龙,姚燕,等,我国活性氧化镁生产工艺研究进展[J],广东微量元素科学,2010,12,29-34
    [18]明常鑫,翟学良,池利民,超细高活性氧化镁的制备、性质及发展趋势[J],无机盐工业,2004,06,7-9
    [19]Li, K., Preparation of electrical grade magnesia powder, involves mixing mixture of rare-earth tantalum, samarium, praseodymium/magnesium alloy, and magnesium silicate with magnesite ore, and smelting, Preparation of electrical grade magnesia powder, involves mixing mixture of rare-earth tantalum, samarium, praseodymium/magnesium alloy, and magnesium silicate with magnesite ore, and smelting, CN102276170-A
    [20]Khan, M. M. A. and Rafiuddin, Preparation and study of the electrochemical properties of magnesium phosphate membranes [J], Journal of Applied Polymer Science,2012, E338-E346
    [21]焦建丽,菱镁矿制备特种硅钢级氧化镁的研究[J],化工科技市场,2010,03,39-40+45
    [22]李俊丽,徐徽,陈白珍,等,盐湖卤水制备硅钢级氧化镁的研究[J],湖南有色金属,2008,01,41-44
    [23]王亚芳,特种硅钢级氧化镁的制备研究[C],大连理工大学,2006,
    [24]Maddah, B., Aminifar,. A. and Chalabi, H., Synthesis of nano-MgO and identification of the destructive product of its reaction with 2-chloroethyl phenyl sulfide[J], Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry,2011,11,1587-1591
    [25]白云山,白云石、菱镁矿生产高纯度碳酸镁和氧化镁新工艺研究[C],陕西师范大学,2005,
    [26]Choudhury, S. K. R., Dey, M. and Murthy, D. S. R.,Improved process for production of high purity magnesia from magnesite, Improved process for production of high purity magnesia from magnesite, IN188661-B
    [27]Suvorov, S. A. and Nazmiev, M. I., Refractories based on high purity magnesia-lime raw material[J], Refractories and Industrial Ceramics,2007,4,284-289
    [28]茅琦,赵伶俐,周琪权,等,水溶液法制备氧化镁晶须的工艺研究[J],化工技术与开发,2011,08,25-27
    [29]Kim, H. W., Kong, M. H. and Yang, J. H., Catalyst-free growth of magnesium oxide whiskers and their characteristics[J], Acta Physica Polonica A,2008,3,1021-1024
    [30]Wei, Z. Q., Qi, H., Ma, P. H., et al.,A new route to prepare magnesium oxide whisker[J], Inorganic Chemistry Communications,2002,2,147-149
    [31]Liu, X., Technology for preparing high purity magnesia by high concentration magnesium oxide solution, Technology for preparing high purity magnesia by high concentration magnesium oxide solution, CN1413940-A; CN1193956-C
    [32]王朋,胡小芳,胡大为,无机阻燃剂氢氧化镁的研发进展[J],塑料助剂,2007,06,5-8
    [33]胡庆福,宋丽英,胡晓湘,卤水一碳酸铵法制取活性氧化镁工艺研究[J],盐业与化工,2007,06,17-20+37
    [34]李俊梅,赵志刚,宋玉军,轻质氧化镁制备新工艺条件优化[J],化工冶金,1998,01,68-72
    [35]郑军,陈克文,孙国新,卤水-氨法纳米氢氧化镁的制备研究[J],化学工业与工程,2010,01,34-37
    [36]Yang, J. H., Qiu, J. F. and Li, J. T., Preparation of single-phase magnesium silicon nitride powder by a two-step process[J],Ceramics International,2011,2,673-677
    [37]曾贵玉,黄辉,徐容,等,2005,溶胶-凝胶法制备纳米含能材料[C],第四届全国纳米材料会议,中国山东省烟台市
    [38]刘晓明,岳岩君,周迎春,等,溶胶-凝胶法制备纳米氧化镁[J],辽宁化工,2005,09,380-381
    [39]刘宝树,杜振雷,赵华,等,2008,氢氧化镁除铁工艺的研究[C],2008年中国镁盐行业年会暨节能减排新技术推介会,中国河北石家庄
    [40]司卫华,刘洪燕,张燕,等,碳酸镁产品除铁工艺的研究[J],当代化工,2009,5,2
    [41]孟广寿,郑维亚,段德炳,我国镁发展形势分析[J],世界有色金属,1995,12,18-19+14
    [42]马晓芳,张保林,超细氢氧化镁制备工艺研究[J],化工矿物与加工,2010,04,24-26
    [43]曹颖,王国胜,纳米氧化镁制备技术的研究进展[J],辽宁化工:,2008,01,40-43
    [44]徐日瑶,彭志宏,国内外镁工业技术差距的剖析[J],轻金属,1993,08,34-39
    [45]柯淑琴,我国镁工业的回顾与展望[J],轻金属,1996,01,37-41
    [46]张乐彬,轻质氧化镁生产新工艺[J],安徽化工,1987,01,43
    [47]胡庆福,刘宝树,胡晓湘,等,我国镁化合物进出口现状及其发展浅析[J],中国非金属矿工业导刊,2002,06,3-7
    [48]吴芸芸,易德莲,梁永和,镁钙砂碳酸化反应机理研究[J],武汉科技大学学报(自然科学版),2006,02,122-125
    [49]Chen, X.-G., Lue, S.-S., Li, X.-T., et al., Preparation of Magnesium Hydroxide Chloride Hydrate Nanowires Using Calcined Dolomite[J], Journal of Inorganic Materials,2011,2,214-218
    [50]易小祥,杨大兵,李亚伟,碳化法从巴盟菱镁矿中提取高纯氧化镁[J],矿产保护与利用,2008,02,19-22
    [51]魏盼中,周涛,许海曼,等,2008,高岭土除铁增白技术的研究[C],中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会,中国上海
    [52]许超,夏北城,林颖,EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响[J],水土保持学报,2009,04,146-151
    [53]武汉大学,分析化学[M],北京,高等教育出版社,2000
    [54]张培萍,刘丽华,董峻岭,等,草酸钙的形成机理及影响因素[J],白求恩医科大学学报,2001,05,567-569
    [55]凌程凤,高雪艳,杨姣,等,草酸镁分解法制备纳米氧化镁[J],无机盐工业,2005,09,29-30+34
    [56]武艳妮,左白艳,李领,等,工业草酸与氢氧化镁制备纳米氧化镁的研究[J],无机盐工业,20]1,07,29-31
    [57]郭小水,刘家祥,李敏,等,2008,重镁水真空热解法制备高纯氧化镁[C],2008年中国镁盐行业年会暨节能减排新技术推介会,中国河北石家庄
    [58]朱国才,孟广洲,原绍刚,碱式碳酸镁的形成过程及氧化镁含量控制[J],非金属矿,2002,3,3
    [59]洪瑞祥,剧鹢莲,陈素琴,等,三水碳酸镁及其水解物——碱式碳酸镁某些物理化学性质的研究[J],化工学报,1983,02,156-161
    [60]郭小水,刘家祥,李敏,等,重镁水添加乙醇热解制备高纯氧化镁[J],有色金属,2009,01,77-80
    [61]陆彩云,陈敏,李月圆,等,由低品位菱镁矿制备高纯碳酸镁的研究[J],矿冶工程,2011,01,51-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700