葡聚糖酶在蔗糖生产过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在制糖过程中,葡聚糖是最主要的杂质之一。葡聚糖因影响蔗糖结晶而导致蔗糖损失,给蔗糖加工和精制增加了难度,并造成经济损失。因此,近年来很多研究采用微生物降解法降低制糖过程中葡聚糖的分子量,从而使葡聚糖对蔗糖加工影响最小化。到目前为止,葡聚糖酶降解法是糖加工厂和精炼厂用来水解葡聚糖最有效的方法。本论文的主要目的包括:(1)优化蔗糖生产过程中葡聚糖酶的添加条件(2)研究葡聚糖酶降解葡聚糖对蔗糖结晶过程和糖晶体的影响(3)探索改善葡聚糖酶活性以减少工业应用成本的新方法。
     研究了不同分子量和不同浓度的葡聚糖对过饱和蔗糖溶液的流变和玻璃化转变特性的影响。分别将三种分子量葡聚糖100000g/mol、500000g/mol、2000000g/mol以60%-75%(w/w)添加量加入到浓度为1000-10000mg/kg的蔗糖溶液中,发现表观黏度和动态模量随着葡聚糖浓度增加而增加,且与其分子量呈现强相关性;采用差示扫描量热仪法测量样品玻璃化转变温度(Tg),用Fox模型和扩展的Gordon-Taylor模型对Tg与葡聚糖分子量和浓度之间的相关性进行分析,发现葡聚糖分子量和浓度越大,玻璃化转变温度升高越大,证实了扩展的Gordon-Taylor模型可以有效预测不同葡聚糖-蔗糖混合溶液的玻璃化转变温度。
     采用1H,13C及二维核磁共振技术(COSY和HMQC)、GC-MS、MALDI-TOF等解析了葡聚糖(SC-Dex)的结构。采用酒精沉淀和凝胶过滤层析的方法,从变质甘蔗中提取葡聚糖。利用总酸水解和酶解的方法确定定分离到葡聚糖的纯度。结果表明,SC-Dex萄聚糖主链是由D-葡萄糖通过α-(1-6)糖苷键连接而成,分支主要为D-葡萄糖通过α-(1-3)糖苷键连接;甲基化分析表明,α-(1-3)分支度为4.37%;MALDI-TOF分析显示分子离子峰的质量差异为162g/mol,表明SC-Dex的重复单元为D-葡萄糖;SC-Dex的表面形态为球形并具有多孔结构;HPSEC-MALLS-RI分析表明,SC-Dex的重均分子量为1.753x106g/mol,多分散指数为1.069。
     研究了糖加工不同阶段葡聚糖酶的添加对剩余葡聚糖分子量参数和固有黏度的影响。采用分光光度法测定葡聚糖酶的相对活性,并用高效液相色谱测定还原糖含量的方法对其进行验证。为进行对比,分别对葡聚糖酶进行了浓缩和稀释。发现在蔗糖汁中添加葡聚糖酶比在蒸发糖浆中添加能更有效降低剩余葡聚糖分子量,且更有经济价值;在优化条件糖汁pH5.5时添加葡聚糖酶可得到最低特性黏度和最小分子量,、与优化温度为55.0℃时的结果相似,但当糖度超过20°Brix时,酶活性降低;葡聚糖去除率随着葡聚糖酶添加量增加而增大,当葡聚糖酶浓度达到100ppm时,葡聚糖去除率最高,为80.29%;此外,在加工过程中,反应时间越长,剩余葡聚糖分子量越低;为达到满意的水解度,葡聚糖酶的用量需根据因高糖度造成酶活损失来矫正。
     在优化了萄聚糖酶使用后,研究了不同温度下葡聚糖酶催化萄聚糖水解物对糖生产中蔗糖结晶速率和纯蔗糖溶液中晶体生长速率的影响。为说明萄聚糖水解对蔗糖晶体生长速率的影响,将2,000,000g/mol (T2000)分子量的葡聚糖以1000-10000mg/kg添加量加入到55%-70%(w/w)的蔗糖溶液中,并分别加入3种浓度50、75、100ppm的萄聚糖酶。在加入T2000的糖液酶解后,发现蔗糖结晶速度提高了,并发现结晶表面比报道的仅添加T2000葡聚糖的更好。结果表明,在添加100ppm萄聚糖酶水解T2000葡聚糖后,相比于纯蔗糖液中添加T2000葡聚糖,结晶速率提高了高达73.56%。因此,采用添加萄聚糖酶水解萄聚糖可以提高蔗糖结晶速率,从而降低糖制造成本。
     研究了提高葡聚糖酶活性的新方法,超声辐射(US)处理对葡聚糖酶催化活性和酶水解动力学参数的影响。发现US能够提高葡聚糖酶的催化动力学活性;在超声频率25kHz、超声功率40W、超声时间15min时,葡聚糖酶活性达最高,比常规50℃加热处理提高了13.43%;动力学研究表明,超声处理后Vmax和KM值均增加,表明超声处理能够促进底物转化。另外,我们还研究使用其它方法结合超声处理来提高酶的活性。
     研究了US与高静水压(US/HHP)联合处理对葡聚糖酶催化活性和酶反应动力学参数的影响,采用荧光光谱和圆二色谱对处理后葡聚糖酶的结构进行了分析。结果表明,当US功率40W、频率25kHz、处理时间15min,HHP压力400MPa、处理时间25min时,葡聚糖水解度达到最大,比常规50℃加热处理增加了163.79%;Vmax、Km、Kcat均比US、HHP单独处理及常规方法有所提高;与US、HHP和常规方法相比,US/HHP组合处理降低了酶反应的Ea、△G和ΔH,但ΔS略微升高;荧光光谱法和圆二色谱解析表明,US/HHP处理增加了葡聚糖酶表面的色氨酸数量,α折叠增加了19.8%,无规卷曲减少6.94%,这有利于提高酶活。
     研究了超声波和微波辐射(US/MIS)对葡聚糖酶水解葡聚糖的协同作用。采用US(50W,40kHz)和不同功率的微波辐射(10-140W、2450MHz、20sec/min)对葡聚糖酶进行处理,结果显示,US/MI-S处理后葡聚糖水解度比单独采用US、MI-S以及常规方法明显增大,在US功率50W、MI-S功率60W、频率20sec/min、时间25min时,水解度达到最大,比常规加热方法提高了163.58%;与单独处理相比,组合处理后酶的Vmax和KM增加,Kcat和(Kcak/Km)比常规方法提高;组合处理后酶的Ea、ΔG和ΔH均降低,ΔS略微升高;圆二色谱法显示组合处理和US处理降低了酶分子β折叠和无规卷曲含量,MI-S处理提高了β折叠和无规卷曲含量;然而,荧光光谱显示酶二级结构的降解速率比三级结构降解速率慢,可见US/MI-S处理导致了葡聚糖酶二级结构的重排,有助于提高其活性。
     综上所述,在糖的工业生产过程中,将US与HHP或MI-S进行联用,可以作为一种新的手段来提高葡聚糖酶的工业应用效率,本研究将为相关领域的研究提供依据。
Dextran is one of the most significant impurities present in sugar production process. Thepresence of dextran in the canesugar factories and refineries leads to many technical possessingdifficulties, however, from the processing point of view, the most damaging effects of elevateddextran concentrations in a technical sucrose solution are foreseen in the crystallization process.All these possessing difficulties caused by dextrans lead, in the end, to the sugar losses and theseeconomic losses are continuous throughout the process. Therefore, in recent years many studieshave been undertaken to minimization of dextran effects in the sugar factory by controllingmicroorganisms and reducing its molecular weight during the manufacturing process. To date, theuse of the dextranase enzyme is the most efficient method for hydrolyzing dextrans at canesugarfactories and refineries.
     The objectives of this research are to (1) optimize the addition and investigate the conditionsof using dextranase in cane sugar manufacturing,(2) characterize the effects of thebiodegradation of dextran using dextranase enzyme on the crystallization process and the qualityof the final sugar crystal and (3) find novel methods to improve dextranases activity to decreasetheir industrial application costs.
     To begin with, the effects of dextran at differents molecular weight (Mw) and theconcentrations of on the rheological and glass transition properties of supersaturated sucrosesolution were investigated. Three dextrans of various Mw, namely100,000g/mol,500,000g/moland2,000,000g/mol, were admixed in concentrations between (1000-10000ppm) with (60%-75%w/w) sucrose solution. The results indicated that both the apparent viscosity and dynamicmodulus increased with an increase in dextran concentrations and they demonstrated strongdependence on its Mw. Glass transition temperature (Tg) of the samples were measured bydifferential scanning calorimetry, and their dependence on dextran Mw and concentration wasanalyzed by the Fox and expanded Gordon-Taylor models. It was found that, the higher the Mwand concentration of the dextran, the greater the increase in Tg. The expanded Gordon-Taylorequation has proved useful in predicting the Tg of different dextrans and sucrose solutionmixtures.
     In the further step, dextran extracted from deteriorated sugarcane was characterized using themore recently available techniques such as (1H,13C) and two-dimensional (COSY and HMQC)NMR spectral analysis, methylation GC-MS and MALDI-TOF mass spectrometry, the structureof sugarcane dextran (SC-Dex). dextran was extracted from deteriorated sugarcane by alcoholprecipitation and purified by gel filtration chromatography. Total acid hydrolysis and enzymatic degradation were utilized to confirm the purity of separated polysaccharide. On the basis of allspectra, SC-Dex showed a branched polysaccharide that contained only D-glucose residues in-(1-(13) branches. Methylation analysis-(13) branching levels was4.37%. Several structural fragments wereidentified from MALDI-TOF spectrum with peak-to-peak mass difference of162gmol-1, whichconfirmed that the repeat unit in SC-Dex was D-glucose. The surface morphology of SC-Dex,revealed the spherically shaped and porous structure. Using HPSEC-MALLS-RI system, theaverage molecular weight of SC-Dex was estimated to be1.753x106gmol1with an index ofpolydispersity value of1.069.
     The influence of dextranase enzyme on the molecular weight (Mw) parameters of remainingdextran and intrinsic viscosity after different enzymatic treatments at different steps during sugarmanufacturing was investigated. A spectrophotometric method was used to determine the relativeactivity of dextranase and the result has been confirmed by measured reducing sugar using HPLCsystem. For comparison, the action patterns of concentrated and diluted enzymes wereadditionally included in the experiments. Additions of dextranase to juice were much moreefficient and economical to reduce the Mw of remaining dextran than adding it to evaporatorsyrups. Addition of dextranase at juice pH5.5showed similar minimum Mwwith the lowestintrinsic viscosity, observed at55.0°C, and the enzymes activity was decreased after20°Brix.The highest dextran removal was observed at dextranase concentration at100ppm/juice whichwas resulted in80.29%removal dextran in the juice, Moreover, the higher the level ofconcentrated dextranase applied to the juice, the more the removal of dextran occurred. Inaddition, the longer the availability of the residence time in the factory, the lower dextran Mw hasbeen observed. To reach a satisfactory level of dextran hydrolysis, it was necessary to correct thedose of dextranase enzyme according to the losses of activity caused by the high°Brix.
     After optimizing the dextranase application, the Influence of hydrolysis of dextran catalyzedby dextranase enzymes during sugar manufacturing on the rate of sucrose crystallization andgrowth rate of sucrose crystals in pure sucrose solution at different temperatures was investigated.To elucidate the influence of hydrolysis of dextran on the growth rate of sucrose crystals, dextranat Mw, of2,000,000g/mol (T2000), was admixed in concentrations between (1000-10000ppm)with (55%-70%w/w) sucrose solution, however, three different concentrations of dextranaseenzyme (50,75,100ppm) were applied for the emzymatic hydrolysis. After enzymatic hydrolysisof dextran T2000presence in the sucrose solution, the growth rate of the sucrose crystal wasincreased, in addition, more perfect crystal surfaces was observed compared with that reported inthe presence of dextran T2000. From the results it could be shown that an increase of crystallization rate of up to73.56%after hydrolysis of dextran T2000using dextranase enzyme at100ppm,compared to crystallization rate with pure sucrose solution in the presence of dextran T2000. Sucha positive influence of enzymatic hydrolysis of dextran using dextranase enzyme could decreasethe crystallization time in the sugar house and thus decreases the production costs of sugarmanufacturing.
     Based on the above result, that dextranase could minimize of dextran effects during thecrystallization process, further investigations to find novel methods for improving dextranasesactivity to decrease their industrial application costs were carried out. Sequently, the effect ofultrasound irradiation (US) on the enzymatic activity and enzymatic hydrolysis kinetic parametersof dextran catalysis by dextranase were investigated. US has improved the catalytic kineticsactivity of dextranase at all the reaction conditions studied. The maximum activity of dextranasewas observed when the sample was treated with US at25kHz,40W for15min, under which theenzyme activity increased by13.43%compared the routine thermal incubation at50°C.Experimental Kinetics results, demonstrated that, both the Vmaxand KMvalues of dextranaseincreased with US-treated compared with the incubation at50°C. Likewise, both the catalyticand specificity constants are higher under the effects of US field, indicating that, the substrate isconverted into the product at an increased rate when compared with the incubation at50°C. Inaddition, to date, no research work is available on the combination of other methods with US toimprove the enzymes activities. Therefore, we decided to study the effect of combination of othermethods with the ultrasonic irradiation on the enzymes activities.
     After the enhancement of dextranase activity by means of US, the effect of combination ofUS and high hydrostatic pressure (US/HHP) on the enzymatic activity and enzymatic hydrolysiskinetic parameters of dextran catalytic by dextranase were investigated. Furthermore, the effectsof US/HHP on the structure of dextranase were also discussed with the aid of fluorescencespectroscopy and circular dichroism (CD) spectroscopy. The maximum hydrolysis of dextran wasobserved under US (40W at25kHz for15min) combined with HHP (400MPa for25min), inwhich the hydrolysis of dextran increased by163.79%compared with the conventional thermalincubation at50°C. Results also showed that, Vmaxand KMvalues, as well as, kcatof dextranaseunder US/HHP treatment were higher than that under US, HHP and thermal incubation at50°C,indicating that, the substrate is converted into the product at an increased rate when comparedwith the conventional thermal incubation at50°C. Compared to the enzymatic reaction under US,HHP, and conventional thermal incubation, dextranase enzymatic reaction under US/HHPtreatIn addition, Fluorescence and CD spectra reflected that US/HHP treatment had increased the num-helix by19.80%and reducedrandom coil by6.94%upon US/HHP-treated dextranase protein compared to the control, whichwere helpful for the improvement of its activity.
     The synergetic effects of ultrasonic and microwave irradiation sock (US/MIS) on hydrolysis ofdextran by dextranase were finally studied. The US treatments were performed at fixed power of50W/40kHz, and the microwave irradiation shock (MI-S) was applied at different powerconditions, of10-140W at2450MHz at sock rate of20sec/min. The hydrolysis of dextran underUS/MI-S was significantly higher than those performed under US, MI-S and conventionalthermal incubation at all condition studied. The maximum hydrolysis rate was observed whenUS/MI-S (US of50W combined with MI-S of60W at sock rate of20sec/min for25min) wasused in which the dextran hydrolysis increased by163.58%compared with routine conventionalheating. Results also showed that, Vmax and KM values of dextranase under US/MI-S treatmentwere higher than those under US, MI-S and conventional thermal incubation. Higher kcatand(Kcat/Km) values were obtained under US/MI-s in comparison with the values in the respectiveconventional heating. Compared to the enzymatic reaction under US, MI-S, and conventionalheating incubation, dextranase enzymatic reaction under US/MI-S treatment showed decreases in
     On the other hand, CD spectrareflected that-sheet and random coil content were decreased by the mean of the US/MI-s andUS treatments and increased under MI-s treatment compared to control. However, fluorescencespectra demonstrate the rate of degradation of its secondary structure was slower than that ofenzyme tertiary structure. Therefore, US/MI-s treatment results in reordered secondary structureof dextranase, which were helpful for the improvement of its activity.
     These results, therefore, indicated that, the combination of US with HHP or MI-Streatments could be used as a novel technique method for improving the industrial efficiency ofdextranases in many industrial applications including sugar manufacturing processes. This studywill serve as a basis for the future work in this area of research.
引文
1. Abdel-Rahman, E.A., Smejkal, Q., Schick, R., El-Syiad, S.&Kurz, T.,(2008). Influenceof dextran concentrations and molecular fractions on the rate of sucrose crystallization inpure sucrose solution. Journal of Food Engeering.84:501508
    2. Anon,(1993). Laboratory studies on cane deterioration. SMRI annual report for1992.93:5-6.
    3. Anon,(2004). SMRI annual report, Sugar Milling Research Institute publication, Durban:South Africa, p18.
    4. Bailey, R.W., Hutson, D.H.,&Weigel, H.(1961). The action of a Lactobacillus bifidusdextranase on a branched dextran. Biochemical Journal,80(3),514.
    5. Brown, C.F.,&Inkerman, P.A.(1992). Specific method for quantitative measurement ofthe total dextran content of raw sugar. Journal of agricultural and food chemistry,40(2),227-233.
    6. Bubnik, Z., Vaccari, G., Mantovani, G., Sguadino, G.,&Kadlec, P.,(1992). Effect ofdextran, glucose and fructose on sucrose crystal elongation and morphology.Zuckerindustrie.117,557-561.
    7. Chen, J.C.P.,&Chou, C.C.,(1993). Microbiological control in sugar manufacturing andrefining. In JCP, Chen, C.C, Chou (eds.). CaneSugar Handbook (12th ed. pp.641-658).New York: John Wiley and Sons.
    8. Chou, C.C.,&Wnukowski, M.,(1981). Dextran problems in sugar refining: A criticallaboratory evaluation. In: Proceedings of the1980Technical Session on Cane SugarRefining Research (pp.1-25). LA, USA: Science and Education Administration.
    9. Cerutti de Guglielmone, G., Diez, O., Cardenas, G.,&Oliver, G.,(2000). Sucroseutilization and dextran production by Leuconostoc mesenteroides isolated from the sugarindustry. Sugar Journal,62,3640
    10. Clarke, M.A.&Godshall M.A.,(1988). Determination of dextran in raw canesugar byRobert's copper method: Collaborative study. Journal of Association of OfficialAnalytical Chemists.71:276-279
    11. Cuddihy, J. A., Mendez, F.,&Bernhard, C.,(2000). Dextranase in sugar production:factory experience. Journal of American Society of Sugar Cane Technologists,20:.95-103
    12. Cuddihy, J. A.,&Day D. F.,(1999). The process and financial impact of dextran onsugar factory. Sugar Journal,61:27-30
    13. Cuddihy, J. A., Porro, M. E.,&Rauh, J. S.(2001). The presence of total polysaccharidesin sugar production and methods for reducing their negative effects. Journal of AmericanSociety of Sugar Cane Technologists,21,7391.
    14. Cuddihy, J. A., Rauh, J. S.,&Porro, M. E.(1998). Improving sugar recovery with sugarprocess chemicals. http://www.midlandresearchlabsinc.com. Accessed8Jul2013.
    15. Day, D.F.,(1992). Spoilage in the sugar industry. The lactic acid bacteria, BJB, Wood,ed., Elsevier Applied Science, London and New York.,343-361.
    16. Davies, G. J., Wilson, K. S.&Henrissat, B.(1997). Nomenclature for sugar-bindingsubsites in glycosyl hydrolases. Biochemistry Journal.321,557559.
    17. DeStefano, R.P.,(1988). Potential uses and associated benefits of dextranase enzyme inthe raw sugar mill. Journal of American Society of Sugar Cane Technologists,8,99-104.
    18. Eisenmenger, M. J.,&Reyes-De-Corcuera, J. I.(2009). High pressure enhancement ofenzymes: a review. Enzyme and Microbial Technology,45(5),331-347.
    19. Eggleston G., Monge A.,(2005). Optimization of sugarcane factory application ofcommercial dextranases. Process Biochemistry.40,18811894
    20. Eggleston, G., Porro, M. E.,&Rauh, C.(2011). New insights on the hard-to-boilmassecuite phenomenon in raw sugar manufacture. Food chemistry,126(1),21-30.
    21. Eggleston G., Monge, A., Montes, B.,&Stewart. D.(2009). Application of dextranasesin sugarcane factory: Overcoming practical problems. Sugar Technology.11(2),135-141.
    22. Ensminger, D.(1988). Acoustic and electroacoustic methods of dewatering and drying.Drying Technology,6,473499.
    23. Edye L. A., Clarke, M. A.,&Kitchar, J.(1997). Trials on dextranase enzyme(Chaetomium gracile) treatment of sugarcane syrups. Proc Sugar Indust Technol.56,359-362.
    24. Eyring, H., Johnson, F. H.,&Gensler, R. L.(1946). Pressure and reactivity of proteins,with particular reference to invertase. The Journal of physical chemistry,50(6),453-464.
    25. Morild, E.(1981). The theory of pressure effects on enzymes. Advances in ProteinChemistry,34,93.
    26. Floros, J. D.&Liang, H.(1994). Acoustically assisted diffusion through membranes andbiomaterials. Food Technology.48(12):79-84
    27. Galea, C. F.&Inkerman, P. A.(1993). Dextran analysis of raw sugar. Part I. A specificmethod for total dextran. International Sugar Journal,95(1136),309-313.
    28. Gillet, E.C.(1977). Crystallization in Motion. Cane Sugar Handbook, Meade and Chen,eds., John Wiley&Sons. Inc., Canada,290-333.
    29. Gross, M.,&Jaenicke, R.(1994). Proteins under pressure. European Journal ofBiochemistry,221(2),617-630.
    30. Gudoshnikov, S.(2007). World sugar market-Back to Surplus. World Perspectives forSugar Beet and Cane as a Food and Energy Crop, Sharm El Sheikh, GL1.1/1-11.
    31. Guiseppi-Elie, A., Choi, S. H.,&Geckeler, K. E.(2009). Ultrasonic processing ofenzymes: Effect on enzymatic activity of glucose oxidase. Journal of Molecular CatalysisB: Enzymatic,58(1),118-123.
    32. Gupta, A. P.,&Prabhu, K. A.(1993). Control of Leuconostoc contamination in sugarindustry. International Sugar Journal,95(11379),93-97.
    33. Hehre, E. J.,&Sugg, J. Y.(1942). Serologically reactive polysaccharides producedthrough the action of bacterial enzymes: I. Journal of Experimental Medicine,75,339-353.
    34. Howell, T. A., Ben-Yoseph, E., Rao, C.,&Hartel, R. W.(2002). Sucrose crystallizationkinetics in thin films at elevated temperatures and supersaturations. Crystal growth&design,2(1),67-72.
    35. Holzapfel, W.&Kandler, O.(1969). Zur Taxonomie der Gattung LactobacillusBeijerinck. VI. Lactobacillus coprophilus subsp. confusus nov. subsp., eine neue Unterartder Untergattung Betabacterium, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg.Abt.,2(123),657-666
    36. Hucker, G. J.&Pederson, C. S.(1930): Studies on the Coccaceae. XVI. The genusLeuconostoc, New York State Agricultural Experiment Station,167,3-8.
    37. Ingelman, B.(1948). Enzymatic breakdown of dextran. Acta chem. scand,2,803-812.
    38. Inkerman, P.A.(1980). An appraisal of the use of dextranase. Proceedings of theInternational Society of Sugar Cane Technologists.17,241127.
    39. James, A.C.,&Day, D.F.(2000). The process and financial impact of dextran on a sugarfactory. Midland Research Laboratories, Inc.
    40. Jimenez, E.R.,(2005). The dextranase along sugar-making industry. BiotecnologíaAplicada,22,20-27.
    41. Jiménez, E.R.(2009). Dextranase in sugar industry: A review. Sugar Technology,11(2),124-134.
    42. Khaleifah, M.A.,(2001), Effect of Dextran on Sugarcane quality and raw sugarmanufacture. Dissertation, Assiut univ, Egypt.
    43. Khalikova, E., Susi, P.,&Korpela, T.(2005). Microbial dextran-hydrolyzing enzymes:fundamentals and applications. Microbiology and Molecular Biology Reviews,69(2),306-325.
    44. Khalikova, E., Susi, P., Usanov, N.,&Korpela, T.(2003). Purification and properties ofextracellular dextranase from a Bacillus sp. Journal of Chromatography B,796(2),315-326.
    45. Kim, D.,&Day, D.F.,2004. Determination of dextran in raw sugar process streams,Food Science and Biotechnology,13,248252.
    46. Koster, K.C., Vermeulen, P.L.M., Getaz, M.A.&Lionnet G.R.E.(1992). Some notes onring. Proceedings of the South African SugarTechnologists' Association,52,127130
    47. Kulkarni, D. P.(1996), Cane sugar manufacture in India. Book. Sugar Technologists'Association of India, New Delhi.
    48. Kunugi, S.(1992). Enzyme reactions under high pressure and their applications. Annalsof the New York Academy of Sciences,672(1),293-304.
    49. Larsson, A. M., Andersson, R., St hlberg, J., Kenne, L.,&Jones, T. A.(2003).Dextranase from Penicillium minioluteum: reaction course, crystal structure, and productcomplex. Structure.11:11111121.
    50. Mehvar, R.(2000)"Dextrans for targeted and sustained delivery of therapeutic andimaging agents." Journal of Controlled Release,69(1),1-25.
    51. Morel du Boil, P.G.,(2005). A review of five seasons' monitoring of MJ and VHP fordextran using specific enzyme-HPAEC methodology. Sugar Milling Research InstituteTechnical Report No.1958, pp:33.
    52. Morel Du Boil, P.G.&Wienese, S,(2002). Enzymatic reduction of dextran in process-Laboratory evaluation of dextranases. Proceedings of the South African SugarTechnologists' Association,76,435-443.
    53. Mozhaev, V. V., Lange, R., Kudryashova, E. V.,&Balny, C.(1996). Application of highhydrostatic pressure for increasing activity and stability of enzymes.Biotechnology andBioengineering,52(2),320-331.
    54. Oguma, T., Horiuchi, T.,&Kobayashi, M.(1993). Novel cyclic dextrins,cycloisomaltooligosaccharides, from Bacillus sp. T-3040culture. Bioscience,biotechnology, and biochemistry,57(7),1225-1227.
    55. Ozbek, B.&, Ulgen, K.O.(2000). The stability of enzymes after sonication. ProcessBiochemistry.35103743.
    56. Pasteur, L.,(1861). On the viscous fermentation and the butyrous fermentation. Bulletinde la Société chimique de France11:3031.
    57. Pons, T., Chinea, G., Olmea, O., Beldarrain, A., Roca, H., Padron, G.,&Valencia. A.(1998). Structural model of Dex protein from Penicillium minioluteum and itsimplications in the mechanism of catalysis. Proteins31:345354.
    58. Ravno, A.B.,&Purchase, B.S.,(2005). Dealing with Dextran in the South African SugarIndustry. Proceedings of The South African Sugar Technologists' Association,79,28-47
    59. Rogé, B., Bensouissi, A.&Mathlouthi, M.(2007). Effect of calcium on white sugarturbidity. Zuckerindustrie,132(3),170-174
    60. Scheibler C.,(1874). Investigation on the nature of the gelatinous excretion (so-called-sugar juices. Z Dtsch Zucker-Ind24:309335.
    61. Schliephake, D.,&Ekelhof, B.(1983). Beitrag zur vollst ndigen Berechnung derKristallisationsgeschwindigkeit der Saccharose. Zuckerindustrie.108(12),1127-1137.
    62. SCIMAT.(2006)."Leuconostocs" http://www.magma.ca/~pavel/science/Leuconostoc.htm.
    63. Singleton, V.(2002). Review article: Advances in techniques of dextran analysis: Amodern day perspective. International sugar journal,104(1239),132-136.
    64. SIL.(2012)."International Sugar Stats." SUGAR ILLOVO LIMITED,http://www.illovosugar.co.za/World_of_sugar/Sugar_Statistics/International.aspx
    65. Suslick, K. S.(1988). Ultrasound: Its Chemical, Physical, and Biological Effects, VCHPublishers, New York.
    66. Tian, Z.M., Wan, M.X., Wang, S.P.,&Kang, J.Q.(2004). Effects of ultrasound andadditives on the function and structure of trypsin. Ultrasonnics Sonochemstry.11399404.
    67. Van Tieghem P.,(1878). On sugar-mill gum. Ann Sci Nature Bot Biol Veg.7,180203
    68. Walker, G. J.,&Dewar, M. D.(1975). The action pattern ofPenicilliumlilacinumdextranase. Carbohydrate research,39(2),303-315.
    69. Walstra, P.,(2003). Physical Chemistry of foods, Marcel Dekker, Inc, New York, USA.
    70. Wang, S., Mao, X., Wang, H., Lin, J., Li, F.,&Wei, D.(2011). Characterization of anovel dextran produced by Gluconobacter oxydans DSM2003. Applied microbiologyand biotechnology,91(2),287-294.
    71. Yachmenev, V., Condon, B., Klasson, T.,&Lambert, A.(2009). Acceleration of theenzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensityuniform ultrasound. Journal of biobased materials and bioenergy,3(1),25-31.
    1. Aquino, W.F.,&Franc, W.D.(2009). Molecular mass distribution of dextran in Braziliansugar and insoluble deposits of cacha a, Food Chemistry,114,13911395.
    2. Bae, S., Fleet, G.H.,&Heard, G.M.(2006). Lactic acid bacteria associated with wine grapesfrom several Australian vineyards. Journal of Applied Microbiology,100,712-727.
    3. Bashari, M., Tounkara F., Abdelhai, M. H., Lagnika, C., Xu, X.,&Jin, Z.(2013). Impact ofdextranase on sugar manufacturing and its kinetic on the molecular weights of remainingdextran. Sugar Techechnology,15,8493.
    4. Blake, J.D.,&Clarke, M.L.(1984). Observations on the structure of I.S.P., InternationalSugar Journal,86,295299.
    5. Ciucanu, I.,&Kerek, F.(1984). A simple and rapid method for the permethylation ofcarbohydrates, Carbohydrate Ressearch,131,209-217.
    6. Chakraborty, I., Mondal, S., Pramanik, M., Rout, D.,&Islam, S.S.(2004). Structuralinvestigation of a water-soluble glucan from an edible mushroom, Astraeus hygrometricus,Carbohydrate Ressearch,339,22492254.
    7. Clarke, M.A., Bergeron, J.&Cole, F.(1987). A rapid dextran screening test, Suggar Azucar,82,234.
    8. Covacevich, M.T.,&Richards, G.N.(1977). Studies on dextrans isolated from raw sugarmanufactured from deteriorated cane. Part I, Isolation, purification and structure of thedextrans, International Sugar Journal,79,3-9.
    9. Cuddihy, J.A.,&Day, D.F.(1999). The process and financial impact of dextran on a sugarfactory, Sugar Journal,3,27-30.
    10. Cui, H., Liu, Q., Tao, Y., Zhang, H., Zhang, L.,&Ding, K.(2008). Structure and chain--d-glucan from the root of Pueraria lobata (Willd.) Ohwi and theantioxidant activity of its sulfated derivative, Carbohydrate Polymers,74,771778.
    11. Dols, M., Remaud-Simeon, M., Willemot, R., Vignon, M.&Monsan, P.,(1997).Characterization of dextransucrase from L. mesenteroides NRRL B-1299, AppliedBiochemistry and Biotechnology,62,47-59.
    12. Eggleston, G., C té, G.&Santee, C.(2011). New insights on the hard-to-boil massecuitephenomenon in raw sugar Manufacture. Food Chemistry,126,2130.
    13. Goulas, A.K., Fisher, D.A., Grimble, G.K., Grandison, A.S.,&Rastall, R.A.(2004).Synthesis of isomaltooligosaccharides and oligodextrans by the combined use ofdextransucrase and dextranase, Enzyme and Microbial Technology,35,327338.
    14. Guo, L., Du, X., Lan, J.,&Liang, Q.(2010) Study on molecular structural characteristics oftea polysaccharide, International Journal of Biological Macromolecules,47,244-249.
    15. Hoffman, A.S.(2002). Hydrogels for biomedical applications, Adv. Drug Delivery Rev.43312.
    16. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T.&Williams, S.T.(1994). Group17Gram-Positive Cocci: Bergey's Manual of Determinative Bacteriology, ed9th. Baltimore:William&Wilkins.529-541.
    17. Inkerman, P.A.,(1980). An appraisal of the use of dextranase. Proceedings of theInternational Society of Sugar Cane Technologists,172,41127.
    18. Kim, D.,&Day, D.F.,2004. Determination of dextran in raw sugar process streams, FoodScience and Biotechnology,13,248252.
    19. Kim, Y.T., Kim, E.H., Cheong, C., Williams, D.L., Kim, C.W.,&Lim, S.T.(2000).Structural characterization of beta-D--linked glucans using NMR spectroscopy.Carbohydrate Research,328,331341.
    20. Ladaviere, C., Averlant-Petit, M.C., Fabre, O., Durand, A., Dellacherie, E.,&Marie, E.(2007). Preparation of polysaccharide-coated nanoparticles by emulsion polymerization ofstyrene, Colloid and Polymer Science,285,621630.
    21. Leathers, T.D.(2002). Dextran, in: E.J. Vandamme, S. DeBaets, A.Weinheim,(Eds.),Polysaccharides I: Polysaccharides from prokaryotes, Wiley, Weinheim, pp299321.
    22. Liu, C., Lin, Q., Gao, Y., Ye, L., Xing, Y.,&Xi, T.(2007). Characterization and antitumoractivity of polysaccharide from Strongylocentrotus nudus eggs, Carbohydrate Polymers,67,313-318.
    23. Santos, M., Teixeira, A.&Rodrigues, A.(2000). Production of dextransucrase, dextran andfructose from sucrose using Leuconostoc mesenteroides NRRL B512(f), BiochemicalEngineering Journal,4,177-188.
    24. Mopper, K., Schultz, C. A., Chevolot, L., Germain, C., Revuelta, R.,&Dawson, R.(1992).Determination of sugars in unconcentrated seawater and other natural waters by liquidchromatography and pulsed amperometric detection, Environmental Science&Technology,26,133-138.
    25. Naessens, M., Cerdobbel, A., Soetaert, W.,&Vandamme, E.J.(2005). Leuconostocdextransucrase and dextran: production, properties and applications, Journal of ChemicalTechnology and Biotechnology,80,845860.
    26. Nordmeier, E.(1993). Static and Dynamic Light-Scattering Solution Behavior of Pullulanand Dextran in Comparison, Journal of Physical Chemistry.975110-5185.
    27. Patel, S., Kasoju, N., Bora, U.,&Goyal, A.(2010). Structural analysis and biomedicalapplications of dextran produced by a new isolate P. pentosaceus screened from biodiversityhot spot Assam, Bioresource Technology,101,68526855.
    28. Purama, R.K., Goswami, P., Khan, A.,&Goyal, A.(2009). Structural analysis andproperties of dextran produced by L. mesenteroides NRRL B-640, Carbohydrate Polymers,76,3035.
    29. Maia, J., Carvalho, R.A., Coelho, J.F., Sim es, P.N.,&Gil, H.M.(2011). Insight on theperiodate oxidation of dextran and its structural vicissitudes, Polymers,52,258-265.
    30. Seymour, F.R., Knapp, R.D., Chen, E.C.M., Jeanes, A.,&Bishop, S.H.,(1979), Structuralanalysis of dextrans containing2-o-a-D-Glucosylated a-D-Glucopyranosyl residues at thebranch points, by use of13C nuclear magnetic resonance spectroscopy and gas liquidchromatography mass spectrometry, Carbohydrate Research,71,231250.
    31. Shingel, K.I.(2002). Determination of structural peculiarities of dextran, pullulan and c-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research,33,14451451.
    32. Stenekes, R.J.H., Talsma, H.,&Hennink, W.E.(2001). Formation of dextran hydrogels bycrystallization, Biomaterials.22,1891-1898.
    33. Taylor, R.L.,&Conrad, H.E.(1972). Stoichiometric depolymerization of polyuronides andglycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemitry,11,1383-1388.
    34. Walker, G.J.,(1978). Dextrans, in: D.J. Manners,(Eds.), International Review ofBiochemistry, University Park Press: Baltimore, MD, pp:75125.
    35. Wondraczek, H., Elschner, T.,&Heinze, T.(2011), Synthesis of highly functionalizeddextran alkyl carbonates showing nanosphere formation, Carbohydrate Polymers,83,11121118.
    36. York, W. S., Darvill, A. G., McNeil, M., Stevenson, T. T.,&Albersheim, P.(1986). Isolationand characterization of plant cell walls and cell wall components. In H. W. Arthur Weissbach(Ed.), Methods in enzymology (pp.3e40). Academic Press, Vol.118.
    1. Abdel-Rahman, E. A., Smejkal, Q., Schick, R., El-Syiad, S.&Kurz, T.(2008). Influence ofdextran concentrations and molecular fractions on the rate of sucrose crystallization in puresucrose solution. Journal of Food Engineering,84,501508.
    2. Angell, C. A.(1988). Perspective on the glass transition. Journal of Physics and Chemistryof Solids,49,863-871.
    3. Barnes, H. A., Hutton, J. F.,&Walters, K.(1989). An introduction to rheology (1st ed., pp.1214). Amsterdam: Elsevier Science Publishers B.V.
    4. Bizot, H., Le Bai, P., Leroux, B., Davy, J., Roger, P.,&Buleon, A.(1997). Calorimetricevaluation of the glass transition in hydrated, linear and branched polyanhydroglucosecompounds. Carbohydrate Polymers,32,33-50.
    5. Blond, G.(1994). Mechanical properties of frozen model solutions. Journal of FoodEngineering,22,253269.
    6. Braga da Cruz, I., MacInnes, W. M., Oliveira, J. C.,&Malcata, F. X.(2002). Supplementedstate diagram for sucrose from dynamic mechanical thermal analysis. In H. Levine (Ed.),Amorphous food and pharmaceutical systems (pp.5970). Cambridge: The Royal Society ofChemistry.
    7. Clarke, M. A., Edye, L. A., Cole, F.,&Kitchar, J.(1997). Sugarcane factory trials withdextranase enzyme. Sugar Journal,60,2022.
    8. Cerutti de Guglielmone, G., Diez, O., Cardenas, G.,&Oliver, G.(2000). Sucrose utilizationand dextran production by Leuconostoc mesenteroides isolated from the sugar industry.Sugar Journal,62,3640.
    9. Contreras-Lopez, E., Cdextran, pullulan and gum arabic on the physicalproperties of frozen sucrose solutions.Carbohydrate Polymers,59,839.
    10. Contreras-Lopez, E., Champion, D., Hervet, H., Blond, G.,&Le Meste, M.(2000).Rotational and translational mobility of small molecules in sucrose plus polysaccharideSolu
    11. Eggleston, G., Monge, A., Montes, B.,&Stewart, D.(2006). Factory trials to optimize theapplication of dextranase in raw sugar manufacture: Part I. International Sugar Journal,108,529-537.
    12. Fox, T. G.,&Flory, P. J.(1950). Second-order transition temperature and related propertiesof polystyrene I influence of molecular weight. Journal of Applied Physics,21,581-591.
    13. Fulcher, R. P.,&Inkerman, P. A.(1978). The effect of cane dextran on the filterability ofsugar. In Proceedings of Queensland Society Sugar Cane Technologists,111118.
    14. Godshall, M. A., Legendre, B. L., Clarke, M. A., Miranda, X. M.&Blanco, R. S.(1994).Starch, polysaccharide and proanthocyanidin in Louisiana sugarcane varieties. InternationalSugar Journal,98,144148.
    15. Gordon, M.,&Taylor, J. S.(1952). Ideal copolymers and the second order transitions ofsynthetic rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry,2,493500.
    16.temperature and the water content of amorphous pharmaceutical solids. Pharm. Res.11,471477.
    17. Heldman, D. R.,&Singh. R. P.(1981). Food Process Engineering.(2nd ed). Westport: AVIPublishing Inc.
    18. Icoz, D. Z., Moraru, C. I.,&Kokini, J. L.(2005). Polymer polymer interactions in dextransystems using thermal analysis. Carbohydrate Polymers,62,120129.
    19. James, A. C., Miguel, E. P.&James, S. R.(2000). The presence of total polysaccharides insugar production and methods for reducing their negative effects. USA: Midland ResearchLaboratories Inc.
    20. Janciauskaite, U., Rakutyte, V., Miskinis, J.,&Makuska, R.(2008). Synthesis andproperties of chitosan-N-dextran graft copolymers. Reactive&Functional Polymers68,787796.
    21. Jansson, H., Bergman, R.,&Swenson, J.(2005). Dynamics of sugar solutions as studied bydielectric spectroscopy. Journal of Non-Crystalline Solids,351,28582863.
    22. Jiménez, E. R.(2009). Dextranase in sugar industry: A review. Sugar Technology,11(2),124-134.
    23. Kantor, Z., Pitsi, G.,&Thoen, J.(1999). Glass transition temperature of honey as a functionof water content as determined by differential scanning calorimetry. Journal of AgriculturalFood Chemistry,47,23272330.
    24. Kaur, S., Kaler, R. S. S.,&Aamarpali, A.(2002). Effect of starch on the rheology ofmolasses. Journal of Food Engineering,55,319322.
    25. Kalichevsky, M. T., Jaroszkiewicz, E. M.,&Blanshard, J. M. V.(1993). A study of theglass transition of amylopectin-sugar mixtures. Polymer,34,346-358.
    26. K-Malouhi, Y.,&Ratti, C.(2000). Mathematical model for prediction ofglass transition temperature of fruit powders. Journal of Food Science,65,842848.
    27. Kim, D.&Day, D. F.(2004). Determination of dextran in raw sugar process streams, FoodScience and Biotechnology.13,248252.
    28. Liu, Y., Bhandari, B.,&Zhou, W.(2006). Glass transition and enthalpy relaxation ofamorphous food saccharides: a review. J. Agric. Food Chem.54,57015717.
    29. Lowary, T. L.,&Richards, G. N.(1988). Effects of impurities on hydrolysis of sucrose inconcentrated aqueous solution. International Sugar Journal,90(1077),164167.
    30. Ness, J. N.(1984). Viscometry in cane sugar processing. In Proceedings of the AustralianSociety of Sugar Cane Technologists,6,271277.
    31. Ollett, A.L.&Parker, R.(1990). The viscosity of supercooled fructose and its glasstransition temperature.Journal of Texture Studies,21,355362.
    32. Orford, P. D., Parker, R.,&Ring, S. G.(1990). Aspects of the glass transition behaviour ofmixtures of carbohydrates of low molecular weight. Carbohydrate Research,196,1118.
    33. Payne, G. W.(1953). The physical and technical conditions in sugar manufacture(temperature, density and pH). In: P. Honig (Editor), Principles of sugar technology (pp.431481).
    34. Quintas, M., Lobo, L., Ribeiro, L.,&Silva, C. L. M.(2001). Kinetics of high temperaturedegradation of concentrated sucrose solutions. Poster presented at EUROCAFT, Berlin,Germany.
    35. Rogers, M. A., Roos, Y. H.&Goff, H. D.(2005). Structural heterogeneity and its effect onthe glass transition in sucrose solutions containing protein and polysaccharide. Foodhydrocolloids,20,774-779.
    36. Roos, Y. H.(1995). Phase transitions in foods. Academic Press, New York.
    37. Roos, Y.,&Karel, M.(1991). Water and molecular weight effects on glass transitions inamorphous carbohydrates and carbohydrate solutions. Journal of Food Science,56,16761681.
    38. Slade, L.,&Levine, H.(1991). A food polymer science approach to structure propertysystems. In: H. Levine and L. Slade (Eds.), Water relationships in food (pp.29101). NewYork: Plenum Press. Schawe, J. E. K.(2006). A quantitative DSC analysis of the metastablephase behaviour of the sucrose water system. Thermochimica Acta,451,115125.
    39. Schneider, H. A.(1988). The Gordon-Taylor equation: Additivity and interaction incompatible polymer blends. Makromol. Chem,189,19411955.
    40. Sharma, K. P., Rattana, B. K.,&Kanwar, R. S.(1989). Improvement in sugar recovery bypreventing bacterial polysaccharide production in cane juice. Bharatiya Sugar,1518.
    41. Shen, M.C.&Eisenberg, A.(1966). Glass transition in polymers. Progress in Solid StateChemistry,3,407481.
    42. Singleton, V.(2002). Review article: Advances in techniques of dextran analysis Amodern day perspective. International Sugar Journal,104(1239),132136.
    43. Singleton, V., Horn, J., Bucke, C.,&Adlard, M.(2001). A new polarimetric method for theanalysis of dextran and sucrose. International Sugar Journal,103,251254.
    44. Tong, H. Y. H., Wong, Y. S. S., Law, W. L. M., Chu, K.W. K.,&Chow, H. L. A.(2008).Anti-hygroscopic effect of dextrans in herbal formulations. International Journal ofPharmaceutics,363,99105.
    45. Truong, V., Bhandari, B. R., Howes, T.,&Adhikari, B.(2002). Analytical model for theprediction of glass transition temperature of food systems. In: H. Levine (Ed.), AmorphousFood and Pharmaceutical Systems (pp.31-47). The Royal Society of Chemistry, Cambridge.
    46. Truong, V., Bhandari, B. R., Howes, T.,&Adhikari, B.(2004). Glass transition behaviourof fructose. International Journal of Food Science and Technology,39,569578.
    47. Wungtanagorn, R.,&Schmidt, S. J.(2001). Thermodynamic properties and kinetics of thephysical ageing of amorphous glucose, fructose, and their mixture. Thermochimica Acta,369,95-116.
    48. Yanli, M.(2002). Protection mechanisms of excipients on lactate dehydrogenase duringfreeze thawing and lyophilization. Tennessee: Memphis.
    1. Abdel-Rahman E.A., Smejkal, Q., Schick, R., El-Syiad, S.&Kurz. T.,(2008). Influence ofdextran concentrations and molecular fractions on the rate of sucrose crystallization in puresucrose solution. Journal of Food Engineering,84,501508.
    2. Anon.(1996). Data sheet for Dextranex L-4000, Genencor.
    3. Anon.(2002). Determination of dextranase using spectrophotometry. Novo-zymes EB-SM-0120-02/01.
    4. Bashari M., Eibaid, A., Wang, J., Tian, Y., Xu, X.&Jin. Z.,(2013), Influence of lowultrasound intensity on the degradation of dextran catalyzed bydextranase, UltrasonicsSonochemistry,20,155161.
    5. Bashari M., Nikoo, M., Jin, Z., Bai, Y., Xu, X.,&Yang N.(2012). Thermal and rheologicalproperties of the supersaturated sucrose solution in the presence of different molecular weightfractions and concentrations of dextran, journal European Food Research and Technology,234(4),639-648.
    6. Brown C. F.,&Inkerman. P.A.,(1992)total dextran content of raw sugar. Journal of agricultural and food chemistry,40,227233.
    7. Clarke M.A., Bergeron, J.&Cole. F.,(1987). A rapid dextran screening test. Sugar Azucar82(3):2324.
    8. Cuddihy, J. A.,&Day D. F.,(1999). The process and financial impact of dextran on sugarfactory. Sugar Journal,61:27-30
    9. Cuddihy, J. A., Rauh, J. S.,&Porro, M. E.(1998). Improving sugar recovery with sugarprocess chemicals. http://www.midlandresearchlabsinc.com. Accessed8Jul2013.
    10. DeStefano, R.P.,(1988) Potential uses and associated benefits of dextranase enzyme in theraw sugar mill. Journal of American Society of Sugar Cane Technologists,8,99-104.
    11. Eggleston, G., C té, G.,&Santee, C.(2011). New insights on the hard-to-boil massecuitephenomenon in raw sugar manufacture. Food chemistry,126(1),21-30.
    12. Eggleston G, and A. Monge.2005. Optimization of sugarcane factory application ofcommercial dextranases. Process Biochemistry40,18811894.
    13. Eggleston G., Monge, A., Montes, B.,&Stewart. D.(2009). Application of dextranases insugarcane factory: Overcoming practical problems. Sugar Technology.11(2),135-141.
    14. Inkerman PA.(1980) An appraisal of the use of dextranase. Proceedings of the InternationalSociety of Sugar Cane Technologists.17,241127.
    15. Inkerman P.A.,&James, G.P,.(1976). Dextranase II, Practical application of the enzyme tosugar mills. Proc Queensland Soc Sugar Cane Technologists.43rdConf, Watson Fergusonand Co; Brisbane, Queensland, Australia p307-15.
    16. Khalikova, E., Susi, P.,&Korpela, T.(2005). Microbial dextran-hydrolyzing enzymes:fundamentals and applications. Microbiology and Molecular Biology Reviews,69(2),306-325.
    17. Kim, D.,&Day, D.F.,2004. Determination of dextran in raw sugar process streams, FoodScience and Biotechnology,13,248252.
    18. Kim D., Seo, H.C.,&Day, D.F.,(1996). Dextran production by Leuconostocmesenteroides inthe presence of a dextranase producing yeast, Lipomyces starkeyi. Biotechnology Techniques10,22732.
    19. Kim Y., Ko, E., Kang, H.,&Kim. D.(2009). Construction, expression and characterizationof fusion enzyme from Arthrobacter oxydans dextranase and Klebsiella pneumoniae amylase.Biotechnology Letter,3,10191024
    20. Millson S.H.,&Evans I.H.,(2007). Multiple dextranases from the yeast Lipomyces starkeyi.Antonie van Leeuwenhoek;92,399404
    21. Morel du Boil P.G.,&Wienese, S.,(2002). Enzymic reduction of dextran in processlaboratory evaluation of dextranases. Proceedings of The South African SugarTechnologists' Association,76,43543.
    22. Nordmeier E.,(1993). Static and Dynamic Light-Scattering Solution Behavior of Pullulanand Dextran in Comparison. The Journal of Physical Chemistry,97,5110-5185.
    23. Thitaram, S.N., Chung, C.H., Day, D.F., Hinton, A., Bailey, J.S.,&Siragusa, G.R.(2005).Iso ng broilerchickens1. Poultry Science,84(7),9981003.
    1. Abdel-Rahman E.A., Smejkal, Q., Schick, R., El-Syiad, S.&Kurz. T.,(2008). Influenceof dextran concentrations and molecular fractions on the rate of sucrose crystallization inpure sucrose solution. Journal of Food Engineering,84,501508.
    2. Aquino, F. W.,&Franco, D. W.(2009). Molecular mass distribution of dextran inBrazilian sugar and insoluble deposits of cacha a. Food chemistry,114(4),1391-1395.
    3. Austmeyer, K. E.(1981). Untersuchungen zum W rme-und Stoffübergang imAnfangsstadium der Verdampfungskristallisation der Saccharose, Techn. Univ. Carlo-Wilhelmina zu Braunschweig. Germany
    4. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X.,&Jin, Z.(2013). Influence of lowultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonicssonochemistry,20(1),155-161.
    5. Bashari, M., Nikoo, M., Jin, Z., Bai, Y., Xu, X.,&Yang, N.(2012). Thermal andrheological properties of the supersaturated sucrose solution in the presence of differentmolecular weight fractions and concentrations of dextran. European Food Research andTechnology,234(4),639-648.
    6. Braga da Cruz, I., MacInnes, W. M., Oliveira, J. C.,&Malcata, F. X.(2002).Supplemented state diagram for sucrose from dynamic mechanical thermal analysis. In H.Levine (Ed.), Amorphous food and pharmaceutical systems (pp.5970). Cambridge: TheRoyal Society of Chemistry.
    7. Chen, J. C.,&Chou, C. C.(1993). Cane sugar handbook: a manual for cane sugarmanufacturers and their chemists. John Wiley&Sons.
    8. Clarke M.A., Bergeron, J.&Cole. F.,(1987). A rapid dextran screening test. SugarAzucar82(3):2324.
    9. Cuddihy, J. A.,&Day D. F.,(1999). The process and financial impact of dextran onsugar factory. Sugar Journal,61:27-30
    10. Cuddihy, J. A., Mendez, F.,&Bernhard, C.,(2000). Dextranase in sugar production:factory experience. Journal of American Society of Sugar Cane Technologists,20:.95-103
    11. Cuddihy, J. A., Rauh, J. S.,&Porro, M. E.(1998). Improving sugar recovery with sugarprocess chemicals. http://www.midlandresearchlabsinc.com. Accessed8Jul2013.
    12. Eggleston, G., Porro, M. E.,&Rauh, C.(2011). New insights on the hard-to-boilmassecuite phenomenon in raw sugar manufacture. Food chemistry,126(1),21-30.
    13. Grimsey, I. M.,&Herrington, T. M.(1996). The incorporation of colored compounds insucrose crystals. Zuckerindustrie,121(1),40-45.
    14. Jimenez, E. R.(2005). The dextranase along sugar-making industry. BiotecnologiaAplicada,22(1),20-27.
    15. kelhof, B.(1997): Kristallisationskinetik der Saccharose in reinen und unreinen Lsungen. Dissertation, Techn. Univ. Braunschweig, Germany.
    16. Khalikova, E., Susi, P.,&Korpela, T.(2005). Microbial dextran-hydrolyzing enzymes:fundamentals and applications. Microbiology and Molecular Biology Reviews,69(2),306-325.
    17. Kim, D.,&Day, D.F.,(2004). Determination of dextran in raw sugar process streams,Food Science and Biotechnology,13,248252.
    18. Lowary, T. L.,&Richards, G. N.(1988). Effects of impurities on hydrolysis of sucrose inconcentrated aqueous solution. International Sugar Journal,90(1077),164167.
    19. Morel du Boil, P.G.,&Wienese, S.(2002). Enzymic reduction of dextran in processlaboratory evaluation of dextranases. Proceedings of the South African SugarTechnologists' Association,76,43543.
    20. Rogé, B., Bensouissi, A.,&Mathlouthi, M.(2007). Effect of calcium on white sugarturbidity. Zuckerindustrie,132(3),170.
    1. Balasubramaniam, V. M., Farkas, D.,&Turek, E. J.(2008). Preserving foods throughhigh-pressure processing. Food technology.
    2. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X.,&Jin, Z.(2013). Influence of lowultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonicssonochemistry,20(1),155-161.
    3. Basto, C., Silva, C. J., Gübitz, G.,&Cavaco-Paulo, A.(2007). Stability anddecolourization ability of Trametesvillosa laccase in liquid ultrasonic fields. Ultrasonicssonochemistry,14(3),355-362.
    4. Brown, C. F.,&Inkerman, P. A.(1992). Specific method for quantitative measurement ofthe total dextran content of raw sugar. Journal of agricultural and food chemistry,40(2),227-233.
    5. Buckow, R., Heinz, V.,&Knorr, D.(2005a). Effect of high hydrostatic pressure-temperature combinations on the activity of beta-glucanase from barley malt. Journal ofthe Institute of Brewing,111,282289.
    6. Buckow, R., Heinz, V.,&Knorr, D.(2005b). Two fractional model for evaluating theactivity of glucoamylase fromAspergillus niger under combined pressure and temperatureconditions. Food Bioprod. Process,83,220228.
    7. Buckow, R., Weiss, U., Heinz, V.&Knorr, D.(2007). Stability and catalytic activity ofalpha-amylase from barley malt at different pressure-temperature conditions.Biotechnology Bioengineering,97,111.
    8. Dai, G., Li, J.,&Jiang, L.(1999). Conformation change of glucose oxidase at the waterair interface. Colloids and Surfaces B: Biointerfaces,13(2),105-111.
    9. Eisenmenger, M. J.,&Reyes-De-Corcuera, J. I.(2009). High pressure enhancement ofenzymes: a review. Enzyme and Microbial Technology,45(5),331-347.
    10. Eggleston G., Monge A.,(2005). Optimization of sugarcane factory applicationofcommercial dextranases. Process Biochemistry.40,18811894
    11. Entezari, M. H.,&Petrier, C.(2004). A combination of ultrasound and oxidative enzyme:sono-biodegradation of phenol. Applied Catalysis B: Environmental,53(4),257-263.
    12. Goulas, A. K., Cooper, J. M., Grandison, A. S.,&Rastall, R. A.(2004). Synthesis ofisomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by thecombined use of dextransucrase and dextranase. Biotechnology and bioengineering,88(6),778-787.
    13.changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry,14(2),173-183.
    14. Heinz, V., Buckow, R.&Knorr. D.,(2005). Catalytic activity of beta-amylase frombarley in different pressure/temperature domains. Biotechnology Progress,2,16321638.
    15. Heremans, K.,&Smeller, L.(1998). Protein structure and dynamics at high pressure.Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1386(2),353-370.
    16. Huppertz, T., Fox, P. F.,&Kelly, A. L.(2004). High pressure treatment of bovine milk:effects on casein micelles and whey proteins. Journal of Dairy Research,71(01),97-106.
    17. Khanna, S., Jaiswal, S., Goyal, A.,&Moholkar, V. S.(2012). Ultrasound enhancedbioconversion of glycerol by Clostridium pasteurianum: A mechanistic investigation.Chemical Engineering Journal,200,416-425.
    18. Liu, W., Zhang, Z. Q., Liu, C. M., Xie, M. Y., Tu, Z. C., Liu, J. H.,&Liang, R. H.(2010).The effect of dynamic high-pressure microfluidization on the activity, stability andconformation of trypsin. Food chemistry,123(3),616-621.
    19. Ludikhuyze, L., Van Loey, A., Indrawati, Smout, C.,&Hendrickx, M.(2003). Effects ofcombined pressure and temperature on enzymes related to quality of fruits and vegetables:from kinetic information to process engineering aspects. Critical reviews in food scienceand nutrition,43(5),527-586.
    20. Lullien-Pellerin, V.&Balny, C.(2002). High-pressure as a tool to studproperties: conformational modification, activity and oligomeric dissociation. InnovativeFood Science&Emerging Technologies,3209-221.
    21. Ma, H., Huang, L., Jia, J., He, R., Luo, L.,&Zhu, W.,(2011). Effect of energy-gatheredultrasound on Alcalase. Ultrasonics Sonochemistry,18,419424.
    22. Michels, P. C.&Clark, D. S.(1992). Pressure-dependence of enzyme catalysis. ACS. SSymposium Series.49810821.
    23. Mozhaev, V. V., Lange, R., Kudryashova, E. V.,&Balny, C.(1996). Application of highhydrostatic pressure for increasing activity and stability of enzymes. Biotechnology andBioengineering,52(2),320-331.
    24. Noel, M.,&Combes, D.(2003). Effects of temperature and pressureonRhizomucormiehei lipase stability. Journal of biotechnology,102(1),23-32.
    25. Northrop, D. B.(2002). Effects of high pressure on enzymatic activity. Biochimica etBiophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1595(1),71-79.
    26. Okamoto, M., Hayashi, R., Enomoto, A., Kaminogawa, S., Yamauchi, K.(1991). High-pressure Proteolytic Digestion of Food Proteins: Selective Eli-Lactoglobulinin Bovine Milk Whey Concentrate (Food&Nutrition). Agricultural and biologicalchemistry,55(5),1253-1257.
    27. zbek, B.,&ülgen, K..(2000). The stability of enzymes after sonication. ProcessBiochemistry,35(9),1037-1043.
    28. Patidar, R., Khanna, S.,&Moholkar, V. S.(2012). Physical features of ultrasoundassisted enzymatic degradation of recalcitrant organic pollutants. Ultrasonicssonochemistry,19(1),104-118.
    29. Permyakov, E.A.(1993). Luminiescent Spectroscopy of Proteins, CRC Press Inc., BocaRaton, FL, Chapter4.
    30. Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K.&Knorr,D.(2007). Opportunities and challenges in high pressure processing of foods. Criticalreviews in food science and nutrition,47,69-112.
    31. Sakakibara, M., Wang, D., Takahashi, R., Takahashi, K.,&Mori, S.(1996). Influence ofultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme andMicrobial Technology,18(6),444-448.
    32. Schl fer, O., Sievers, M., Klotzbücher, H.,&Onyeche, T. I.(2000). Improvement ofbiological activity by low energy ultrasound assisted bioreactors. Ultrasonics,38(1),711-716.
    33. Tian, Z.M., Wan, M.X., Wang, S.P.,&Kang, J.Q.(2004). Effects of ultrasound andadditives on the function and structure of trypsin. Ultrasonnics Sonochemstry.11399404.
    34. amylase. Innovative Food Science&Emerging Technologies,13,107-111.
    35. Vila Real, H. J., Alfaia, A. J., Calado, A. R.,&Ribeiro, M. H.(2007). High pressure-temperature effects on enzymatic activity: Naringin bioconversion. Food chemistry,102(3),565-570.
    36. Whitmore, L.,&Wallace, B.A.(2004), DICHROWEB, An online server for proteinsecondary structure analyses from circular dichroism spectroscopic data, Nucleic AcidsResearch,32,668673.
    37. Wang, X., Huang, Q.D., Huang, F.H., Wang, J.W.,&Huang, Q.J.,(2007). Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant.Chinese Journal of Biotechnology.23,11211128.
    38. Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I.,&Hendrickx, M. E.(1998).Kinetics of combined pressure temperature inactivation of avocado polyphenoloxidase.Biotechnology and bioengineering,60(3),292-300.
    39. Zamorano, L. S., Pina, D. G., Gavilanes, F., Roig, M. G., Sakharov, I. Y., Jadan, A. P., vanHuystee, R. B., Villar, E.&Shnyrov, V. L.(2004). Two-state irreversible thermaldenaturation of anionic peanut (Arachis hypogaea L.) peroxidase. Thermochimica acta,417(1),67-73.
    40. Zhang, T., Lv, C., Yun, S., Liao, X., Zhao, G.,&Leng, X.(2012). Effect of highhydrostatic pressure (HHP) on structure and activity of phytoferritin. Food Chemistry,130(2),273-278.
    1. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X.,&Jin, Z.,(2013), Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase, Ultrasonics Sonochemistry.20,155-161.
    2. Brown, C.F., Inkerman, P.A.(1992).Specific method for quantitative measurement of the total dextran content of raw sugar. Journal of Agricultural and Food Chemistry.40227-233.
    3. Dai, G, Li, J.,&Jiang, L.,(1999). Conformation change of glucose oxidase at the water-air interface, Colloids and Surfaces B:Biointerfaces.13,105-111.
    4. Eggleston, G,&Monge, A.,(2005), Optimization of sugarcane factory application of commercial dextranases, Process Biochemistry.40,1881-1894
    5. Eggleston, G, Monge, A., Montes, B.,&Stewart, D.(2007). Factory trials to optimize the industrial application of dextranase in raw sugar manfacture. Part Ⅱ. International Sugar Jurnal.109,757-764.
    6. Goulas, A.K., Fisher, D.A., Grimble, G.K., Grandison, A.S.,&Rastall, R.A.,(2004), Synthesis of isomalto-oligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase, Enzyme and Microbial Technology.35,327-338.
    7. Gulseren, I., Giizey, D., Bruce, B.,&Weiss, J.,(2007), Structural and functional changes in ultrasonicated bovine serum albumin solutions, Ultrasonics Sonochemistry.14,173-183.
    8. Hahn, H.W., Rainer, M., Ringer,T., Huck, C.W.,&Bonn, GK.(2009). Ultrafast microwa
    9. ve-assisted in-tip digestion of proteins. Journal of Proteome Research.8(9),4225-30.
    10. Izquierdo, F. J., Alli, I., Yaylayan, V.,&Gomez, R.,(2007). Microwave-assisted digestion of a-lactoglobulin by pronase,a-chymotrypsin and pepsin. International Dairy Journal.17,465-470.
    11. Izquierdo, F.J., Penas, E., Baeza, M.L.&Gomez, R.(2008). Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal.18,918-922.
    12. Kamerke, C., Pattky, M., Huhn, C.,&Elling, L.,(2012). Synthesis of UDP-activated Oligosaccharides with Commercialrmbeta-galactosidase fromBacillus circulans under Microwave Irradiation, Journal of Molecular Catalysis B:Enzymatic.79,27-34.
    13. Lin, G.L.,&Lin, W.Y.,(1998). Microwave-promoted lipase-catalyzed reactions. Tetrahedron Letters.39,4333-6.
    14. Maugard, T., Gaunt, D., Legoy, M.D.,&Besson, T.,(2003). Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized p-galactosidase from Kluyveromyceslactis.Biotechnololoy Letters.25,623-9.
    15. Ma, H., Huang, L., Jia, J., He, R., Luo, L.,&Zhu, W.,(2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry.18,419-424
    16. Nogueira, M., Carretoni, C., Cruz, R., Freitas, S., Melo, P.A., Costa-Felix, R., Pinto, J.C.,&Nele, M.,(2010). Microwave activation of enzymatic catalysts for biodiesel production Journal of Molecular Catalysis B:Enzymatic.67,117-121.
    17. Nuchter, M., Ondruschka, B., Bonrath, W.,&Gum, A.(2004). Microwave assisted synthesis—acritical technology overview. Green Chemistry.6,128-41.
    18. Roberts, B.A.,&Strauss, C.R.(2005) Toward rapid "green", predictable microwave-assistedsynthesis. Accounts of Chemical Research.38,653-61.
    19. Rejasse, B., Lamare, S., Legoy, M.D.,&Besson, T.(2004). Stability improvement of immobilized Candidaan tarctica lipase Binorganic medium under microwave radiation Organic&Biomolecular Chemistry.2,1086-9.
    20. Rejasse, B., Besson, T, Legoy, M.D.,&Lamare, S.(2006). Influence of microwave irradiation on free Candida antartica lipase b activity and stability. Organic&Biomolecular Chemistry.4,3703-3707.
    21. Roy, I., Mondal, K.,&Gupta, M. N.(2003). Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnology Progress,19,1648-1653
    22. Singh, A., Tuteja, S., Singh, N.,&Bishnoi, N.R.(2011). Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresources Technolology.102(2),1773-82.
    23. Sontakke, J.B.,&Yadav, G.D.,(2011). Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of (±)-1-phenylethylamine under microwave irradiation. Journal of Chemical Technology and Biotechnolology.86,739-748.
    24. Yachmenev, V.,&Lambert, A,(2007), Intensification of enzyme reactions in heterogeneous systems by low intensity, uniform sonication:New road to "green chemistry." p.137-156. In Industrial Application of Enzymes on Carbohydrate Based Materials; Eggleston G, Vercellotti JR, Eds. ACS Symp. Series972:Washington D.C., USA.
    25. Yadav, G.D.,&Borkar, I.V.,(2006). Kinetic modeling of microwave assisted chemo-enzymatic epoxidation of styrene to styrene oxide. AICh E journal.52,1235-1247.
    26. Yadav, G.D.,&Lathi, P.S.,(2004). Synergism between microwave and enzyme catalysis inintensification of reactions and selectivities: transesterification of methyl acetoacetate withalcohols. Journal of Molecular Catalysis A: Chemical223,5156.
    27. Yadav, G.D.,&Pawar, S.V.,(2012). Synergism between microwave irradiation and enzymecatalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresources.Technology.109,1-6.
    28. Yadav, G. D.,&Sajgure, A. D.(2007). Synergism of microwave irradiation and enzymecatalysis in synthesis of isoniazid. Journal of chemical technology and biotechnology,82(11),964-970.
    29. Young, D.D., Nichols, J., Kelly, R.M.,&Deiters, A.,(2008), Microwave Activation ofEnzymatic Catalysis. Journal of the American Chemical Society.130,1004810049
    30. Zhang, X., Qin W., Tian, X.,&Huang, M.,(2011). Effect of microwave irradiation on-amylase by circular dichroism. Journal of Central South University
    31. Zhang, X., Cao, T., Tian, X.,&Gai, D.(2012). Effect of microwave irradiation on thestructure of glucoamylase. Process Biochemistry.47,2323232
    32. Whitmore, L.,&Wallace, B.A.(2004), DICHROWEB, An online server for proteinsecondary structure analyses from circular dichroism spectroscopic data, Nucleic AcidsResearch,32,668673.
    33. Wang, Z., Lin, X., Li, P., Zhang, J., Wang, S.,&Ma, H.,(2012). Effects of low intensityultrasound on Cellulase pretreatment, Bioresource Technolology.117,222227.
    34. Wang, X., Huang, Q.D., Huang, F.H., Wang, J.W.,&Huang, Q.J.,(2007). Lipase-catalyzedproduction of biodiesel from high acid value waste oil using ultrasonic assistant. ChineseJournal of Biotechnology.23,11211128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700