祁连山青海云杉林线树木生长、更新的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林线作为郁闭森林和高山草甸之间的生态过渡带,对自然环境因子变化和人为干扰异常敏感。目前,虽然热量(温度)控制、环境胁迫、生长受限、繁殖更新障碍、碳平衡失调等假说能解释一定地域的高山林线现象,但并不能作为普遍适应的林线理论。本论文通过对祁连山阴坡建群种青海云杉林线自然更新和人工更新研究,探索影响祁连山林线更新的主要因素,以及人工更新对林线位移的影响和气候变暖条件下林线的变化趋势。
     本论文主要研究了祁连山地区近50年来的气候变化、西水林区不同海拔的青海云杉幼苗更新、树年轮和枝条生长,以及在林线海拔以上青海云杉播种试验和幼苗移栽,分析了青海云杉林线树木生长、更新的影响因素,主要研究结果如下:
     1.祁连山西水林区周边气象台站气象资料分析显示,52年来该地区年均温升高显著;降水略有增加,全年降水主要分布在5、6、7、8、9月份,占到全年降雨量的82%。实验区不同海拔5或6月份-10月份大气温度和土壤温度都在0℃以上,大气和土壤温度都随着海拔升高而降低,每升高100m温度降低0.44℃左右。林线海拔3300m最热月平均温度13.60℃高于全球林线海拔最热月平均温度10℃,林线根际温度6.22℃与全球林线根际温度6.7±0.80℃相同。
     2.土壤有机质、全氮、速效磷和速效钾含量随着土层加深而减小;pH值随着土层加深而增大;全磷含量在各土层中变异性较小。有机质和全氮含量随着海拔升高而降低,全钾含量和pH值随着海拔的升高而减小;而速效磷和速效钾含量随着海拔的升高没有明显的规律。
     3.随着海拔升高,青海云杉的生长表现为从水分制约向热量制约转变的趋势。低海拔处的青海云杉年生长量较高海拔处大。水分是下限林线青海云杉的制约因子,而随着海拔的升高热量条件逐渐成为主要的制约因子。生长季的秋季结束时间对青海云杉的生长制约较大。
     4.海拔2900m和3000m的青海云杉种群林木生长呈现近倒“J”型结构,种群林木生长处于稳定状态;海拔3100m的种群发展呈现线性结构,种群开始出现衰退的现象;海拔3200m和3300m种群林木生长较年轻旺盛,无衰老的苗木出现,3200m处为波浪形变化,说明此海拔区段青海云杉种群发展波动较大。
     5.随着海拔梯度的增加,青海云杉林更新幼苗数量呈现逐渐降低的趋势,海拔3200m以下的更新幼苗以中低高度级(<25cm、25~55cm、>105cm)为主,且海拔越低幼苗数量越多,85~105cm高度级的幼苗缺少,而海拔3300m各高度级幼苗数量相差不大且更新情况较差,甚至某些高度的幼苗缺失。
     6.随着海拔的升高,更新幼苗的分布格局由随机分布向集群分布变化。海拔2900m,<25cm的幼苗仅为弱聚集性,表现为随机分布;85cm~105cm的幼苗为均匀分布;在海拔3000m上,85cm~105cm和>105cm两个高度级的幼苗表现为随机分布;3100m,3200m和3300m三个高海拔内,幼苗均呈现集群分布。不同海拔高度<25cm的幼苗的生长主要与海拔梯度、土壤含水量、有机质、总地表覆盖度、活地被物盖度存在显著正相关,而与全钾、大气温度显著负相关;影响25cm~55cm和55~85cm的幼苗与土壤pH值、大气温度、全钾呈正相关,与有机质、活地被物盖度、总地表覆盖度呈负相关;影响85cm~105cm和﹥105cm的幼苗与大气温度、乔木层郁闭度、全钾呈正相关,与土壤pH值、土壤含水量、海拔梯度呈负相关。
     7.从林线3300m到海拔3500m,播种试验发现,青海云杉种子均可发芽,并随海拔升高,发芽率降低,但无法越冬,而5年左右生青海云杉幼苗移栽,从3300到3700m均能成活,表明在祁连山高海拔地区种子发芽和幼苗成活是限制林线更新的一个重要环节。随着海拔的升高,人工更新幼苗生长越来越慢,长势变差,死亡率升高,海拔对幼苗生长影响明显。高海拔低温可能是限制种子发芽和幼苗成活的关键因素。
     8.随海拔升高青海云杉叶片组织中NSC含量持续增加状态,随海拔升高温度降低青海云杉的的生长并未受到碳限制。
     在气候变暖条件下,随着高海拔地区温度升高,祁连山青海云杉生长加快,低温对青海云杉种子发芽和幼苗成活的限制影响减小,有利于林线向高海拔扩展。
Timberline, as the ecotone between alpine vegetations and subalpine vegetations ofmountains, is sensitive to the environment change and human disturbance. There is nouniversal theory of the timberline, although the hypothesis, such as energy(temperature)controling, environmental stress, growth limitation, reproductive disorder and carbonimbalance, could partially explain the dynamics of the timberlines in limited regions. Thenatural and man-made regeneration of Picea crassifolia at timeberline in the Qilian montainswas investigated in the dissertation to (a) understand the main impact factors of reproductivity,(b) reveal the influence of artificial regeneration on the moving of timberline,(c) study thechange trend of timberline under climate warming.
     The thesis mainly study the climate change in the past fifty years of Qilian montains, theseedling regeneration, growth of tree-ring and shoot of adult trees of Picea crassifolia in theXishui forest region, seeding and transplanting of seedling of Picea crassifolia over timberline,and analyses the influence elements of the growth and regeneration of Picea crassifolia. Themajor achievements of this study are summaried as follows:
     1. According to the analysis on temperature information of Xishui forest region, theannual average temperature increased significantly in the past fifty-two years, and the annualaverage precipitationis also increased slightly, where82%of rainfall in total year isconcentrated from May to Septermber. The atmospheric and soil temperature in differentelevations are above0℃from May or June to October and decreses0.44℃with the increasingof elevation in per100m. The temperature in warmest month in the timberline is13.60℃thatis higher than the globle mean temperature at timberline(10℃). The soil temperature in thetimberline is6.22℃that is similar with the globle soil temperature (6.7±0.80℃).
     2. The content of organic matters, total nitrogen, rapid available phosphorus and rapidavailable potassium decreased with the increase of soil depth, while the pH value increased with the increase of soil depth, and the total phosphorus contents didn’t show significantvariation with different soil depth. The content of organic matters and total nitrogen decreasedwith the increase of elevation, while the content of total potassium and pH value decreasedwith the increase of elevation, and the content of rapid available phosphorus and potassiumdidn’t show significant variation with different elevation.
     3. The growth limitation of Picea crassifolia varied from water to thermal with theincrease of elevation. The annual growth of Picea crassifolia at the lower elevation was biggerthan that in the higher elevation. Water was the limite factor for Picea crassifolia at the lowestelevation while thermal condition became the limite factor for it with the increase of elevation.The ending of growth time in the autum had great influence on the growth of Picea crassifolia.
     4. The growth of tree populations at the elevation of2900m and3000m was in stablestatus, which looks like the reverse “J”; the tree populations at the elevation of3100m began todecrease linearly; the tree at the elevation of3200m to3300m were vigorous with no died trees,and the tree populations at the elevation of3200m was waved, which indicated that thedevelopment of the Picea crassifolia population was in large change.
     5. The quantity of the regenerated seedlings decreased with the rising of elevation. In theregion lower than the elevation of3200m, the seedlings was of middle or low height (<25cm,25~55cm,>105cm). And the lower the elevation was, the more short seedlings there was. Theseedlings of the height between85and105cm was rare. In the region of the elevation of3300m, the quantity of seedlings of different height was similar, and the regeneration there wasnot good, where did not exsit seedlings of separate height.
     6. The regenerated seedlings varied from random distrbution to cluster by the rising ofelevation. At the elvation of2900m, the aggregation of the seedlings those height was below25cm distributed randomly, and the height of85~105cm distributed evenly; At the elvation of3000m, the aggregation of the seedlings of height in85~105cm and upper than105cmdistributed randomly; At the elvation of3100m,3200mm and3300mm, the aggregation of theseedlings showed cluster distrbution. The growth of seedlings those height was below25cmsignificantly correlated positively to the coefficient of the varation of rapid available potassium, coverage of dead litter, transmittance of arbor, the coverage of shrub, soil moisture content andthe total ground cover were bigger and negtively to the total potassium and the atmospherictemperature. The growth of seedlings of height in25cm~55cm and55~85cm positivelycorrelated to soil PH, atmospheric temperature and total potassium, and negatively to theorganic matters, coverage of ground vegetation and total ground coverage. The growth ofseedlings of height in85cm~105cm and upper than105cm positively correlated toatmospheric temperature, tree layer crown density and total potassium, and negatively to thesoil PH, soil moisture content and altitudinal gradients.
     7. The articicial seedling experiments of Picea crassifolia in forest line altitude fromelevation of3300to3500m showed that the seedlings could germinate but can’t survival inwinter, and the higher the elevation was, the lower the germination ration was. Howere,five-years old transplanted Picea crassifolia seedling could survive from3300to3700m whichindicated that seed germination and seedling survival were important aspects that limited theupdation of timberline. The higher the elevation was, the slower the growth of the artificialregenerated seedlings was, the worse the growth was, and the higher the death rate was, whichindicated that the growth of the seedlings was significantly affected by elevation. The lowertemperature at high elevation might be the key factor that limited seed germination andseedling survival.
     8. The NSC content of leaves of Picea crassifolia exhibited a sustained increase by theincrease of the elevation. The growth was not affected by the carbon content as the risingelevation and decreasing temperature.
     Under the global warming, with the increase of temperature in the rigion of high elevation,the growth of Picea crassifolia speed up, the influence of lower temperature at timberline onthe seed germination and seedling survival of Picea crassifolia could be reduced, which wasgood for the expansion of timberline to the higher elevation.
引文
Adrian Kammer, Frank Hagedorn, Ilya Shevchenkow, Jens Lrifeldz,Georg Guggenberger, TamaraGoryacheva, Andreas Rigling and Pavel Moiseev.2009. Treeline shifts in the Ural mountains affectsoil organic matter dynamics. Global Change Biology,15,1570–1583
    Agyeman VK, Swaine MD, Thompson J.1999. Response of tropical forest tree seedlings to irradiance andthe derivation of a light response index. Journal of Ecology,87:815-827.
    Arctic timberline. Canadian Journal of Forest Research,30:769-777.
    Arno S.F.1984.Timberline: Mountain and arctic forest frontiers. The Mountaineers, Seattle:1-302
    Aulitzky, H.1961. Lufttemperur und Luftfeuchtigkeit. Mitteilung der Forstlichen BundesversuchsanstaltMariabrunn59:105-125
    BeckerA. Bugmann H.2001. Global change and mountain regions: the mountain research initiative. IGBPReport49, GTOS Report28, IHDP Report13.
    Berg B, Mcmlaugherty C. Plant litter: decomposition, humus formation, carbon sequestration. New York:Springer Verlag,2003.
    Bray JR, Gorham E.1999. Litter production in forests of the world. Advance in Ecological Research,2:101-157.
    Brockmann-Jerosch H.1919. Baumgrenze und Klimacharakter. Beitr. Geobot. Landesaufnahme6
    C.KOrner.2008. Alpine Ecosystems and the High-Elevation Treeline.Encyclopedia of Ecology:138-144
    Chapin SF III(1978)Phosphate uptake and nutrient utilization by Barrow tundra vegetation. In: TieszenLL(ed)Vegetation and production ecology of an Alaskan arctic tundra. Ecological studies.Springer,Berlin Heidelberg New York,29:483-507.
    Chen F., Yuan Y. and Wei W.2011. Climatic response of Picea crassifolia tree-ring parameters andprecipitation reconstruction in the western Qilian Mountains, China Journal of Arid Environments,75(11):1121-1128.
    Cui H T, Liu H Y,Dai J H, et al.2005. Research of mountainous ecology and alpine timberline. Beijing:Science Press.
    Cui M and Smith WK.1991.Photosynthesis water relations and mortality of abies laciocarpa seedlings duringnatural establishment. Tree Physiology,8:37-46.
    D. Montesinos, P. García-Fayos and M. Verdú.2010. Relictual distribution reaches the top: Elevationconstrains fertility and leaf longevity in Juniperus thurifera. Acta Oecologica,36(1):120-125
    Danby R K, Hik D S.2007. Variability contingency and rapid change in recent subarctic alpine tree linedynamics. Journal of Ecology,95:352-363.
    Danby RK, Hik DS.2007. Vairability,contingency and rapid change in recent subarctic alpine tree linedynamics. Journal of Ecology,95:352-363.
    Daubenmire R F.1954. Alpine timberlines in the Americas and their interpretation. Butler UniversityBotanical Studies,11:119-136.
    D’Alessandro CM, Saracino A, Borghetti M.2006. Thinningaffects water use efficiency of hardwoodsaplingsnaturally recruited in a Pinus radiata D. Don plantation. Forest Ecology and Management,222:116–122.
    Diemer M.2002. Population stasis in a high-elevation herbaceous plant undermoderate climate warming.Basic and App lied Ecology,3:77-83.
    Fang, K., Gou, X. and Chen, F., et al.2012. Tree growth and its association with climate between individualtree-ring series at three mountain ranges in north central China Dendrochronologia,30(2):113-119.
    Germino M A, Smith W K.2002. Conifer seedling distribution and survival in an alpine treeline ecotone.Plant Ecology,162:157-168.
    Gosz JR. Ecological functions in a biome transition zone: translating local responses to broad-scaledynamics.1992. P55-75in Hansen,A.J., and F. di Castri,editors.Landscape Boundaries: Consequencesfor Biotic Diversity and Ecological Flows. Springer, N.Y.
    Grace J, Berninger F, Nagy L.2002. Impacts of climate change at the treeline. Annals of Botany,90:537-554.
    Grace, J.1977. Plant response to wind. Academic press, London.
    Grassi G, Minotta G, Tonon G, Bagnaresi U.2004. Dynamicsof Norway spruce and silver fir naturalregenerationin a mixed stand under uneven–aged management.Canadian Journal of Forest Research,34:141–149.
    Gray AN, Spies TA.1997. Microsite controls on tree seedling establishment in conifer forest canopy gaps.Ecology,78:2458-2473.
    Griggs R F.1946. The timberline of north America and their interpretation. Ecology,27:275-289.
    Guillemette M, Stephen J B.2001. Carbon isotopes in Ombrogenic peat bog plants as climatic indicators:calibration from an altitudinal transect in Switzerland. Organic Geochemistry,32:233-245.
    Handa I T, KOrner C, H ttenschwiler S.2005. A test of the treeline carbon limitation hypothesis by in situCO2enrichment and defoliation. Ecology,86:1288-1300.
    Handa I T, KOrner C, H ttenschwiler S.2006. Conifer stem growth at the altitudinal treeline in response tofour years of CO2enrichment. Global Change Biology,12:2417-2430.
    H ttenschwiler S, Handa I T, Eqli L.2002. Atmospheric CO2enrichment of alpine treeline conifers. NewPhytologist,156:365-375.
    Hoch G, KOrner Ch.2003. The carbon charging of pines at the climatic treeline: a global comparison.Oecologia,135:10-21.
    Hoch G, Popp M, KOrner C.2002. Altitudinal increase of mobile carbon pools in Pinus cembra suggestssink limitation of growth at the Swiss treeline. Oikos,98:361-374.
    Holm T.1927. The flower of Chimaphila. Rodora,29:1-6.
    Holtmeier F K.1994. Ecological Aspects of climatically-caused timberline fluctuations. in Martin Beniston(Editor) Mountain Environment in Changing Climates. Rautledge. London. New York,220-233.
    Holtmeier F K.1994. Ecological aspects of dimatically-caused timberline fluctuations. In: Beniston M, eds.Mountain Environrnent in Changing Climates. London and New York,220-233.
    Holtmeier FK.2003. Mountain timberline: ecology, patchiness and dynamics. Kluwer Academic PublishersDordrecht Boston London.
    Holtmeier. FK.1974. Geokologische beobachtungen und studien an der subarktischen und alpinenWaldgrenze in vergleichender sicht(n rdliches fennoskandien/zentralalpen). Erdwiss.Forschg.Ⅷ
    Holzmann HP,Haselwandter K.1988. Contribution of nitrogen fixation to nitrogen nutrition in an alpinesedge community (Caricetum curvulae). Oecologia76:298-302
    Hulme M, Osborn T J, Johns T C. Precipitation sensitivity to global warming: Comparison of observationwith HadCM2simulation[J]. Geophys Res Lett,1998,25:3379~3382.
    IPCC. Climate change2001: the science of climate change. Cambridge: Cambridge University Press,2001.
    IPCC. Summary for Policymakers of Climate Change2007: The Physical Science Basis.Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange.Cambridge: Cambridge University Press,2007.
    Jobbagy E G, Jackson R B.2009. Global controls of forest line evevation in the northern and southernhemispheres. Global Ecology and Biogeography,9:253-268.
    Jones RH, Allen BP, Sharitz RR.1997. Why do early-emerging tree seedlings have survival advantages? Atest using Acerrubrum(Aceraceae).American Journal of Botany,84:1714-1718.
    Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation: methodsand illustrations[J]. Int J Climatol,1996,16:361~377.
    Karlsson TC, Nordell KO.1996. Effects of soil temperature on the nitrogen economy and growth ofmountain birch seedling near its presumed low temperature distribution limit. Ecoscience,3:183-189.
    Korner C, Paulsen J.2004. A world-wide study of high altitude treeline temperatures. Journal ofBiogeography,31:713-732.
    Korner C.1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia,115:445-459.
    Korner C. Alpine plant life: functional plant ecology of high mountain ecosystems. New York: Springer,1999.
    Korner C.2003. Carbon limitation in trees. Journal of Ecology,91:4-17.
    Korner Ch.1989. The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia81:379-391.
    Korner Ch, Pauslsen J.2004. A world-wide study of high altitude treeline temperatures. J.Biogeogr,31:713-732.
    Korner Ch.1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer VerlagBerlin Herdelberg.
    Korner Ch.Cochrane PM.1985. Stomatal responses and water relations of Eucalyptus pauciflora in summeralong an elevational gradient. Oecologia,66:443-455.
    Korner C.1998. A re-assessment of high elevation treeline positions and their explanation.Oecologia,115:445-459.
    Kullman L.2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes,1973-2005:implication for tree line theory and climate change ecology. Journal of Ecology,95:41-52.
    Kullman L.1988. Holocene history of the forest-alpine tundra ecotone in the Scandes Mountains (CentralSweden). New Physiology,108:101-110.
    Kullman L.2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes,1973-2005:implications for tree line theory and climate change ecology. Journal of Ecology,95:41-52.
    Larson J A.1974. Ecology of the north continental forest border in Ives JD&Barry R G Arctic And AlpineEnvironment. Methuon,341-370.
    Lloyd A H, Fastie C L.2002. Spatial and temporal variability in the growth and climate response of treelinetrees in Alaska. Climate Change,52:481-509.
    MacDonald GM, Sceicz J M, Claricoates J.1998. Response of the central Canadian treeline to recentclimatic changes. Annals of the Association of American Geographers,88:183-208.
    M kinen H, NOjd P, Mielik inen K.2000. Climatic signal in annual growth variation of Norway sp ruce(Picea abies) along a transect from central Finland to the Arctic timberline. Canadian Journal of ForestResearch,30:769-777.
    Makinen H, Nojd P, Mielikainen K.2000. Climatic signal in annual growth variation of Norway apruce(Picea abies) along a transect from central finland to the
    Malanson G P,Butler D R. Tree tundra competitive hierarchies, soil fertility gradients,and treeline elevationin Glacier-National-Park, Montana.Physical Geography,15:166-180.
    Martens SN, Breshears DD, Meyer CW.2000. Spatial distributions of understory light a long the grassland/forest continuum: effects o f cover, height, and spatial pattern of tree canopies. Ecological Modelling,126:79-931.
    McDonald PM, Reynolds PE.1999. Plant community development after28years in small group selectionopenings. US Forest Service Research Paper, PSWRP-241.
    McGuire JP, Mitchell RJ, Moser EB, et al.2001. Gaps in a gappy forest: plant resources, longleaf pineregeneration, and understory response to tree removal in longleaf pine savannas. Canadian Journal ofForest Research,31:765-778.
    Melanie A. Harsch, Philip E.Hulme, Matt S. McGlone and Richard P. Duncan.2009. Are treelines advancing?A global meta-analysis of treeline response to climate warming. Ecology Letters,12:1040–1049
    Miehe, G and Miehe, S.1994. Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenlolgia,24:53-110.
    Mooney, H.A., Wright, R.D., Strain, B.R.1964. The gas exchange capacity of plants in relation to vegetationzonation in the White Mountains of California. Am.Miidl.Nat.,72:281-297.
    Morecroft MD,Marrs RH, Woodward FI.1992b. Altitudinal and seasonal trends in soil nitrogenmineralization rate in the Scottish Highlan. J Ecol,80:49-56.
    Morecroft MD, Woodwarf FI, Marrs RH.1992a. Altitudinal trends in leaf nutrient contents,leaf size andЭ13C of Alchemilla alpine. Funct Ecol,6:730-740.
    Munroe,J.S.2003. Hlocene timber line and palaecolimate of the northern Uinta Mountains,northeasternUtah,USA. Holocene,13(2):175-185.
    O’Brien MJ, O’Hara KL, Erbilgin N, Wood DL.2007. Overstory and shrub effects on naturalregenerationprocesses in native Pinus radiata stands. Forest Ecologyand Management,240:178–185.
    Korner C, Paulsen J. A world-wide study of high altitude treeline temperatures. Journal ofBiogeography,2004,31:713-732.
    Palma RM, Defrieri RL, Tortarolo MF, et al.2002. Seasonal changes of bioelements in litter and theirpotential return to green leaves in four species of the Argentine subtropical forest. Annals of Botany,85:181-186.
    Peng J., Gou X. and Chen F., et al.2008. Altitudinal variability of climate–tree growth relationships along aconsistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau Dendrochronologia,26(2):87-96.
    Peng J., Gou X. and Chen F., et al.2008. Difference in Tree Growth Responses to Climate at the UpperTreeline: Qilian Juniper in the Anyemaqen Mountains Journal of Integrative Plant Biology,50(8):982-990.
    Peter D P C.2002. Plant species dominance at a grassland shrub land ecotone: An individua1based gapdynamics model of herbaceous and woody species. Eco1ogical Modelling,152:5-32.
    Schulze E D, Kelliher F M, Korner C, et al.1994. Relationships among maximum stomatalconductance,ecosystem surface conductance,carbon assimilation rate,and plant nitrogen nutrition: aglobal ecology scaling exercise. Annual Review of Ecology and Systematics,25:629-660.
    Schonenberger W, Senn J, Wasem U, et a1.1995. Factors affecting establishment of planted trees, includingEuropean larch, Near the Alpine timberline [A]. Ecology and Management of Larix Forests: A LookAhead. Proceedings of an lnternational Sympo, slum, whitefish, Montana, USA. October5~9.1992[C]. General Technical Report Intermomtain Research Station. USDA Forest Service,170~175.
    Scoot N A, Binkley D.1997. Foliage litter quality and annual net N mineralization: comparison a cross northAmerican forest sites. Oecologia,111(2):151-159.
    Shi P L, KOrner C, Hoch G.2008. A test of the growth-limitation theory for alpine tree line formation inevergreen and deciduous taxa of the eastern Himalayas. Functional Ecology,22:213-220.
    Shi P L, KOrner C, Hoch G.2006. End of season carbon supply status of woody species near the treeline inwestern China. Basic and Applied Ecology,7:370-377.
    Slatyer R O, Noble IR.1992. Dynamics of montane treelines. In: Hansen A J, diCastri F, eds. LandscapeBoundaries: Consequences for Biotic Diversity and Ecological Flow. New York: Sp ringerVerlag,346-359.
    Sltyer RO.1992. Dynamics of mountain treelines. In Hanson AJ, ed landscape boundaries consequences forbiotic diversity and ecological flows M. New York: Springer-Verlag,346-359
    Stephan H ttenschwiler, William K. Smith.1999. Seedling occurrence in alpine treeline conifers: A casestudy from the central Rocky Mountains, USA Acta Oecologica,20(3):219-224.
    Stevens G C, Fox J F.1991. The causes of treeline. Annual Review of Ecosystem and Systematics,22:171-191.
    SveinbjOrnsson B.2000. North American and European treelines: external forces and internal p rocessescontrolling position. Ambio,29:388-395.
    Svensson JS, Jeglum JK.2001. Structure and dynamics of an undisturbed old-growth Norway sprue foreston the rising Bothnian coastline. Forest Ecology and Management,151:67-79.
    Sveinbjornsson B.1995. Soil crbon rind nitrogen mineralization at different elevations in the Chugachmountains of south-centra Alaska, USA. Arctic Antarctic Alpine Research,27:29-37.
    Timoney K.1995. Tree and tundra cover anomalies in the subarctic forest-tundra of northwest Canada.Arctic,48:13-21.
    Theurillat J P, Guisan A.2001. Potential impact of climate change on vegetation in the European Alps: areview. Climate Change,50:77-109.
    Tranquillini W.1979. Physiological ecology of the alpine timberline: tree existence at high altitudes withspecial reference to the European Alps. Berlin: Springer-Verlag.
    Tranquillini W.1979. Physiological Ecology of Alpine Timberline. Sp ringer-Verlag. Berlin. New York.
    Tranquillini W.1979. Physiological Ecology of Alpine Timberline. Springer-Verlag. Berlin. New York,112,118-148.
    Turner J, Singer M J.1976. Nutrientdistribution and cycling in a sub-alpine coniferous forest ecosystem.Journal of applied ecology,13(1):295-301.
    Thompson K.The Funetional Eeology of SeedBanks.//Fenner M.ed.Seeds:The Eeology of Regenerationin Plant Conununities[M].Wallinfoul,CAB Intemational.1992.
    Wang T, Zhang QB, Ma KP.2006. Treeling dynamics in relation to climatic, variability in the centralTianshan Mountains, northwestern China. GlobaI Ecology and Biogeography,15:406-415.
    W.K. Smith, D.M. Johnson and K. Reinhardt.2008. Alpine Forest. Encyclopedia of Ecology,144-153.
    Wardle P.1974. Alpine timberline. in Jack D Ives and Roger G Barry (Editors) Arctic and AlpineEnvironment. Methuon:371-402.
    Zimmermann S, Braun S, Conedera M, et al.2002. Macronutrient inputs by litter fall as opposed toatmospheric deposition into two contrasting chestnut forest stands in southern Switzerland. ForestEcology and Management,161:289-302.
    Zhu FM,An SQ, Guan B H, et al.2007. A review of ecotone: concepts, attributes, theories and researchadvances. Acta Ecologica Sinica,27(7):3032-3042.
    Zotz G, Pep in S, KOrner C.2005. No down-regulation of leaf photosynthesis in mature forest trees afterthree years of exposure to elevated CO2. Plant Biology,7:369-374.
    Zhang, Y. and Wilmking, M.2010. Divergent growth responses and increasing temperature limitation ofQinghai spruce growth along an elevation gradient at the northeast Tibet Plateau Forest Ecology andManagement,260(6):1076-1082.
    Zhang, Y., Shao, X. and Wilmking, M.2011. Dynamic relationships between Picea crassifolia growth andclimate at upper treeline in the Qilian Mts., Northeast Tibetan Plateau, China Dendrochronologia,29(4):185-199.
    白志强,刘华,张新平,刘瑞,郭仲军.新疆额尔齐斯河流域杨树幼苗天然更新影响因子分析.西北林学院学报,2011,26(1):98-102.
    蔡飞,陈爱丽,陈启常.1998.浙江建德青冈常绿阔叶林种群结构和动态的研究.林业科学研究,11(1):99-106.
    陈迪马.2006.天山云杉天然更新微生境及其幼苗格局与动态分析.新疆农业大学硕士毕业论文.
    党海山.2007.秦巴山地亚高山冷杉(Abies fargesii)林对区域气候的响应.中国科学院研究生院博士学位论文.
    勾晓华,陈发虎,杨梅学,等.2004.祁连山中部地区树轮宽度年表特征随海拔高度的变化生态学报,24(1):172-176.
    韩有志,王政权.2002.森林更新与空间异质性.应用生态学报,13(5):615-619.
    韩景军,肖文发,罗菊春.2000.不同采伐方式对云冷杉林更新与生境的影响.林业科学,36(专1):90-96.
    马姜明,刘世荣,史作民,等.2009.川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子.植物生态学报,33(4):646-657.
    李俊生,胡理乐,舒俭民,等.2012.秦岭林线树种太白红杉生态特征及其对气候变化的响应.科学出版社.
    李金良,郑小贤,陆元昌,等.2008.祁连山青海云杉天然林林隙更新研究.北京林业大学学报,30(3):124-127.
    李宁,白冰,鲁长虎.2011.植物种群更新限制-从种子生产到幼树建成.生态学报,31(21):6624-6632.
    李迈和, Norbert Kr uchi.2005.全球高山林线研究现状与发展方向,四川林业科技,26(4):36-42.
    李明财,罗天祥,朱教君,孔高强.2008.高山林线形成机理及植物相关生理生态学特性研究进展.生态学报,28(11):5583-5591.
    梁晓东,叶万辉.2001.林窗研究进展.热带亚热带植物学报,9(4):355-364.
    刘强,彭少麟.2010.植物凋落物生态学.北京:科学出版社,2010.
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科学出版社,231-260.
    彭剑峰,勾晓华,陈发虎,等.2006.阿尼玛卿山中部高山林线树轮宽度对气候变化的响应.北京林业大学学报,28(S2):57-63.
    彭剑峰,勾晓华,陈发虎,等.2007.阿尼玛卿山地不同海拔青海云杉(Picea crassifolia)树轮生长特性及其对气候的响应生态学报,27(8):3268-3276.
    齐泽民,王开运.2009.川西亚高山林线过渡带土壤特性研究.水土保持学报,23:159-162.
    齐泽民,王开运.2010.川西亚高山林线交错带植被凋落物量及养分归还动态.生态学杂志,29(3):434-438
    徐金梅.2011.祁连山青海云杉木材性质对气候变化的响应.中国林业科学研究院博士论文.
    宋新章,肖文发.2006.林隙微生境及更新研究进展.林业科学,42(5):114-119.
    施征.2011.祁连山林线树种青海云杉(Picea crassifolia)非结构性碳水化合物及氮、磷、钾含量对海拔变化的响应研究.中国林业科学研究院博士后出站报告.
    汤景明,翟明普.2005.影响天然林树种更新因素的研究进展.福建林学院学报,25(4):379-383.
    涂云博,王孝安.2008.林线区域植被的结构域动态研究综述.安徽农学通报,14(9):125-127.
    王开运.2004.川西亚高山森林生态系统过程.成都:四川科学技术出版社.
    王政权,王庆成.2000.森林土壤物理性质的空间异质性研究.生态学报,20(5):945-950.
    王晓春.2004.中国东北亚高山林线对全球气候变化的响应.东北林业大学博士毕业论文.
    王亚军,陈发虎,勾晓华,等.2001.祁连山中部树木年轮宽度与气候因子的响应关系及气候重建中国沙漠,21(2):135-140.
    王金叶,常学向,葛双兰,等.2001.祁连山(北坡)水热状况与植被垂直分布西北林学院学报,16(Z1):1-3.
    武小钢,郭晋平.2009.关帝山华北落叶松天然更新种群结构与空间格局研究.武汉植物学研究,27(2):165-170.
    张立杰,蒋志荣.2006.青海云杉种群分布格局沿海拔梯度分型特征的变化.西北林学院学报,21(2):64-66.
    张立杰.2006.祁连山青海云杉林林窗特征及更新特点.甘肃农业大学硕士毕业论文.
    张芬,勾晓华,苏军德,等.2011.祁连山东部不同树龄油松径向生长对气候的响应.冰川冻土,23(3):634-639.
    张桥英.2006.青藏高原东缘高山林线乔木种群生态特征研究.中国科学院研究生院(成都生物研究所)博士论文.
    张立杰,刘鹄.2012.祁连山林线区域青海云杉种群对气候变化的响应.林业科学,1:18-21.
    胡启武,吴琴,张锋,宋明华,周才平,欧阳华,刘贤德.祁连山青海云杉林树线温度特征,干旱区地理,2009(9):698-703.
    吴栋栋.2009长白山林线岳桦生理生态特性研究.沈阳农业大学硕士论文.
    张耀宗.2009.近50年来祁连山地区的气候变化,西北师范大学硕士论文.
    丁永建,叶伯生.2007.过去50年中国西部气候和径流变化的区域差异.中国科学D辑,37(2):206~217.
    秦大河,丁一汇.2005.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及为来的趋势.气候变化研究进展,1(1):4~9.
    张守攻,王军辉,刘娇妹等.青海云杉强化育苗技术研究[Jl.西北农林科技大学学报,2005,33(5):33~38.
    杨世杰主编.植物生物学[M].北京:科学出版社.2000:246~248.
    刘志民,蒋德明,高红瑛,常学礼.2003.植物生活史繁殖对策与干扰关系的研究.应用生态学报,14(3):418~422.
    石培礼,李文华.2000.长白山林线交错带形状与木本植物向苔原侵展和林线动态的关系[J].生态学报,20(04):573-580.
    石培礼,李文华,王金锡,刘兴良.四川卧龙亚高山林线生态交错带群落的种多度关系[J].生态学报,2000,20(03):384-389.
    王晓春,张小全,朱建华,侯振宏,柴正礼.树木年轮与全球变暖的关系研究进展.世界林业研究,2009,22(6):38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700