化学诱变对水稻诱变后代组织结构及农艺性状和生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对不同的水稻品种(系)的化学诱变后代(M1-M3),分别从茎秆的组织结构、剑叶气孔、发芽特性、幼苗生长、水稻突变、主要农艺性状、生理生化、光合特性进行了分析和探讨。特别是系统地研究了不同诱变剂及浓度对水稻组织结构、细胞水平的影响。通过试验以期了解化学诱变对水稻的诱变效应和机理,为今后提高水稻育种水平提供依据。主要研究结果如下:
     1化学诱变对水稻品种(系)不同后代茎秆组织结构的影响
     为表述简便,将髓腔、维管束、气腔统称为“管道”。各诱变处理的早稻维管束数量,均为湘早籼33号>R402>R974,且不论品种(系)或代别,均比CK减少;而在湘早籼33号,均为M3代>Mz代;其差异均达显著或极显著水平。在中稻明恢63,均只有低浓度的NaN3使管道面积大于CK处理;晚稻湘晚籼13号及R259,各管道面积比CK增加者约占一半。仅MNU、EMS、NaN3三者的高浓度增加稻茎壁厚度。总之,诱变处理一般使茎秆组织结构性能下降。
     2不同水稻品种(系)诱变后代剑叶气孔特性的变化
     对照处理的气孔密度,为明恢63>R259>湘晚籼13号,但前二品种(系)间无显著差异。用MNU、EMS各浓度处理,湘晚13号气孔密度均大于对照CK;在R259和明恢63气孔密度均少于对照CK。
     3化学诱变对水稻发芽特性及幼苗生长的影响
     早、晚稻6个品种(系)中,除R974的低浓度处理外,其他所有所有处理的发芽势、发芽率均比CK降低;除MNU的部分处理外,所有其他处理的发芽指数和活力指数也均降低CK;约半数的MNU处理根长、芽长比CK增加;EMS及MNU各处理的叶数、叶面积、苗高、叶挺长、分蘖数、秧基宽、总根数均比CK减少;各药剂处理均显著抑制出苗率和成苗率;且随诱变剂浓度提高而增强。早稻耐高浓度药力更低。
     4不同水稻品种(系)诱变后代株高、分蘖的变化
     化学诱变处理的平均株高均低于CK,有显著差异;EMS的致矮效果尤为明显。平均分蘖数基本上诱变处理高于CK,尤以高剂量的NaN3和EMS明显。分蘖数与株高一般无明显相关性。经处理的各品种的株高和分蘖的变化过程均各为一定的“生长型”;早稻品种(系)株高和分蘖数呈S型曲线增长,中、晚稻品种(系)基本上呈幂函数方程式增长。
     5化学诱变剂对水稻突变效应的影响
     经诱变处理的变异株的出现率,品种(系)间一般相差不大;但高浓度>低浓度;M2代>M1代>M3代,这3代分别为:矮化株3.0%、3.53%、1.4%,多蘖株2.34%、3.3%、1.2%,叶色变异株2.49%、1.48%、0.46%,早穗株0.51%、1.59%、0.46%。EMS处理的突变率略高于其他2种化学诱变剂。不同浓度间,高剂量效应更明显。
     矮秆突变株通常植株过矮,叶片扭曲,穗伸出度差、空粃粒多,抗性较弱。叶色突变株通常叶绿素含量低,细胞膜透性增大,电导率增加,MDA含量上升,根系活力下降,光合产物积累少。
     6不同水稻品种(系)诱变后代生理生化特性的变化
     测定了处理后各晚稻品种(系)各世代不同生育期的MDA、可溶性糖、SOD、POD、CAT、相对电导率、根系活力等生理生化指标值及各值与根系活力的相关性。各世代的生理生化敏感性为M1>M2>M3;而M1代的损伤效应最大;在M2和M3代逐代有所减弱。品种(系)的敏感性为湘晚13>明63>R259;生育期之间差异不明显。诱变对水稻植株地下部分的负效应比地上部分大;诱变对3种酶活性的影响程度表现为POD>CAT>SOD。化学诱变对水稻体内的MDA和可溶性糖含量影响的持续效应最长。
     7化学诱变剂对水稻叶绿素相对含量及叶绿素荧光的影响
     诱变处理与否,叶绿素相对含量SPAD值均为R259>明恢63>湘晚籼13号,但前二品种(系)相差不大。诱变处理的SPAD值比CK高的出现频率R259>明恢63>湘晚籼13号; M1代>M2代;抽穗期>成熟期>乳熟期>孕穗期>蜡熟期>分蘖期。
     诱变处理的M2、M3代,叶绿素荧光参数Fo(原始荧光量)上升,Fv/Fm明显下降,表明叶片PSⅡ受到伤害。高剂量处理使光合速率迅速降低,常规稻比杂交稻下降稍大。
     本研究的综合结果表明三种不同化学诱变剂的处理浓度分别以1.0%EMS、1.0X10-3mol/L NaN3、0.1%MNU的剂量效果较好;诱变后不同世代的平均总突变频率分别为:M1(8.30%)、M2(9.82%)、M3(3.36%)
This research, mainly analyzed and discussed on the chemical mutagenic descendant (Mi-M3 generation) of different rice varieties (lines) respectively with the stalk of the organizational structure, agronomic traits, rice mutant, physiology biochemistry, to the photosynthetic characteristics. Especially, we systematically analysised the effects of different mutagenic chemicals on rice tissue structure and cytobiology containing vascular tissues under different treatment of different concentrations. With a view to understand the chemical mutagenesis's mutagenic effects and mechanism on rice, to provide the basis for raising the level of rice breeding for the future. The major findings are as follows:
     1. The effects of chemical mutagenesis on the organizational structure in stem of the rice varieties (lines)'s different generations.
     To presente simply, the marrow、vascular、gas chamber are referred to "pipeline". The number of mutagenic early rice's vascular bundles is Xiang zaoxian 33>R402>R974, for not only varieties (lines)', but also generations', and the number is less than that of CK; for Xiangzaoxian 33, both are M3>M2 generation; the difference was significant or very significant, In mutagenic treatment for mid-season rice Minghui 63, only a low concentration of NaN3 can lead pipe larger than that of CK treatment; for late rice Xiangwanxian 13 and R259, the pipe area increase about half comparative to CK. Only MNU、EMS、NaN3 these 3 mutagens with a high concentration, can increase the thickness of rice stem wall. In short, the mutagenic treatment make the organizational structure performance of stem degrade generally.
     2. Changes of mutagenic descendant for different rice varieties (lines) in flag leaf stomatal characteristics.
     Without mutagenic treatment, these three varieties'stomatal density is Minghui 63> R259> Xiangwanxian 13, but there was no significant difference for the former two varieties (lines). With treatment of MNU, EMS in various concentrations for Xiangwang 13, stomatal density increased to those in CK, for Minghui 63 and R259, stomatal density reduced to those in CK.
     3. The effects of chemical mutagenesis on rice germination characteristics and seedling growth.
     In the six varieties (lines) of early rice and late rice, in addition to the effect of mutagen's low concentration on R974, all other all treatment have a lower germination potential, germination rate than those in CK; except part of the MNU treatments, all other treatments' germination index and vigor index were lower than those in CK; about accounting for half of the MNU treatment that the length of root and bud increased, compared with those in CK; all of EMS and MNU treatment, leaf number, leaf area, seedling height, the length of from seedling base to the heightest's pulvinus, tiller number, seedling base width, the total root number all reduced, compared with those in CK; the each pharmaceutical treatment significantly inhibit the early and late rice's germination rate and seedling rate. The capacity of early rice's resistant to high concentrations is lower than late rice.
     4. The plant height、tiller changes in different rice varieties (lines) mutagenic offspring.
     After the chemical mutagenic treatment, each rice varieties(lines) average height were lower than the CK treatment and had a significant difference; The effect of induced dwarf of mutagen EMS is very obvious.
     The average tiller number after mutagenic treatment is basically higher than CK, especially NaN3, and EMS, in particular, the high-dose performance obvious; there is a very significant difference with CK. The tiller number and plant height in general has no significant relation.
     By chemical mutagenesis treatment on various species, the change process of plant height and tillers on both sides has a certain type, namely "growth-type"; early rice varieties'plant height and tiller number was S-curve of growth, the medium and late rice varieties(lines) were basically the power function equation growth.
     5. The effects of chemical mutagen on rice mutant.
     The varieties (lines) treated with chemical mutagenesis, have little difference on the occurrence rate of mutant varieties (lines) among each other generally; However, the high concentration effect>low concentration effect; M2 generation> M1 generation> M3 generation, the rate of these three generation were:dwarf strains 3.0%、3.53%、1.4%, more tillers 2.34%、3.3%、1.2%, leaf color mutant 2.49%、1.48%、0.46%, as early as ear strain 0.51%、1.59%、0.46%.The mutation rate treated from EMS slightly higher than the other two kinds of chemical mutagen's. During different concentrations, the high-dose effect pronounced more.
     The dwarf mutant which are more often short plants, leaves distorted, heading-out degree difference, and many air blighted grains, weak resistance. Leaf mutant strains usually have low content of chlorophyll, cell membrane permeability is increased, electrical conductivity increased, the content of MDA increased, root activity decreased, and less accumulation of photosynthetic products.6. Different changes in physiological and biochemical characteristics of rice varieties (lines) mutagenesis future generations.
     The MDA、soluble sugar、SOD、POD、CAT、relative conductivity、root vigor was determined in different growth stages of late rice varieties different generations with treatment and the relevance between various indicators and root vigor. The physiological and biochemical sensitivity on different generations is M1> M2> M3; and the damaging effects of M1 generations is of the largest; in M2 and M3 generations, some indicators (soluble sugars, the relative conductivity) fall in some different levels; but each generation has weakened The sensitivity of different varieties (lines) is xiang wanxian 13>Ming 63> R259; there is no obvious differences among the different growth stages. Mutation produce some effect, such as the underground parts of rice plants has large negative effect than the aerial parts; mutagenic activity on three kinds of enzymes performance is POD>CAT>SOD. Chemical mutagenesis of rice has a longest continuing effect on the contents of MDA and soluble sugar.
     7. The impact of chemical mutagens on chlorophyll relative content and chlorophyll fluorescence.
     Whether there is mutagenic treatment or not, SPAD values are R259> Minghui 63 >Xiang wanxian 13, but the former two varieties (lines)differ less. The frequency of mutagenic treatment SPAD value higher than those of CK is R259> Minghui 63>Xiang wanxian 13; M1 generation> M2 generation; heading stage>mature stage> milk stage> booting stage>wax-ripe stage>tillering stage.
     In M2、M3 generation, chlorophyll fluorescence parameters Fo (the amount of the original fluorescence) rose, Fv/Fm decreased significantly, indicating that leaf PSⅡhurt. High-dose treatment reduce the photosynthetic rate rapidly, conventional rice fell slightly larger than the hybrid rice.
     In this study, the best concentrations for rice mutagenesis are 1.0%EMS、1.0X10-3mol/L NaN3、0.1%MNU, the mutagenesis frequency of different generations are M1(8.30%)、M2(9.82%)、M3(3.36%)。
引文
[1]阳惠琴.国内外水稻诱变育种的主要成就[J].广西农业科学,1995(1):14-15
    [2]薛守旺,周洪生,邓迎海,等.化学诱变及其在玉米育种上的应用[J].玉米科学,1998(2):10-1317
    [3]安学丽,蔡一林,王久光,等.化学诱变及其在农作物育种上应用[J].核农学报,2003,17(3):239-242
    [4]游晴如,黄庭旭,张水金,等.植物诱变新技术及其在水稻育种上的应用[J]..江西农业学报,2003,15(2):43-47
    [5]宋炜,刘志增,陈景堂,等.诱变技术在植物育种中的应用.河北农业大学学报,2003(26):116-118
    [6]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展Ⅰ.化学诱变技术及诱变效率[J].种子,2005,24(7):54-58
    [7]朴铁夫,原亚萍,郭筑英,等.EMS对水稻成熟胚愈伤组织生长和植株分化率的影响[J].核农学报,1995,16(2):56-58
    [8]张小玲,林恭松,王元辉.烷化剂EMS处理水稻愈伤组织诱导突变的方法初探[J].安徽农业科学,1999,27(6):528-530
    [9]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [10]庄承纪,黄仕周,胡忠.化学诱变剂对粳稻花粉愈伤组织的诱导和分化以及花粉植株性状变异的影响[J].云南植物研究,1982(4)
    [11]陈忠明,王秀娥.水稻强优势恢复系93-11粒重的诱变改良[J].分子植物育种,2005,3(3):353-356
    [12]杨洪全,胡延 .NaN3处理对水稻体细胞培养及再生植株后代表现的效应[J].四川农业大学学报,1992,10(1):99-104
    [13]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [14]徐刚,王彩莲,慎玫,等.r射线与NaN3复合处理对水稻成熟种胚培养的效应[J].浙江农业学报1992,增刊,15-20
    [15]夏英武,吴关庭,舒庆尧.平阳霉素对水稻诱变效应的研究[J].核农学报,1997,11(1):26-30
    [16]吴关庭,夏英武,舒庆尧,等.平阳霉素对不同水稻品种的生物学效应[J].浙江农业大学学报,1997,23(1):1-6
    [17]L.Hassan ect.Plant Breeding 2000,119(6):531
    [18]牟春红.化学诱导水稻杂质及不育系孤雌生殖(硕论)
    [19]徐庆国,唐明远,伏军.新型化学诱导剂TAM在水稻育种上的应用[J].湖南农业大学学报,1997,23(5):419-423
    [20]陈忠明,王秀娥,胡兴雨.水稻长穗颖恢复系9311eR的诱变选育[J].江苏农业科学,2005,4:9-11
    [21]周平兰,梁满中,陈良碧.合子期化学诱变在作物育种中的应用[J].核农学报,2004,18(6):453—456
    [22]王彩莲,徐刚,慎玫,等.诱变处理对水稻离体培养的生物学效应[J].1994,1-15
    [23]张再军,范树国,刘林,等.60Co-r射线与NaN3复合处理对珍汕97A的诱变效应[J].西北植物学报2002,20(2):229-233
    [24]金心宇,张昱,金卫等离子体状态下PYM处理水稻和大麦种子的效果[J].浙江农业科学,2002,(4):186-188
    [25]施伏芝,罗志祥,苏泽胜,等.NMU化学诱变剂对早籼稻性状改良的初步研究[J].中国农学通报2004,20(3):17-1
    [26]平远.农业科技通讯2003,2:4编译自[日]《作物纪事》No.X.2002
    [27]马辉华.化学诱变水稻小穗形态学的研究[J].湖南农学院学报,1992,(18)4:892-896
    [28]李学宝,杨学荣.dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [29]刘丕庆.EMS和5-氮胞苷处理的水稻愈伤组织对耐盐细胞频率的影响[J].核农学报,1999,13(3):137-141
    [30]朴铁夫,原亚萍,许耀奎,等.EMS和苯甲酰胺复合处理对水稻成熟胚愈伤组织出愈率和植株分化率的影响[J].核农学通报,1996,17(1):39-40
    [31]吴先军,王彬,韩赞平,等.水稻长颖花突变体LRS的鉴定[J].中国农业科学,2004,37(3):453-455
    [32]石春海.水稻诱变育种的研究进展[J].核农学通报,1992,13(2):85-90.
    [33]钱前,曾大力,滕胜,等.MNU诱发的水稻巨大胚、甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学(Ch inese J R ice S ci),2000,14(3):173-176
    [34]陈忠明,王秀娥,赵彦,等.水稻93.11 EMS诱导突变体的分离与鉴定[J].分子植物育 种,2004,2(3):331-335
    [35]宋炜,刘志增,陈景堂,等.诱变技术在植物育种中的应用[J].河北农业大学学报,2003,(26):116-118
    [36]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及进展Ⅱ突变体的筛选及分子检测[J].种子,2005,24(8):54-58
    [37]Russell,J.R, J.D.Fuller,and M.Macaulay.Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs,SSRs and RAPDs. Theor. Appl.Genet,1997,95:714-722
    [38]黄宝才,缪炳良,张志明.稻米品质诱变育种之我见[J].江苏农业科学,1999,3:15-16
    [1]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [2]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [3]李学宝,杨学荣dEs、 NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [4]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [5]钱前,曾大力,滕胜,等;MNU诱发的水稻巨大胚、甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学,2000,14(3):173-176
    [6]潘家驹.作物育种学总论[M].中国农业出版社,1994
    [7]蔡旭.植物遗传育种学[M].科学出出版社(北京),1998
    [8]利容千,曾子千.水稻与其三系茎、叶解剖的比较研究[J].作物学报,1982,8(3):179-183
    [9]章志宏,陈明明,唐俊.等.水稻穗颈维管束和穗部性状的遗传分析[J].作物学报,200,28(1):86-89
    [10]荆彦辉,徐正进.水稻维管束性状的研究进展[J].沈阳农业大学学报,2003,34(6):467-471
    [11]李荣田,姜廷波,秋太权等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996(1):13-17
    [12]张忠旭,陈温福,杨振玉等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85
    [13]杨惠杰,杨仁崔,李义珍等.水稻茎杆性状与抗倒性的关系[J].福建农业学报,2000,15(2):1-7
    [14]罗茂春,田翠婷,李晓娟,等水稻茎秆形态结构特征和化学成分与抗倒伏关系综述[J].西北植物学报,2007,27(11):2346-2353
    [15]周丽华,吴厚雄,刘辉,等.杂交水稻茎秆形态学优势性状与抗倒伏能力研究[J].种子,2006,25(6):11-17
    [16]关伟,钱小刚等.超级杂交稻茎秆形态与抗倒伏相关性研究[J].耕作与栽培,2008,2:10-12
    [17]戴常军.土壤水分含量对水稻农艺性状及维管束系统分化的影响[J].吉林农业大 学学报,2003,25(2):124-127,130
    [18]XU ZH J(徐正进),CHEN W F(陈温福),ZHANG L B(张龙步),PENG Y C(彭应财),ZHANG J G(张俊国).Differences and inheritance of neck vascular bundies between different rice types[J]. A cta A gronomica S inica (作物学报),1996,22(2):167-72 (in Chinese)
    [19]段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性[J].重庆大学学报,2003,26(11):38-40
    [20]刘丽霞,程红卫,陈温福.不同类型水稻品种抽穗后上三片功能叶气孔密度的比较[J].辽宁农业科学,2001(3):1-3
    [21]陈温福,程红卫,刘丽霞,等.稻叶气孔性状研究的新方法[J].作物学报,2000,26(5):623-627
    [22]吉春容,李世清,冯宏昭,等.施氮对不同品种夏玉米冠层叶片气孔特性的影响[J].植物生理学通讯,2008,44(1):74-80
    [23]路贵和,刘学义,张学武,等.不同抗旱类型大豆品种气孔特性初探[J].山西农业科学,1994,22(4):8-10
    [24]王秀玲,赵明,王启现,等.玉米不同基因型气孔特征和叶温差的研究[J].华北农学报,2004,19(1):71-74
    [25]刘自学,郑群英,汪玺.6种不同草坪叶片的气孔特征与气孔传导力[J].草业科学,2005,22(8):71-75
    [26]王沙生,高荣孚,吴贯明.植物生理学.北京:中国林业出版社,1990。
    [27]韩蕾,孙振元,巨关升,等.空间环境对草地早熟禾诱变效应研究Ⅰ——突变体叶片解剖结构变异观察[J].核农学报,2005,19(6):409-412
    [28]朱念德编.植物学[M].广州:中山大学出版社,2000
    [29]高信曾编.植物学[M].北京:高等教育出版社,1998
    [30]傅志强,黄磺,何保良.水稻叶片气孔特性及其相关性[J].湖南农业大学学报自然科学版,2007,33(6):646-650
    [31]张大鹏.水稻叶片气孔的研究[J].福建农学院学院学报,1987,16(1):45-51
    [32]Tsunoda S,Takahashi N. Biology of Rice[M]. Tokyo:Japan Sci Press,1984.89-115
    [33]郭学民,东方阳,孙耀中,等.转甜菜碱醛脱氢酶(BADH)基因水稻第三叶气孔特征的观察[J].河北科技师范学院学报,2004,18(1):6-10
    [34]陈温福,徐正进.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究[J].中国水稻科学,1990,44(4):163-168.
    [35]张大鹏.水稻叶片气孔的研究[J].福建农学院学报,1997,16(1):45-51.
    [36]Jiang C-Z,Hirasawa T,Ishihara K.Physiological and ecological characteristics of high yielding varieties in rice plant II.Leaf photosynthetic rates [J].Corp science,1988, (57):139-145.
    [37]Y.Hiroshi.水稻突变系叶片气孔数遗传差异及遗传[J].国外农业科技,1999,封3-封4.
    [1]李学宝,杨学荣.硫酸二乙酯、叠氮化钠对水稻种子萌发、幼苗初期生长的影响[J].武汉植物学研究,1999,7(4):345-350
    [2]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [3]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [4]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [5]李学宝,杨学荣.dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [6]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [7]钱前,曾大力,滕胜,等.MNU诱发的水稻巨大胚甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学2000,14(3):173-176.
    [8]王国槐.农学实践[M].湖南科学技术出版社,2004,12-22
    [9]周青,黄晓华,张一.镉对种子萌发的影响[J].农业环境保护,2000,19(3):156-158
    [10]李丽君,郑普山,谢苏婧.镉对玉米种子萌发和生长的影响[J].山西大学学报(自然科学版),2001,24(1):93-94
    [11]王幼平,徐晓霞,高宏波,等.EMS和60Co对海甘蓝种子萌发及其M1代农艺性状的影响[J].植物研究,1999,19(1):64-67
    [12]杨文钰.农学概论,中国农业出版社[M],2004,33-34
    [13]杨晓玲,郭金耀.化学诱变玉米的幼苗性状分析[J].中国农学通报,2003,19(2):37-39
    [14]李学宝,杨学荣.dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [15]吕川根,谷福林,邹江石等.水稻理想株型品种的生产潜力及其相关特性研究[J].中国农业科学,1991,24(5):19-23
    [16]黄耀祥.水稻丛化育种[J].广东农业科学,1983
    [17]广东农科院.广东矮化育种的初步总结[J].作物学报,1965,5(1)
    [18]叶新福.初探超级稻育种与理想株型[J].福建稻麦科技,1998,16(1):41-44
    [19]杨守仁.水稻株型研究进展[J].作物学报,1982,3(3):205-209
    [20]周炳炎.水稻理想株型与超高产育种途径的探讨[J].湖北农学院学报,1995,15(1):52-60
    [21]张旭.作物生态育种[M].北京:中国农业出版社,1998
    [22]苏祖芳.水稻高产株型栽培研究,作物栽培生理研究文集[M].北京:中国农业出版社,2005,64-69
    [23]王国槐.农学实践[M].湖南科学技术出版社,2004,1月第一版100-103
    [24]邹冬生,廖桂平.农业生态学[M].湖南教育出版社,2002,9月第一版34-37
    [25]杨洪全,胡延玉.NaN3处理对水稻体细胞培养及再生植株后代表现的效应[J].四川农业大学学报,1992,10(1):99-104
    [26]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [27]夏英武,吴关庭,舒庆尧.平阳霉素对水稻诱变效应的研究[J].核农学报,1997,11(1):26-30
    [28]吴关庭,夏英武,舒庆尧,等.平阳霉素对不同水稻品种的生物学效应[J].浙江农业大学学报,1997,23(1):1-6
    [29]金心宇,张昱,金卫.等离子体状态下PYM处理水稻和大麦种子的效果[J].浙江农业科学,2002,(4):186-188
    [30]马辉华.化学诱变水稻小穗形态学的研究[J].湖南农学院学报,1992,(18)4:892-896
    [31]朴铁夫,原亚萍,郭筑英,等.EMS对水稻成熟胚愈伤组织生长和植株分化率的影响[J].核农学报1995,16(2):56-58
    [32]张小玲,林恭松,王元辉.烷化剂EMS处理水稻愈伤组织诱导突变的方法初探[J].安徽农业科学,1999,27(6):528-530
    [33]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报2005,21(1):7-11
    [34]庄承纪,黄仕周,胡忠.化学诱变剂对粳稻花粉愈伤组织的诱导和分化以及花粉植株性状变异的影响[J].云南植物研究,1982(4)
    [35]陈忠明,王秀娥.水稻强优势恢复系93-11粒重的诱变改良[J].分子植物育种,2005,3(3):353-356
    [36]杨洪全,胡延玉.NaN3处理对水稻体细胞培养及再生植株后代表现的效应[J]. 四川农业大学学报,1992,10(1):99-104
    [37]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [38]樵尾孝岭.水稻突变[A].见:稻学大成遗传篇[M].出版地:岛山渔业文化出版 社,1990
    [39]李学宝,杨学荣.硫酸二乙酯、叠氮化钠对水稻种子萌发、幼苗初期生长的影响[J].武汉植物学研究,1989,7(4):345-350
    [40]夏英武,吴关庭,舒庆尧.平阳霉素对水稻诱变效应的研究[J].核农学报1997,11(1):26-30
    [41]李学宝,杨学荣dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [42]张强,李自超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究[J].作物学报,2005,31(9):1198—1206.
    [43]张景萍,吴珍龄.EMS诱变玉米突变体苗期生理生化特性研究[J].激光生物学报,2004,13(1):41-43.
    [44]赫再彬,苍晶,徐仲.植物生理实验[M].哈尔滨工业大学出版社,2002.
    [45]安学丽,蔡一林,王久光.几种化学诱变剂对玉米自交系的诱变效应[J].西南农业大学学报,2003,25(6):498-501.
    [46]杨晓玲,郭金耀.化学诱变玉米的幼苗性状分析[J].中国农学通报,2003,19(2):37-39.
    [47]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展Ⅰ.化学诱变技术及诱变效率[J].种子,2005,24(7):54-58
    [48]王琳清等.诱变育种,见蔡旭主编(植物遗传育种学).北京:中国科学出版社.1989,536-5543
    [49]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [50]夏英武,吴关庭,舒庆尧.平阳霉素对水稻诱变效应的研究[J].核农学报,1997,11(1):26-30
    [51]杨洪全,胡延玉.NaN3处理对水稻体细胞培养及再生植株后代表现的效应[J].四川农业大学学报,1992,10(1):99-104
    [52]沈革志,王新其,王江,等.水稻脆杆突变体bern581一1茎杆形态结构观察、理化测定和遗传分析[J].实验生物学报,2002,35(4):307-309
    [53]夏英武,刘贵付,舒庆尧,等.籼型温敏核不育水稻叶绿素突变体的诱变及其初步研究[J].核农学报,1995,9(3):129-133
    [54]吴关庭,王贤裕,周志远,等.辐射诱发水稻叶绿素突变及其遗传研究[J].核农学通报,1995,16(3):156-158
    [55]毛炎麟,等.关于澈光诱变育种的实验[J].遗传与育种1978,(6):19-21
    [56]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展Ⅰ.化学诱变技术及诱变效率[J].种子,2005,24(7):54-58
    [57]XI Zhang-ying,WU Ke-ning,WANG Tong-chao,et al. Analysis of utilizing velue of physiological and biochemical indexe of maize drought resistance identification[J]. Journal of Henan Agricultural University,2000,34 (1):7-12 (in Chinese)
    [58]何瑞锋,丁毅,余金洪.水稻“斑马叶”叶绿素含量及几种酶活性的变化[J].武汉大学学报(自然科学版),2000,42(6):761-765.
    [59]何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯,2006,42(1):1-9
    [60]蔡晶,王晓光,季芝娟,等.水稻叶片形态的遗传与分子生物学研究进展[J].中国稻米,2008,6:5-10
    [1]吴关庭,夏英武,舒庆尧,等.平阳霉素对不同水稻品种的生物学效应[J].浙江农业大学学报,1997,23(1):1-6
    [2]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [3]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [4]李雪梅,樊金娟,徐正进.不同穗型水稻品种灌浆期生理特性的差异[J].沈阳农业大学学报,2003,34(5):347-350
    [5]李学宝,杨学荣.dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [6]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [7]钱前,曾大力,滕胜,等.MNU诱发的水稻巨大胚甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学2000,14(3):173-176
    [8]Markwell J. Osterman J C, Mitchell J L. Calibration of the Mi-nolta SPAD-502 leaf chlorophyll meter. Photosynth Res,1995,46:467-472
    [9]李栾松,黄丕生,黄仲青,等.两系釉型杂交水稻齐穗后光合作用和衰老特性研究[J].中国水稻科学,2002,16(2):141-145
    [10]张强,李自超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究[J].作物学报,2005,31(9):1198-1206
    [11]李雪梅,樊金娟,徐正进.不同穗型水稻品种灌浆期生理特性的差异[J].沈阳农业大学学报,2003,34(5):347-350
    [12]张景萍,吴珍龄.EMS诱变玉米突变体苗期生理生化特性研究[J].激光生物学报,2004,13(1):41-43
    [13]赫再彬,苍晶,徐仲.植物生理实验[M].哈尔滨工业大学出版社,2002.101-116.
    [14]安学丽,蔡一林,王久光.几种化学诱变剂对玉米自交系的诱变效应[J].西南农业大学学报,2003,25(6):498-501.
    [15]杨晓玲,郭金耀.化学诱变玉米的幼苗性状分析[J].中国农学通报,2003,19(2):37-39.
    [16]XI Zhang-ying,WU Ke-ning,WANG Tong-chao,et al. Analysis of utilizing velue of physiological and biochemical indexe of maize drought resistance identification[J].Journal of Henan Agricultural University,2000,34 (1):7-12 (in Chinese)
    [17]白成科,李桂双,彭长连,等.高静水压诱变水稻突变株系的叶绿素荧光特性变化.中国水稻科学,2003,17(3):228-232
    [18]顾佳清,张智奇,周音,等.EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报,2005,21(1):7-11
    [19]陆兆新,黄宝才,虞秋成,等.NaN3不同时间处理水稻种子的诱变效应[J].江苏农业科学,1992,4:6-9
    [20]李学宝,杨学荣dEs、NaN3对水稻萌发种子几种酶类的影响[J].湖北农业科学,1992,(12):3-6
    [21]郭龙彪,储成才,钱前,等.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [22]钱前,曾大力,滕胜,等.MNU诱发的水稻巨大胚甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学2000,14(3):173-176.
    [23]许耀奎,顾光炜,邬信康.作物诱变育种[M].上海科学技术出版社,1985.3.
    [24]艾天成,李方敏,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学报,2000,20(1):6-8.
    [25]Markwell J. Osterman J C, Mitchell J L. Calibration of the Mi-nolta SPAD-502 leaf chlorophyll meter. Photosynth Res,1995,46:467-472.
    [26]李栾松,黄丕生,黄仲青,等.两系釉型杂交水稻齐穗后光合作用和衰老特性研究[J].中国水稻科学,2002,16(2):141-145.
    [27]张强,李自超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究[J].作物学报,2005,31(9):1198-1206.
    [28]李雪梅,樊金娟,徐正进.不同穗型水稻品种灌浆期生理特性的差异[J].沈阳农业大学学报,2003,34(5):347-350.
    [29]王聪田,王国槐,等.一个新的水稻黄化突变体的光合作用及叶绿素荧光特性研究[J].江西农业学报,2007,19(9):10-13.
    [30]关广晟,屠乃美,朱列书,等.镁对烟草生长及叶片叶绿素荧光参数的影响[J].植物营养与肥料学报,2008,14(1):151-155.
    [31]陈灿,徐庆国,黄璜,等.不同化学诱变剂对水稻叶绿素含量的影响[J].云南农业大学学报,2008,23(6A):16-22
    [32]陈建明,俞晓平,程家安,等.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55
    [33]杨晓玲,郭金耀.化学诱变玉米的幼苗性状分析[J].中国农学通报2003,19(2)37-38,45.
    [34]张景萍,吴珍龄.EMS诱变玉米突变体苗期生理生化特性研究[J].激光生物学报,2004,13(1)41-43.
    [35]白成科,李桂双,彭长连,等.高静水压诱变水稻突变株系的叶绿素荧光特性变化[J].中国水稻科学,2003,17(3):228-232
    [36]卢从明,张其德,匡延云.水分胁迫对小麦叶绿体激发能分配和光系统Ⅱ原初光能转换效率的影响[J].植物物理学报,1995,11(1):82-86.
    [37]郭春芳,孙云.叶绿素荧光动力学在植物抗性生理研究中的应用[J].福建教育学院学报,2006,7:120-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700