辅酶Q_(10)高产菌株选育及发酵过程优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辅酶Q_(10)是一种重要的生化药剂,临床上被广泛应用于心血管疾病的治疗。此外,辅酶Q_(10)因具备抗氧化性和消除自由基的功能,而今已扩展到食品和化妆品领域。当前,辅酶Q_(10)制备方法主要有化学法、动植物组织提取法和微生物发酵法。与前两种制备方法相比,微生物发酵合成辅酶Q_(10)具有成本低、无光学异构体及生物学活性高等特点,因而被认为是最具前途的生产方式。本研究以根癌土壤杆菌(Agrobacterium tumefaciens)为出发菌株,诱变育种结合定向筛选,成功获得一株高产辅酶Q_(10)突变株,后通过发酵过程优化控制,最大限度的发挥该突变株代谢合成辅酶Q_(10)的特性。主要研究内容和结果如下:
     (1)系统考察超声波破碎法、反复冻融法、研磨法、酸热法对根癌土壤杆菌细胞破碎和辅酶Q_(10)提取效果的影响。结果表明,酸热破碎法提取辅酶Q_(10)效果最好;其中,以盐酸破壁提取效果最佳,乳酸和硫酸次之。酸热破壁提取工艺的关键因子为:料液比、破壁温度和处理时间。中心组合设计和响应面分析结果显示,在3 mol/L盐酸处理条件下,酸热破壁提取最佳工艺参数为:料液比10.8 mL/g、破壁温度84.2°C、处理时间35.3 min。在最佳破壁工艺下,辅酶Q_(10)提取量能达到1.518 mg/g。
     (2)以根癌土壤杆菌1.2554为出发菌株,经高静水压诱变处理,筛选获得一株呼吸链抑制剂NaN3抗性突变株PN07。菌株PN07后经过紫外线和硫酸二乙酯复合诱变,获得一株酪氨酸缺陷型突变株MT18。菌株MT18后经高静水压、紫外线和硫酸二乙酯交替诱变,采用抗结构类似物(乙基硫氨酸、柔红霉素、维生素K_3)的抗性平板初筛,经摇瓶发酵复筛,最终获得一株辅酶Q_(10)高产菌株PK38,其胞内辅酶Q_(10)含量达2.30 mg/g干菌,较出发菌株提高51.51%。菌株PK38后经10次传代培养,辅酶Q_(10)含量无明显下降,表明PK38是一株遗传性状稳定的优良菌株。
     (3)采用单因素试验并结合Plackett-Burman试验设计,筛选出影响PK38细胞生长和辅酶Q_(10)产量的重要因子为:蔗糖、玉米浆干粉、硫酸铵、硫酸镁、生物素和茄尼醇。结合Box-Behnken设计和响应面分析,得到生产辅酶Q_(10)的最佳发酵培养基配方为:蔗糖37.2 g/L、玉米浆干粉37.1 g/L、硫酸铵7.0 g/L、硫酸镁0.4 g/L、生物素82.9μg/L、茄尼醇0.2 g/L、CaCl_2 140 mg/L、FeSO_4·7H_2O 0.2 mg/L、ZnSO_4·7H_2O 8 mg/L、烟酸8 mg/L。在最佳发酵培养基下摇瓶发酵72 h,生物量和辅酶Q_(10)产量分别可达到9.25 g/L和28.44 mg/L。
     (4)采用摇瓶发酵试验,利用单因素试验考察了初始pH值、发酵温度、接种量和发酵时间对PK38细胞生长和发酵生产辅酶Q_(10)的影响。结果表明,辅酶Q_(10)发酵最佳初始pH值、发酵温度、接种量和发酵时间分别为:7.2、30°C、8%和72 h。后利用5 L发酵罐,研究转速和溶氧浓度对辅酶Q_(10)发酵的影响。结果表明,较高转速和溶氧浓度有利于细胞生长,但不利于PK38胞内辅酶Q_(10)的代谢合成。后经采用分段控制溶氧工艺(0-36 h为90-100%,36-72 h为30%),最终辅酶Q_(10)产量为56.46 mg/L,比最优恒定转速下提高11.71%。
     (5)基于Logistic方程、Leudeking-Piret方程以及Luedeking-Piret-like方程得到了描述辅酶Q_(10)分批发酵过程的动力学模型和模型参数。经模型检验,结果表明,在蔗糖浓度为30 ~ 40 g/L范围内,该组模型适应性良好,能较好地拟合发酵过程,可反映菌株PK38分批发酵过程的动力学特征。
     (6)基于分批发酵动力学模型,以蔗糖为单一流加底物,分别考察了分批补料培养、恒速流加培养(高速、低速)和指数流加培养3种培养模式下,菌株PK38发酵生产辅酶Q_(10)的代谢特征。结果表明,指数流加培养策略为菌株PK38发酵生产辅酶Q_(10)最佳培养模式。该培养模式下,PK38最终生物量和辅酶Q_(10)产量分别达32.37 g/L和120.01 mg/L,与分批发酵相比,分别提高了126.11%和173.12%。
Coenzyme Q_(10) (CoQ_(10), ubiquinone) is an important biochemical compound receiving increased attention as a nutraceutical dietary supplement for its known benefits in the prevention of aging and cardiovascular problems. Extensive attempts have been made to produce CoQ_(10) to meet the growing demands. The production of CoQ_(10) follows one of the three routes: extraction from biological tissues, chemical synthesis, and microbial fermentation. In the wake of environmental awareness, the first two options became least desirable due to the inherent uses of solvents and chemicals in the process. Microbial fermentation, on the contrary, offers an environmentally benign option based on the enzymatic catalysis at the cellular level for CoQ_(10) assembly. Moreover, this approach is attractive to the industry because the process is easy to control at a relatively low production cost. In this study, A. tumefaciens 1.2554 was treated with HHP, UV, and DES, and strain PK38 was isolated using selection marker. The CoQ_(10) production of PK38 was investigated using batch and fed-batch cultures. The main results are as following:
     (1) The yield of CoQ_(10), an intracellular product extracted from Agrobacterium tumefaciens cells, is dependent on the effectiveness of cell lysis post fermentation. Various cell lysis approaches were investigated, including ultrasound, repetitive freezing/thawing, grinding, and acid-heat treatment. The acid-heat combination using hydrochloric acid was found the most effective in releasing CoQ_(10), followed by lactic, sulfuric, phosphoric, and oxalic acids. The most significant processing parameters, namely the ratio of acid solution volume and bacteria weight (A/B ratio), incubation temperature, and reaction time, were optimized by using the Central Composite Design (CDD) with a quadratic regression model built by Response Surface Methodology (RSM). The highest CoQ_(10) yield at 1.518 mg/g dry cell was attained using hydrochloric acid (3 mol/L) under optimal A/B ratio, temperature, and time at 10.8 mL/g, 84.2°C, and 35.3 min, respectively.
     (2) A. tumefaciens 1.2554 was subjected to a series of treatment including the high hydrostatic pressure (HHP) treatment, UV irradiation, and Diethyl sulfate (DES) treatment. Through these treatments, a mutant strain PK38 with high-yield of CoQ_(10) was isolated, screened by selecting mutants resisting the respiration chain inhibitor (sodium azide) and the structure analogue (ethionine, daunomycin and Vk3). The stability of the mutants was tested and the strain PK38 had specific CoQ_(10) content between 2.318 and 2.321, which was 51.51% higher than the original strain.
     (3) Six nutritional factors, including sucrose, corn steep power (CSP), (NH_4)_2SO_4, MgSO_4·7H_2O, biotin and solanesol were optimized for CoQ_(10) production using response surface methodology (RSM). The optimal medium for CoQ_(10) production were (g/L): sucrose 37.2 g/L, CSP 7.1 g/L, (NH_4)_2SO_4 7.0 g/L, MgSO_4·7H_2O 0.4 g/L, biotin 82.9μg/L, solanesol 0.2 g/L, CaCl_2 140 mg/L, FeSO_4·7H_2O 0.2 mg/L, ZnSO_4·7H_2O 8 mg/L and nicotinic acid 8 mg/L. Under the optimum condition, the CoQ_(10) yield was 28.44 mg/L, while the biomass reached 9.25 g/L.
     (4) The optimal initial pH, culture temperature, inoculum dosage and culture time were 7.2, 30°C, 8%, and 72 h, respectively. Based on the kinetic analysis of the batch fermentation process, a two-stage agitation speed or dissolved oxygen (DO) control strategy was performed. When the agitation speed was gradationally controlled (300 rpm for 0-36 h and 100 rpm for 36-72 h) or the DO concentration was gradationally controlled (90~100% for 0-36 h and 30% for 36-72 h), both CoQ_(10) production and specific CoQ_(10) content were promoted. With DO controlled strategy, the maximal CoQ_(10) yield and specific CoQ_(10) content reached 56.46 mg/L and 3.94 mg/g-DCW, respectively, which were 11.71% and 6.78% higher than the best result controlled by constant agitation speeds.
     (5) A kinetic model of CoQ_(10) production by batch fermentation with PK38 was studied. After observation of experimental data, a model based on the logistic equation of PK38 growth, CoQ_(10) accumulation combined non-growth-associated and growth-associated contributions, and consumption of sugar for biomass formation and the maintenance of biomass, was developed. The optimal set of parameters was estimated by fitting the model to experimental data. The results predicted by the model were in good agreement with the experimental observations.
     (6) The metabolic characteristics under three operation ways of fed-batch fermentation, constant feeding rate fermentation, and exponential fed-batch fermentation were studied in a 5-L fermentator. And the influences of different CoQ_(10) fermentation modes were investigated. The optimum fermentation mode among x them of CoQ_(10) was exponential feeding fermentation. With this strategy, the final cell biomass, CoQ_(10) production, and specific CoQ_(10) production increased 126.11, 173.12, and 22.76% mg/g-DCW, respectively, compared to those of batch culture.
引文
陈坚,堵国成,卫功元. 2005.微生物重要代谢产物-发酵生产与过程解析.北京:化学工业出版社: 128~175
    冯志彬,王东阳,徐庆阳,温廷益,陈宁. 2006.氮源对L-苏氨酸发酵的影响.中国生物工程杂志, 26(11):54~58
    高健,付进. 2008.碱蓬中辅酶Q10的提取分离.安徽农业科学, 36(10): 3943~3944
    李聚海,岳田利,袁亚宏. 2007a.辅酶Q10超声波破碎法提取工艺条件研究.西北农林科技大学学报(自然科学版), 35(5): 207~211
    李聚海. 2007b.辅酶Q10高产菌株选育及发酵条件优化研究. [硕士学位论文].西安:西北农林科技大学
    李梅,吕炜锋,高向东. 2005.产辅酶Q10细菌CPU0402的初步研究.药物生物技术, 12(3): 162~166
    刘够生,石磊,于建国. 2003.基于响应面的泔水样培养单细胞蛋白培养基的优化.食品与发酵工业, 29(10): 15~18
    刘克杉,黄晓星,吴文芳. 2006.辅酶Q的生物合成途径以及相关的酶和基因.中国医药工业杂志, 37(2): 140~144
    刘玲,李革. 2004.用黄色隐球酵母发酵生产辅酶Q10最佳条件的选择.大连水产学院学报, 219(3): 199~203
    潘春梅,李寅,堵国成,陈坚. 2005a.利用广谱性和特异性组合诱变技术选育辅酶Q10高产菌.应用与环境生物学报, 11: 363~367
    潘春梅,堵国成,陈坚. 2004.辅酶Q10高产菌Rhizobium radiobacter的选育及发酵条件优化.过程工程学报, 4(5): 451~456
    潘春梅,刘畅,堵国成. 2005b.放射型根瘤菌辅酶Q10发酵助剂的研究.食品与发酵工业, 30(10): 13~16
    戚以政,王叔雄. 1996.生化反应动力学与反应器.北京:化学工业出版社: 1~10.
    钱雪,王祖巧,韩国平. 2006.辅酶Q10的药理及应用.食品与药品, 8(1): 16~18
    邱卫华,刘萍,钟桂芳. 2004.粟酒裂殖酵母中辅酶Q10的提取和测定方法.食品与发酵工业, 30(11): 31~35
    沈雪亮. 2008.分批发酵及补料分批发酵工艺生产马杜霉素的研究.高校化学工程学报, 22(6): 1003~1009
    施巧琴,吴松刚. 1991.工业微生物育种学.福建:福建科学技术出版社
    史立康,徐尔尼,汪金萍. 2006.微生物发酵生产辅酶Q10的研究进展.中国酿造, 12:4~8
    史仲平,潘丰. 2005.发酵过程解析、控制与检测技术.北京:化学工业出版社: 144~148
    宋文军. 2003. L-异亮氨酸高产菌的选育及其发酵条件研究. [博士学位论文].天津:天津科技大学
    陶文沂. 1999.工业微生物生理与遗传育种学.北京:中国轻工业出版社
    王春林. 1996.中国大豆辅酶Q10的提取、分离和鉴定.中国医药工业杂志, 27 (3): 102-104
    王福荣. 2005.生物工程分析与检验.北京:中国轻工业出版社: 141
    王根华,钱和. 2003.发酵条件对豌豆根瘤菌细胞生长和辅酶Q10合成的影响.无锡轻工大学学报, 22(3): 101~104.
    卫功元,李寅,堵国成,陈坚. 2003.溶氧及pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响.生物工程学报, 19(6): 734~738
    卫功元,李寅,堵国成,陈坚. 2005.产朊假丝酵母流加发酵法生产谷胱甘肽.过程工程学报, 5(3): 327~331
    邬小兵,徐惠娟,支小鹏,徐方成,胡忠,龙敏南. 2008.利用甲硝唑及外加氧方法筛选耐氧产氢Klebsiella oxytoca HP1突变菌株.微生物学通报, 35(3): 327~331
    吴祖芳,堵国成,陈坚. 2002.发酵液中辅酶Q10的分离纯化和定量分析.无锡轻工大学学报, 21(4): 420~423
    吴祖芳,堵国成. 2003a.营养条件和流加发酵对放射型根瘤菌(Rhizobium radiobacter)产辅酶Q10的影响.生物工程学报, 19(2):212~216
    吴祖芳,堵国成,陈坚. 2003b.放射型根瘤菌WSH2601生产辅酶Q10的摇瓶发酵条件.无锡轻工大学学报, 22(1): 65~69
    吴祖芳,堵国成,陈坚. 2004.放射型根瘤菌分批发酵生产辅酶Q10的代谢特性和发酵动力学.高校化学工程学报, 18(2): 191~195
    吴祖芳,翁佩芳,陈坚. 2001.辅酶Q10发酵生产的育种思路及发酵条件优化策略.食品与发酵工业, 27(7): 49~53
    熊宗贵. 2000.发酵工艺原理.北京:中国医药出版社
    许激扬,岳小飞,肖海蓉. 2006.辅酶Q10高产酵母菌SY-3发酵工艺的研究.中国现代应用药学杂志, 23(7): 610~612
    杨革,刘艳,李桂芝. 2006.溶氧及pH对地衣芽孢杆菌合成聚γ谷氨酸的影响.应用与环境生物学报, 12(6): 850~853
    姚万春,唐玉明,廖建民. 2003.关于5株根霉菌特性及其原料适应性的研究.中国酿造, 124(1): 10~11
    叶青,张宾红,关屹. 1999. CoQ10的性质及其在化妆品中的应用.香料香精化妆品, 3: 32~34
    俞俊棠,唐孝宣. 1991.生物工艺学.上海:华东华工学院出版社
    袁静,魏泓. 2003.光合细菌产辅酶Q10发酵条件的研究.氨基酸和生物资源, 25(2): 24~26
    袁静,魏泓. 2004.微生物发酵生产辅酶Q10的研究进展.氨基酸和生物资源, 26(1): 53~56
    袁艺. 1997.猪心中提取和纯化辅酶Q10(联产Cyt ).安徽农业大学学报, 24(2): 200~203
    张克旭,陈宁,张蓓. 1998.代谢控制发酵.北京:中国轻工业出版社
    张向阳,刘登如,堵国成,陈坚. 2007.辅酶Q10产生菌的抗性筛选及发酵条件优化.工业微生物, 27: 5~9
    张延静,袁其朋,梁皓. 2003.产辅酶Q10酵母的发酵条件研究.微生物学通报, 30(2): 65~69
    周波,浦跃武,朱明军,梁世中. 2008.氮源对红曲霉突变株产黄色素的影响.现代食品科技, 24: 123~127
    周德庆. 2000.微生物学教程.北京:高等教育出版社
    朱旭芬,曾云中,吴雪昌. 2000.生物体内泛醌的种类及合成条件的探讨.浙江大学学报(理学版), 27(3): 324~328
    Alakomi H L, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K. Helander I M. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environment Microbiology, 66: 2001~2005
    Arroyo A, Kagan V E, Tyurin V A, Burgess J R, de Cabo R, Navas P, Villalba J M. 2000. (2000): NADHand NADPH dependent reduction of coenzyme Q at the plasma membrane. Antioxidants & Redox Signalling, 2: 251~262
    Bartlett D H, Kato C, Horikoshi K. 1995. High pressure influences on gene and protein expression. Research in Microbiology, 146(8): 697~706
    Bartlett D H. 2002. Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta, 1595(1-2): 367~381
    Basak S, Ramaswamya H S, Piette J P G. 2003. High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innovative Food Science and Emerging Technologies, 3: 223~231
    Battino M, Ferri E, Gorini A, Villa F R, Huertas R J F, Fiorella P, Genova M L, Lenaz G, Marchetti M. 1990. Natural distribution and occurrence of coenzyme Q homologues. Membrane Biochemistry, 9: 179~190
    Beal M F. 2004. Mitochondrial dysfunction and oxidative damage in Alzheimer 's and Parkinson's diseases and coenzyme Q10 as a potential treatment. Journal of Bioenergetics and Biomembranes, 36:381
    Bentinger M, Brismar K, Dallner G. 2007. The antioxidant role of coenzyme Q. Mitochondrion, 7(Suppl. 1): S41~S50
    Borthwick K A J, Coakley W T, McDonnell M B, Nowotny H, Benes E, Groschl M. 2005. Development of a novel compact sonicator for cell disruption. Journal of Microbiological Methods, 60: 207~216
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248~254.
    Brandt U, Trumpower B. 1994. The proton motive Q cycle in mitochondria and bacteria. Critical Reviews in Biochemistry and Molecular Biology, 29: 165~197
    Carr N G, Exell G. 1965. Ubiquinone concentrations in Athiorhodaceae grown under various environmental conditions. Biochemical Journal, 96: 688~692
    Chen Q H, He G Q, Schearz P. 2004. Studies on cultivation kinetics for elastase production by Bacillus sp. EL31410. Journal of Agricultural and Food Chemistry, 52: 3356~3359
    Chisti Y, Moo-Young M. 1986. Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(9): 199~204
    Choi G S, Kim Y S, Seo J H, Ryu Y W. 2005. Restricted electron flux increase coenzyme Q10 production in Agrobacterium tumefaciens ATCC 4452. Process Biochemistry, 40: 3225~3229
    Choi J H, Ryu Y W, Seo J H. 2005. Biotechnological production and applications of coenzyme Q10. Applied Organometallic Chemistry, 68: 9~15
    Cluis C P, Burja A M, Martin V J. 2007. Current prospects for the production of coenzyme Q10 in microbes. Trends in Biotechnology, 25: 514~521
    Crane F L, Ban D. 1980. In: Methods in Enzymology. Volume X VIII. Part B C D. New York: Academic Press: 137-165
    Crane F L, Hatefi Y, Lester R L, Widmer C. 1957. Isolation of a quinone from beef heart mitochondria. Biochimica et Biophysica Acta, 25: 220~222
    Crane F L, Sun I L, Barr R, Morre D J. 1984. Coenzyme Q in Golgi apparatus membrane redox activity and proton uptake. In: Folkers K., Yamamura Y (eds): Biomedical and Clinical Aspects of Coenzyme Q Elsevier Science, Amsterdam: 77~86
    Crane F L. 2000. New functions for coenzyme Q. Protoplasma, 213:127~133
    Crane F L. 2001. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition, 20: 591~598
    Deepak V, Kalishwaralal K, Ramkumarpandian S, Venkatesh Babu S, Senthilkumar S R, Sangiliyandi G. 2008. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99:8170~8174.
    Eizilu. 1993. Production of ubiquinone and bacteriochlorophy by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. Journal of Fermentation and Bioengineering, 76: 191~194
    Emster L, Dallner C Z. 1995. Biochemical, physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta, 1271:195~204
    Eren D, Keinan E. 1988. Total synthesis of linear polyprenoids. Journal of the American Chemical Society, 10 (13): 4356~4362
    Ernster L, Dollner G. 1995. Biochemical physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta, 1271: 195~204
    Falconer R J, O’Neill B K, Middelberg A P J. 1999. Chemical treatment of Escherichia coli. 3. selective extraction of a recombinant protein from cytoplasmic inclusion bodies in intact cells. Biotechnology and Bioengineering, 62: 455~460
    Fernandes P M B. 2005. How does yeast respond to pressure? Brazilian Journal of Medical and Biological Research, 38:1239~1245
    Festenstein G N, Heaton F W, Lowe J S, Morton R A. 1955. A constituent of the unsaponifiable portion of animal tissue lipids. Biochemical Journal, 59: 558~566
    Fir M M, Smidovnik A, Milivojevic L, Zmitek J, Prosek M. 2009. Studies of CoQ10 and cyclodextrin complexes: solubility, thermo- and photo-stability. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 64: 225~232
    Folkers K, Morita M, McRee J. 1993. The activities of coenzyme Q10 and vitamin B6 for immune responses. Biochemical and Biophysical Research Communications, 193(1): 88~92.
    Folkers K, Osterborg A, Wu Z F. 1997. Activities of vitamin Q10 in animal models and a serious deficiency in patients with cancer. Biochemical and Biophysical Research Communications, 234: 296~299
    Folkers K. 1974. The potential of coenzyme Q10 in cancer treatment. Cancer Chemotherapy Reports, 24:19~22
    Forsmark-Andree P, Dallner G, Ernster L. 1995. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radical Biology & Medicine, 19: 749~757
    Frankish H. 2002. Coenzyme Q10 could slow functional decline in Parkinson's disease. Science and Medicine, 360: 1227
    Gaden E L. 1959. Fermentation kinetics and productivity. Journal of Biochemical and Microbiological Technology and Engineering, 1(4): 413~418
    Garc?′a-ochao F, Casas J A. 1999. Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme and Microbial Technology, 25: 613~621
    Gogate P R, Kabadi A M. 2009. A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44: 60~72
    Golecki J R. 1988. Electron microscopy of isolated microbial membranes. In: Mayer F. (ed), Methods in Microbiology. New York: Academic Press: 262~274
    Gómez-Díaz1 C, Barroso M P, Navas P. 2000. Plasma membrane coenzyme Q10 and growth control. Protoplasma, 214: 19~23
    Grunler J, Ericsson J, Dallner G. 1994. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochimica et Biophysica Acta, 1212: 259~277
    Gu S B, Yao J M, Yuan Q P, Xue P J, Zheng Z M, Yu Z L. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochemistry, 41: 1908~1912
    Ha S J, Kim S Y, Seo J H, Moon H J, Lee K M, Lee J K. 2007a. Controlling the sucrose concentration increases coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Applied Microbiology and Biotechnology, 76: 109~116
    Ha S J, Kim S Y, Seo J H, Oh D K, Lee J K. 2007b. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Applied Microbiology and Biotechnology, 74: 974~980
    Ha S J, Kim S Y, Seo J H, Sim W I, Moon H J, Lee J K. 2007c. Lactate increases coenzyme Q10 production by Agrobacterium tumefaciens. World Journal of Microbiology and Biotechnology, 24: 887~890
    Ho C W, Tan W S, Yap W B, Ling T C, Tey B T. 2008. Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. Biotechnology and Bioprocess Engineering, 13: 577~583
    Ikeda T, Matsumo T. 1976. Formation of ubiqinone by tobacco plant cells in suspension culture. P-hytochemistry, 15: 568~569
    Izumi K, Kinya U A. 1980. Effects of isopentenyl alchol and its homologues on the ubiquinone production by various microorganisms. Agricultural and Biological Chemistry, 44:407~411
    Jaki B U, Franzblau S G, Cho S H, Pauli G F. 2004. Development of an extraction method for mycobacterial metabolome analysis. Journal of Pharmaceutical and Biomedical Analysis, 41: 196~200
    James A M, Smith R A J, Murphy M P. 2004. Antioxidant and prooxidant properties of mitochondrial coenzyme CoQ10. Archives of Biochemistry and Biophysics, 423: 47~56
    Jiang S Y, Yu L J, Xiong X, Shen X L, Jian Y. 2008. Optimal supply of precurosrs for CoQ10 production by Rhodopseudomonas palustris. Progress in Medern Biomedicine, 8: 845~850
    Kagan V, SerbinováE, Packer L. 1990. Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochemical and Biophysical Research Communications, 169: 851–857.
    Kalil M S, Alshiyab H S, Yusoff W M W. 2008. Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum. American Journal of Biochemistry Biotechnology, 4: 393~401
    Kanazawa M, Takahashi T. 1981. Biomedical and Clinical Aspects of Coenzyme Q10. Elsevier, 3:342~355
    Kapucu H, Gulsoy N, Mehmetoglu U. 2000. Disruption and protein release kinetics by ultrasonication of Acetobacter peroxydans cells. Biochemical Engineering Journal, 5: 57~62
    Keinan E, Eren D. 1988. Total synthesis of polyprenoid natural products via Pd(O)-catalyzed oligomerizations. Pure and Applied Chemistry, 60: 89~98
    Knowles C J, Redfearn E R. 1968. The effect of combined-nitrogen sources on the synthesis and functionof the electron transport system of Azotobacter vinelandii. Biochimica et Biophysica Acta Bioenergetics, 162: 348~355
    Kondo K, Yamada Y, Mitzugi K, Otsuka S. 1973. Certain yeasts and bacteria produce a large amount of intracellular coenzyme Q10 which is useful as medicine. Patent WO/3769170
    Koyama T, Fujii H, Ogura K. 1985. Enzymatic hydrolysis of polyprenyl pyrophosphates, Methods in Enzymology, 110:153~155
    Kuratsu Y, Sakurai M, Hagino, Inuzuka K. 1984. Aeration-agitation effect on coenzyme Q10 production by Agrobacterium species. Journal of Fermentation Technology, 62: 305~308
    Langsjoen P H. Langsjoen A M. 1999. Overview of the use of CoQ10 in cardiovascular disease. Biofactors, 9: 273~278
    Leadly C E, Williams A. 1997. High pressure processing of foods and drink. An overview of recent developments and future potential. In New Technologies Bulletin, 14, March. Chipping Campden, Gloucester, GL55 6LD, UK: Campden and Chorleywood Food Research Association
    Lee J, Lee S Y, Park S, Middelberg A P. 1999. Control of fed-batch fermentations. Biotechnology Advances, 17(1): 29~48
    Lenaz G, Fato R, Formiggini G. 2007. The role of coenzyme Q in mitochondrial electron transport. Mitochondrion, 7: 8~33
    Lester R L, Crane FL. 1959. The natural occurrence of coenzyme Q and related compounds. The Journal of Biological Chemistry, 234(5): 132~135
    Lin H M, Yang Z Y, Chen L F. 1982. An improved method for disruption of microbial cells with pressurized carbon dioxide. Biotechnology Progress, 8: 165~166
    Littarru G P, Ho L, Folkers K. 1972. Deficiency of coenzyme Q10 in human heart disease, International Journal for Vitamin and Nutrition Research, 42: 413~417
    Luedeking R, Piret E L. 1959. A kinetic study of the lactic acid fermentation batch process at controlled pH. Journal Biochemical and Microbiological Technology and Engineering, 1(4): 393~412
    Martinez A, Ramirez O T, Valle F. 1998. Effect of growth rate on the production ofβ-Galactosidase from Escherichia coli in Bacillus subtilis using glucose-limited exponentially fed batch cultures. Enzyme and Microbial Technology, 22: 520~526
    Mattila P, Kumpulainen J. 2001. Coenzyme Q9 and Q10: Contents in foods and dietary intake. Journal of Food Composition and Analysis, 14: 409~417
    Mayerhoff Z D, Franco T T, Roberto I C. 2008. A study of cell disruption of Candida mogii by glass bead mill for the recovery of xylose reductase. Separation and Purification Technology, 63: 706~709
    Mendes-Pinto M M, Raposo M F J, Bowen J, Young A J, Morais R. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13: 19~24
    Middelberg A P J. 1995. Process-scale disruption of microorganisms. Biotechnology Advances, 13: 491~551
    Mitchell P. 1976. Possible molecular mechanisms of the protonmotive function of cytochrome systems. Journal of Theoretical Biology, 62:327~367
    Moser A. 1985. Reaction and mass transfer interactions in microbial systems. In: Brauer H (editor) Biotechnology, volume 2. VCH Verlagsgesellschaft: Weinheim: 243
    Mu W M, Liu F L, Jia J H, Chen C, Zhang T, Jiang B. 2009. 3-Phenyllactic acid production by substrate feeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007. Bioresource Technology, 100: 5226~5229
    Natori Y, Nagasaki T, Kobayashi A, Fukawa H. 1978. Production of coenzyme Q10 by Pseudomonas N842. Agricultural and Biological Chemistry, 42(9): 1799~1800
    Natori Y, Nagasaki T. 1981. Enhancement of coenzyme Q10 accumulation by mutation and effects of medium components on the formation of coenzyme Q homologs by Pseudomonas N842 and mutants. Agricultural and Biological Chemistry, 45: 2175~2182
    Ni H, Chen Q H, He G Q, Wu G B, Yang Y F. 2008. Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma. Journal of Zhejiang University Science B, 9: 51~59
    Olson E O, Rudney H. 1983. Biosynthesis of ubiquinone. Vitamins and Hormones, 1: 40~43 Olson R E. 2001. Karl August Folkers. Journal of Nutrition, 131: 2227~2230
    Ormeci B, Vesilind P A. 2001. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges. Water Research, 35: 4299~4306
    Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A, Formigli L, Zecchi-Orlandini S, Orlandini G, Carella G, Brancato R, Capaccioli S. 2003. Coenzyme Q10 prevents apoptosis by inhibiting mitochondria depolarization independently of its free radical scavenging property. Journal of Biological Chemistry, 278(30): 282~208
    Park Y C, Kim S J, Choi J H. 2005. Batch and fed-batch production of coenzyme Q10 in recombinent Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Applied Microbiology and Biotechnology, 67: 192~196
    Pepe S, Marasco S F, Haas S J, Sheeran F L, Krum H, Rosenfeldt F L. 2007. Coenzyme Q10 in cardiovascular disease. Mitochondrion, 7: 154~167
    Ren X D, Yu D W, Han S P, Feng Y. 2007a. Thermolysis of recombinant Escherichia coli for recovering a thermostable enzyme. Biochemical Engineering Journal, 33: 94~98
    Ren X D, Yu D W, Yu L, Gao G, Han S P, Feng Y. 2007b. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli bythermolysis. Journal of Biotechnology, 129: 668~673
    Rito-Palomares M, Lyddiatt A. 2002. Process integration using aqueous two-phase partition for the recovery of intracellular proteins. Chemical Engineering Journal, 87: 313~319
    Roukas T, Kotzekidou P. 1998. Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus Lactis cells using fedbatch culture. Enzyme and Microbial Technology, 22(3): 199~204
    Rupert P, Susanne L. 2004. Process for producing sporidiobolus ruineniae strains with improved coenzyme Q10 production. US20040209368
    Sarada R, Vidhyavathi R, Usha D, Ravishankar G A. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 54: 7585~7588
    Serge L, Nathalie S, Piotr B. 2009. Comparison of low-temperature processes for oil and coenzyme Q10 extraction from mackerel and herring. European Journal of Lipid Science and Technology, 111: 135~141
    Shu C H, Liao C C. 2002. Optimization of L-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnology and Bioengineering, 77:131~141
    Shynkaryk M V, Lebovka N I, Lanoiselle J L, Nonus M, Bedel-Clotour C, Vorobiev E. 2009. Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). Journal of Food Process Engineering, 92: 189~195
    Singal P K, Khaper N, Kumar D. 1999. On the role of coenzyme Q10 in cardiovascular diseases. Cardiovascular Research, 43(1): 250~251
    Smelt, J P P M. 1998. Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, 9: 152~158
    Stocker R, Rowry V W, Frei B. 1991. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does-alpha-tocopherol. Proceedings of the National Academy of Sciences, 88: 1646~1650
    Storebakken T, Sorensen M, Bjerkeng B, Hiu S. 2004. Utilization of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in rainbow trout, Oncorhynchus mykiss: effects of enzymatic cell wall disruption and feed extrusion temperature. Aquaculture, 236: 391~403
    Stoyanovsky D A, Osipov A N, Quinn P J, Kagan V E. 1995. Ubiquinone-dependent recycling of vitamin E radicals by superoxide. Archives of Biochemistry and Biophysics, 323: 345~351
    Tanaka A, Shimizu S, Fukui S. 1972. Fermentative production of ubiquinones from alknes. JP7220396 Tian Y T, Yue T Y, Yuan Y H, Li J H, Lo Y M. 2010. Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation. Food Science and Technology International, 16(2):195~203
    Trumpowder B L. 1981. New concepts on the role of ubiquinone in the mitochondrial respiratory chain. Journal of Bioenergetics and Biomembranes, 13: 1~24
    Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I. 1985. Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Applied and Environment Microbiology, 50: 298~303
    Tsuchiya T, Fukazawa Y, Taguchi M, Nakase T, Shinoda T. 1974. Serologic aspects on yeast classification. Mycopathologia, 53:77~92
    Vaara M. 1992. Agents that increase the permeability of the outer membrane. Microbiology Reviews, 56: 395~411
    Walsh G. 2002. Protein purification and characterization. In: Proteins: Biochemistry and Biotechnology. New York: John Wiley & Sons: 90~99
    Wang S L, Chen D J, Deng B W, Wu X Z. 2008. Effects of high hydrostatic pressure on the growth and β-carotene production of Rhodotorula glutinis. Yeast, 25: 251~257
    Wang S L, Sun J S, Han B Z, Wu X Z. 2007. Optimization ofβ-Carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. Journal of Food Science, 72: 325~329
    Weiss R M, Ollis D F. 2004. Extracellular microbial polysaccharides. I. substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 22: 859~873
    Whistance G R, Threifail D R. 1968. Effect of anerobiosis on the concentrations of demethylmen aquinone, menaquinone and ubiquinone in Escherichia freundii. Proteus Mirabilis and Aeromonas punctata Biochem, 108: 505~507
    Yajima K, Kato T, Kanda A, Kitamura S, Ueda Y. 2003. Process for producing coenzyme Q10. Patent WO 2003 056024
    Yang H Y, Song J F. 2006. High-sensitive determination of coenzyme Q10 in iodinate–b-cyclodextrin medium by inclusion reactionand catalytic polarography. Analytical Biochemistry, 348: 69~74
    Yashinobu Y, Katsuji H S M, Shigefumi S. 1991. Application of fuzz control system to coenzyme Q10 fermentation. Journal of Chemical Engineering of Japan, 24: 94~99
    Yoshida H, Kotani Y, Ochiai K, Araki K. 1998. Production of ubiquinone-10 using bacteria. Journal of General and Applied Microbiology, 44: 19~26
    Youshiyuki K, Minoru S, Hiroshi H. 1984. Production and colony morphology associated with coenzyme Q10 production by Agrobactium species. Agricultural and Biological Chemistry, 48: 1997~2002
    Zahiri H S, Noghabi K A, Shin Y C. 2006. Biochemical characterization of the decaprenyl diphosphate synthase of Rhodobacter sphaeroides for coenzyme Q10 production. Journal of Applied Phycology, 73: 796~806
    Zhang C H, Ma Y J, Yang F X, Liu W, Zhang Y D. 2009. Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresource Technology, 100: 4284~4288
    Zhu J H, Yan X L, Chen H J, Wang Z H. 2007. In situ extraction of intracellular L-asparaginase using thermoseparating aqueous two-phase systems. Journal of Chromatography A, 1147: 127~134
    Znad H, Blazej M, Bales V, Markos J. 2004. A kinetic model for gluconic acid production by Aspergillus niger. Chemical Papers-Chemicke Zvesti, 58:23~28
    Zupke C, Sinskey A J, Stephanopoulos G. 1995. Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Applied Microbiology and Biotechnology, 44: 27~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700