导电水泥复合材料接地模块的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电防护在炸药、武器弹药生产和使用中尤为重要,在军工生产领域的建筑设施内主要采用导电橡胶作为防静电的材料。军用导电橡胶生产本高,同时导电橡胶只有在受到一定压力时,导电颗粒相互接触,才具有良好的导电性。军工生产厂房的建筑多采用水泥材料,若能够使水泥具有一定的导电性,铺设在厂房地面、工作台面及一些非承载墙体,既可有效提高静电防护能力,又可大大降低建筑生产成本。制备接地效果明显、耐久性好、无污染、经济、轻便的导电水泥材料已成为科研工作者们共同关注的问题,针对这一问题,本论文通过理论研究、科学实验和数值分析相结合,研究了发泡石墨-水泥导电复合材料制备的原理、工艺和导电、发热机理,通过大量试验研究了影响导电水泥电学性能和物理性能的因素,得出了制备发泡石墨-水泥导电复合材料的方法及掺料的最佳比。
     由于石墨的加入会大大地降低水泥基体强度,因此,需要在加入石墨同时还需加入某种纤维进行强度增强。本文选用物理力学性能较好的玄武岩纤维材料,在水泥砂浆中均匀地掺入玄武岩纤维材料来提高复合水泥材料制品的抗拉强度抗裂强度和韧性。为了降低导电水泥的密度,本文选用了两种途径,一是在石墨-水泥中添加聚苯乙烯颗粒,二是采用物理发泡法和双氧水化学发泡法对石墨-水泥浆料进行发泡。因此,本文首先采用石墨作导电相,水泥作胶凝材料制备密实型石墨-水泥导电接地模块,考察了不同石墨含量的添加对复合材料力学性能和电学性能的影响;接着通过在石墨-水泥浆料中添加聚苯乙烯颗粒和玄武岩纤维来实现降低试件密度和增强试件强度,得到了聚苯乙烯颗粒和玄武岩纤维的最佳添加粒径和最佳添加量;然后采用物理发泡方法研究高性能、轻质量导电水泥接地材料的制备工艺;最后采用聚乙烯醇、十二烷基磺酸钠及聚乙烯吡咯烷酮作稳泡剂进行双氧水化学发泡来制备轻质量的导电水泥接地模块,并对它们的电阻率、抗压强度、抗折强度及干密度作了进一步比较。主要结果和结论如下:
     1研究了不同石墨含量的添加对水泥基复合材料电阻率、抗压强度、抗折强度及干密度的影响。结果表明:
     1)掺入石墨的导电水泥,导电性与石墨掺量有关,石墨掺量越大,导电性越好,但石墨掺量过大反而会严重影响材料的强度。为了保证导电水泥的强度,石墨掺量不能过大。
     2)当石墨掺量加大时,密实型石墨-水泥导电复合材料的电阻率和干密度虽有显著降低,但同时也导致材料抗压强度和抗折强度的降低。当石墨含量为50%时制备的导电水泥接地材料具有较好的力学性能和电学性能。
     2固定石墨掺量为50%,考察聚苯乙烯颗粒和玄武岩纤维的添加对导电水泥力学性能和电学性能的影响。结果表明,当石墨掺量为50%时,以掺入1~2mm聚苯乙烯颗粒和2.5%玄武岩纤维的导电水泥的物理性能最佳。
     3采用物理发泡法制备的石墨-水泥导电接地试样,硬化凝结时间较长,内部结构表现为:孔径小、大小均匀、球形度高、强度高、泡孔间连通率低。
     4采用双氧水化学发泡法制备的石墨-水泥导电接地复合材料的电阻率、抗压强度、抗折强度及干密度均随掺入聚合物品种不同而差异较大。其中,在石墨掺量为50%的条件下,当采用聚乙烯吡咯烷酮作稳泡剂配制而成的发泡剂发泡时形成的气孔细小,呈球型封闭且孔径分布均匀,可减小应力集中,提高材料的力学性能。相同试验条件下,采用聚乙烯醇和十二烷基磺酸钠制备而成的石墨-水泥导电接地复合材料,发泡后浆料凝结时间与气泡稳定时间不同步,导致气泡长大后破裂,降低了材料的力学性能和电学性能。
The electrostatic protection is particular important in the process of production and theusing of explosive and ammunition, and also in the building for militaryproduction, conductive rubber as antistatic materials is widely used. Military conductiverubber is of high production costs, and only under a certain pressure can the conductiveparticles contacting each other, and in this way the conductive rubber expresses goodconductivity. Cement materials are widely used in the buildings of military production plants,if the cement which has certain conductivity is used in the plant ground, working tables andsome non-bared walls, it can not only improve the antistatic ability effectively, but also canreduce the construction cost greatly. Making a cement material of obvious ground effect, gooddurability, no pollution, being economic and light has become the common concern issue toscientific workers. For solving this problem, theoretical research, science experiments andnumerical analysis were all used in this paper to study the preparation principle, process andconductivity, heat mechanism of foam graphite-cement conductive composites. Through alot of tests, the factors that have effect on electrical conductivity and physical properties ofcement were studied, the method of preparing foam graphite-cement conductive compositesand the best mixture ratio were also obtained.
     Due to the addition of graphite, the intensity of the cement matrix greatly decrease,therefore, it’s necessary to add some fiber to increase the strength of the cement matrix. Thebasalt fiber with good physical and mechanical performance was selected in the paper. Thestrength, crack resistance and toughness of the cement product will be dramaticallyenhanced by adding basalt fiber into the cement mortar. In order to reduce the density of theconductive cement, two methods were chosen. One is to add the polystyrene particles intothe conductive cement; the other is to deal with the graphite-cement slurry using thephysical foaming method and hydrogen peroxide chemical foaming method. So, in thepaper, first, the dense graphite-cement conductive ground module was prepared with graphite as conductive phase, cement as cementing materials, and the influence of differentgraphite content on the mechanics performance and electrical performance of the compoundmaterial was studied. Then, the polystyrene particles and basalt fiber were added into thegraphite-cement slurry to reduce the density and enhance the strength of the specimen. Thebest size and amount of the polystyrene particles and basalt fiber were determined. Third,the preparation technology for high performance, light quality conductive cement groundmaterial by physical foaming method was studied. Last, the light quality conductive cementground module was prepared by hydrogen peroxide chemical foaming method usingpolyvinyl alcohol, sodium dodecyl sulfate and polyethylene pyrrolidone as stable foamagent. The resistivity, compressive strength, flexural strength and dry density werecompared. The main results and conclusions are as follows:
     1The effect of adding different content of graphite on the resistivity, compressivestrength, flexural strength and dry density of cement base composite materials was studied.The results show that:
     1) The electrical conductivity of graphite-cement composite material is related to thegraphite content. The more the graphite content, the greater the conductivity, but thegraphite content will affect the strength of the material, so the graphite content also cannotadd too much in order to keep the strength.
     2) With the increase of graphite content, the resistivity and dry density of the densegraphite-cement conductive composites is significantly reduced, but also causes materialcompressive strength and flexural strength reduced. When the graphite content is50%, theprepared conductive cement ground material has good mechanical properties and electricalproperties.
     2The effect of adding different polystyrene particle and basalt fiber on mechanicalproperty and electrical property of the conductive cement was investigated under fixing50%graphite. The results show that, when the graphite content is50%, the physicalproperty of the conductive cement with mixed1~2mm polystyrene particles and2.5%basalt fiber is the best.
     3The setting time of graphite-conductive cement ground sample by physical foamingmethod is long. The internal hole with the same size is small, the spherical degree is high, theconnectivity rate between bubble holes is low, and the intensity is high.
     4The resistivity, compressive strength, flexural strength and dry density of the graphite-conductive cement composite material prepared by hydrogen peroxide chemical foamingmethod are varied with the doped polymer variety.
     Under the condition of graphite, content is50%. When using polyvinylpyrrolidone asstable foam agent, the getting stomata is tiny. The pore size distribution is uniform whichcan reduce the stress concentration, increase mechanical property of the material. At thesame experimental conditions, the setting time and bubble stability time of the graphite-conductive cement composite material prepared by the polyvinyl alcohol and sodiumdodecyl sulfate are not synchronized, that lead to bubbles burst after growing up and reducethe mechanical property and electrical property.
引文
[1]杨元霞,刘宝举,沈大荣.不同填料对导电水泥基复合材料物理性能影响的研究[J].长沙铁道学院学报,1997,15(3):21-25.
    [2]李志刚.钢纤维导电混凝土制备及其典型接地体接地电阻研究[D].重庆:重庆大学,2009.
    [3]周永祥,冷发光,何更新等.导电混凝土技术综述[J].中国建材科技,2009,(3):42-50.
    [4]蔡庆宗等.一种掺石墨的导电混凝土的制备方法[P].中国发明专利ZL200510064446.1.
    [5]崔素萍,刘永肖,兰明章等.石墨-水泥基复合材料的制备与性能[J].硅酸盐学报,2007,35(1):91-95.
    [6] Banthia N, Djeridane S, Pigeon M. Electrical Resistively of Carbon and SteelMicro-Fiber Reinforced Cements[J]. Cement and Concrete Research,1992,22(5):804-814.
    [7] Sherif Yehia, Christ opher Y Tuan. Conductive Concrete Overlay for Bridge DeckDeicing[J]. ACI Materials Journal,1999,96(3):382-390.
    [8]魏小胜,肖莲珍.钢纤维水泥基材料的导电机理和水化特性[J].混凝土,2006,198(4):11-14.
    [9] Yehia, S., Tuan,C.Y., Ferdon, D., and Chen,B., Conductive Concrete Overlay for BridgeDeck Deicing: Mix Design, Optimization, and Properties, ACI Materials Journal,2000,97(2):172-181.
    [10]钱觉时,李长太.风淬钢渣用于制备导电混凝土的试验研究[J].建筑材料学报,2005,8(3):233·238.
    [11]唐祖全,钱觉时.钢渣导电混凝土,中国发明专利ZL,200310104053. X.
    [12] Xie Ping, Gu Ping Beaudoin J. Electrical Percolate on Phenomena in CementComposites Containing Conductive Fibers[J]. Journal ofMaterials Science,1996,31(15):4093-4097.
    [13]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究[J].建筑材料学报,2004,7(2):215-220.
    [14]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉理工大学,2003.
    [15]伍建平,姚武,刘小艳.导电水泥基材料的制备及其电阻率测试方法研究[J].材料导报,2004,18(12):85-87.
    [16]孙明清.纳米炭黑导电混凝土,中国发明专利200610018845.9.
    [17] Pye Glendon B.etal.Compositions ofconductive concrete, Patent6503318USA.
    [18] Ramme Brace W.etal.Conductive concrete and controllable strong resistivematerial.Patent6461424USA.
    [19]张鸿,王立久.聚苯胺复合导电纤维沥青混凝土的制备研究[J].公路,2008,(12):12.
    [20]沈刚,董发勤,何登良.钢纤维石墨复相导电混凝土的研究[J].硅酸盐学报,2004,(6):78-83.
    [21] Cook D J. Expanded polystyrene concrete[A]. Swamy R N. Concrete Technology andDesign:(1). New Concrete Materials[C]. London: Surrey University Press,1983,41-69.
    [22] Swamy R N. Concrete Technology and Design:(1). New Concrete Materials[C]. London:Surrey University Press,1983:41-69.
    [23]陈兵,涂思炎,翁友法. EPS轻质混凝土性能研究[J].建筑材料学,2007,10(1):26-31.
    [24]郑秀华,葛勇,张宝生等.采用正交设计配制聚苯乙烯混凝土[J].混凝土,2004,(7):45-57.
    [25]于纪寿,葛勇,唐民辉等.发泡聚苯乙烯混凝土[J].新型建筑材料,1996,(9):14-15.
    [26] PERRY S H, BISCHOFF P H, YAMURA K. Mix details and material behavior ofpolystyrene aggregate concrete[J]. Magazine of Concrete Research,1991,43(1):71-76.
    [27] Bagon C, Frondistou Y S. Marine floating concrete made with polystyrene beads[J].Magazine of Concrete Research,1976,28(3):225-229.
    [28] Ravindrarajah R S, Tuck A J. Properties of hardened concrete containing treatedexpanded polystyrene beads[J]. Cement and Concrete Composites,1994,16(3):273-277.
    [29] Ganesh B K, SaradhiI B D. Behaviour of lightweight expanded polystyrene concretecontaining silica fume[J]. Cement and Concrete Research,2003,33(3):755-762.
    [30]邵洪江.粉煤灰泡沫混凝士研究[J].山东建材,1999,(1):13-15.
    [31]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J].混凝土,2005,12(8):44-48.
    [32] W.Lopez.J.A.Gonzales Influence of the proseaturation on the resistivity of concrete andthe corrosion rate of steel reinforcement[J]. Cement and Concrete Research,1993,23:369-376.
    [33] Yasser MHunaiti.Strength of Composite Sections with Foamed and LightweiglltAggregate Concrete.Journal Of Materials In Cival Engineering.1997(5):60-62.
    [34] Kearsley, E. P. Mostert, H. E The effect of fibre reinforcing on foamed concretebehaviour. Role of Cement Science in Sustainable Development-Proceedings of theInternational Symposium-Celebrating Concrete: People and Practice,2003,557-566.
    [35] C.Andrade,C. Alonso, J. Sarria.C. Drmsion rate evolution in concrete structures to theatmosphere, Cement&Concrete Compo sites,2002,24:55-64.
    [36]常婧莹.浅谈泡沫混凝土在建筑中的应用[J].房材与应用,2005,33(4):39-40.
    [37]李中原,唐福永.发泡混凝土的性能与应用[J].河南建材,2010(1):39-40.
    [38]郑健.泡沫混凝土的研究及常见问题分析与对策[J].山西建筑,2008,32(34):166-167.
    [39]王伟,熊传胜.泡沫混凝土的研究现状[J].科技信息,2009(25):7-8.
    [40]周明杰,王娜娜,赵晓燕等.泡沫混凝土的研究和应用最新进展[J].混凝土,2009(4):104-107.
    [41]张磊蕾,王武祥.泡沫混凝土的研究进展及应用[J].建筑砌块与砌块建筑,2010(1):38-42.
    [42]唐士凯,李应全.国外泡沫混凝土应用工程进展[J].科技导航,2010(10):48-50.
    [43]丁益,任启芳,闻超.发泡混凝土研制进展[J].混凝土,2011(10):13-19.
    [44]王永滋.粉煤灰泡沫混凝土的生产与应用[J].福建建设科技,2001,(2):35-37.
    [45]王玉婷,蒋友新,李玉香等.发泡剂在水泥基多孔吸声混凝土中的应用[J].混凝土,2008,3(4):41-43.
    [46]李积平.发泡混凝土轻质墙体材料的制备方法:中国,101139194A[P].2008-03-12.
    [47] Koinuma T, Endo C, Hiratsuka Y. Foaming agent for cement stabilization treatment: JP,2003063849A [P].2003-03-05.
    [48] Borisova S L. Building mortar: RU,2270823C1[P].2006-02-27.
    [49] Ducman V, Mirtic B.The applicability of different waste materials for the production oflightweisht aggregates[J].Waste Management,2009,29(8):2361-2368.
    [50]刘佳奇,霍冀川,雷永林等.发泡剂及泡沫水泥的研究进展[J].化学工业与工程,2010,27(1):73-78.
    [51]刘福红.玉米淀粉糖超细纤维的纯化制备与性质表征[D].重庆:东北师范大学,2009.
    [52]佘海龙,耿春雷,王冬.无机化学发泡水泥技术研究进展[J].商品混凝土,2012,(07):29-31.
    [53]范丽,张建旭.泡沫稳定性对泡沫混凝土的影响以及稳定措施[J].建筑与工程,2011,(11):694-696.
    [54]孙成才,霍冀川,刘才林等.混凝土发泡剂的复配研究[J].宁夏工程技术,2007,2(6):127-132.
    [55]王翠花,潘志华.蛋白质类发泡剂的合成及其泡沫稳定性[J].南京工业大学报,2006,4(28):92-96.
    [56]叶雪良.茶皂素的开发与利用[J].化工生产与技术,2002,2(9):6-8.
    [57]周莉,刘波. PEP与阴离子表面活性剂复配体系泡沫性能的研究[J].功能高分子学报,2001,12(14):461-465.
    [58]俞心刚,魏玉荣,曾康燕等.用煤矸石为主要原材料制备泡沫混凝土的优越性[J].混凝土世界,2010,06(12):58-59.
    [59]张喜,吴勇生,张剑波等.泡沫混凝土的掺合料研究[J].混凝土,2011,(2):131-133.
    [60]林兴胜.纤维增强泡沫混凝土的研制与性能[D].安徽:合肥工业大学,2007.
    [61]郑念念,何真,孙海燕.大掺量粉煤灰泡沫混凝土的性能研究[J].武汉理工大学学报,2009,31(7):96-99.
    [62]詹炳根,郭建雷,林兴胜.玻璃纤维增强泡沫混凝土性能试验研究[J].合肥工业大学学报,2009,32(2):226-229.
    [63]王兴舟,鲍亚文,房园等.纤维对水泥的阻裂和增强作用性能研究[J].吉林交通科技,2008(1):10-14.
    [64]沈刘军,许金余,李为民.玄武岩纤维增强水泥静、动力性能试验研究[J].水泥,2008(4):66-69.
    [65]胡显奇,董国义,鄙宏.玄武岩纤维在建筑和基础设施中的应用[J].工业建筑增刊,北京.2004:68-72.
    [66]廉杰,杨勇新,杨萌.短切玄武岩纤维增强水泥力学性能的试验研究[J].工业建筑,2007,37(6):8-l0.
    [67]吴栋.玄武岩纤维与碳纤维片材加固水泥结构比较研究[J].江苏建筑,2007(1):48-51.
    [68] Jongsung Sim, Cheolwoo Park. Characteristics of basalt fiber as a strengtheningmaterial for concrete structures[J]. Department of Civil and Environmental Engineering,Hanyang University,Saldong,Ansan Kyunggi425-791, South Korea,2005,36(6-7):504-512.
    [69] Dylmar Penteado Dias, Clelio Thaumaturgo. Fracturetoughness of geopolymericconcretes reinforced with basalt fibers[J]. Cement&Conerete Composites,2005,27(2):49-54.
    [70] Zielinski K,Olszewski P. The impact of basaltic fibre on selected physical andmechanical properties of cement mortar[J]. Concrete Precasting Plant andTechnology,2005,71(3):28-33.
    [71]吴刚,胡显奇,蒋剑彪等.玄武岩纤维及其增强水泥力学性能研究与应用[C].第十一届全国纤维水泥学术会议论文集,大连:大连理工大学出版社,2006.
    [72]付庆丰,侯启超,张效沛等.玄武岩纤维水泥的技术研究现状及应用[J].吉林建筑工程学院学报,2011,28(4):32-34.
    [73]何松华,赵碧华,刘永胜.纤维水泥技术的研究新进展[J].商品水泥,2009(3):19-23.
    [74]李娟,王武祥.改善泡沫混凝土吸水性能的研究[J].混凝土与水泥制品,2001(5):43-44.
    [75]樊小东,胡功笠,余钊等.早强型泡沫混凝土配制试验[J].河南建材,2008,(6):35-36.
    [76]李龙珠,夏勇涛,刘文斌等.泡沫混凝土的发展现状及应用前景[J].混凝土,2009(4):104-107.
    [77]王群力.新型轻质发泡混凝土砌块及节能墙体的性能研究[J].砌块与墙板,2006,8(10):132-133.
    [78]寿延.鸡蛋黄水泥发泡荆及其轻质发泡水泥混凝土:中国,101058490A[P].2007-10-24.
    [79]刘佳奇,霍冀川,雷永林等.发泡剂及泡沫混凝土的研究进展[J].化学工业与工程,2010.27(1):73-78.
    [80] Oyasato Yumiko, Toshida Kentaro. Foam and method for producing the same: JP,2006096942A[P].2006-04-13.
    [81]王正武,李干佐,刘俊诚.非理想二元表面活性剂复配增效理论的进一步研究[J].化学物理学报,2001,14(4):426-432.
    [82]杨振,吴明华.阴/阳离子二元表面活性剂复配体系的发泡性能研究[J].浙江理工大学学报,2007,24(2):143-146.
    [83] Zhao g x, Li x g. Solubilization of n-octane and n-octanol by a mixed aqueous solutionof cationicanionic surfactants[J]. Colloid Interface Sci,1991,144(1):185-190.
    [84]陈伟章,徐国财,章建忠等.复合表面活性剂溶液体系的超起泡性能研究[J].精细与专用化学品,2007,15(3):21-26.
    [85] Ouyag x, Guo y, Qiu x. The feasibility of synthetic surfactant as an air entraining agentfor the cement matrix[J]. Construction and Building Materials,2008,22: l774-l779.
    [86] Maldonado-valderramaj, Langevin D, Marrin-molina A, et a1. Surface properties andfoam stability of protein/surfactant mixtures: Theory and experiment[J]. Journal ofPhysical Chemistry C,2007,111(6):2715-2723.
    [87]石行波,霍冀川,李娴等.动物蛋白发泡剂制备泡沫混凝土的研究[J].硅酸盐通报,2009,28(3):609-612.
    [88]王翠花.制备相关技术研究[D].南京:南京工业大学,2006.
    [89]袁俊.粉煤灰泡沫混凝土屋面材料的研究[J].水泥工程,2010(4):82-84.
    [90]赵伟,朱琦,曾金雄.粉煤灰-水泥基泡沫混凝土性能的试验研究[J].四川建材,2010,36(4):28-29.
    [91]蔡娜.超轻泡沫混凝土保温材料的试验研究[D].重庆:重庆大学,2009.
    [92]李龙珠,唐惠东,孙媛媛.利用正交试验法研究泡沫混凝土制备工艺对其强度的影响[J].混凝土,2010(8):23-24.
    [93] Kearsleya E P, Wainwright P J. The effect of high fly ash content on the compressivestrength of foamed concrete[J]. Cement and Concrete Research,2001,31(1):105-112.
    [94] Jones M R, Mccarthy A. Utilising unprocessed low-lime coal fly ash in foamedconcrete[J]. Sciencedirect,2005(84):1398-1409.
    [95]孙海燕,何真,梁文泉等.功能一体化泡沫混凝土性能的研究[J].混凝土与水泥制品,2009(3):58-61.
    [96]何廷树.混凝土外加剂[M].西安:陕西科学技术出版社,2003.
    [97]李运才,纪国峰,陈军等.某鞋业公司一起不明爆炸事故的分析、处置与预防对策[J].中国安全生产科学技术,2009.5(5):184-187.
    [98]李启金,李国忠,余徉辑等.轻质泡沫混凝土新型制备方法的研究[J].砖瓦,2012(7):25-28.
    [99]王武祥,张磊蕾,王爱军等.水泥基发泡混凝土的生产与应用[J].新型墙材,墙材革新与建筑节能,2012(4):33-38.
    [100]徐文,刘兴亚,朱清华.外墙外保温用化学发泡泡沫混凝土板的试验研究[J].混凝土,2012(3):131-134.
    [101]徐文,钱冠龙,化子龙.用化学方法制备泡沫混凝土的试验研究[J].混凝土与水泥制品,2011,(12):1-4.
    [102]张杰.一种新型建材发泡剂及发泡板[J].砌块与墙板,2004,(8):39.
    [103]宋晓辉,任中京.加气混凝土用铝粉的应用与制备[J].粉体工业,2006,3:45-48.
    [104]王世荣,李祥高,刘东志等.表面活性剂化学[M].北京:化学工业出版,2010.
    [105]王基镕.关于Young-Laplace公式和Kelvin公式的对话[J].大学物理,2007,26(9):4-7.
    [106]陈惠霞.泡沫混凝土强度的影响因素及质量控制[J].山西建筑,2009,35(32):163-164.
    [107] Ishijima. Organic phosphoric ester containing water-dispersible as foaming agent in1ight-weight foamed eorlcrete. US4419134, Dec.6,1983.
    [108]谷亚新,王延钊,王小萌.不同工艺泡沫混凝土的研究进展[J].混凝土,2013(12):148-152.
    [109]张亚苗.对硅酸盐水泥技术指标的几点分析[J].山西建筑,2009.35(36):169-170.
    [110]徐福明.水泥强度激发剂[P].中国:发明利,98110916.0,2000.
    [111]周浩,陈隆道.导电混凝土及其应用[M].混凝土与水泥制品,1992.
    [112]王飙鹏,张伟.玄武岩纤维的性能与应用[J].建材技术与应用,2002(04):17-18.
    [113]齐风杰,李锦文,李传校.连续玄武岩纤维研究综述[J].高科技纤维与应用,2006,31(2):42-46.
    [114]谢尔盖.玄武岩纤维的特性及其在中国的应用前景[J].玻璃纤维,2005(5):44-48.
    [115]雷静,党新安,李建军.玄武岩纤维的性能应用及最新进展[J].化工新型材料,2007,35(3):9-11.
    [116]石岩,师恩强,辛德胜等.发泡混凝土材料的制备及性能研究[J].新型建筑材料,2012,39(5):66-68.
    [117] Whitlington H W, etc. Magazine of Conerete Researeh,1981,114(55):48-60.
    [118]雀部博之.导电高分子材料[M].科学出版社,1989.
    [119]郭宽良.计算传热[M].合肥:中国科学技术大学出版社,1988
    [120]程国俊,张洪济,张慕瑾等.高等传热学.重庆:重庆大学出版社,1991
    [121]朱四荣.机敏性混凝圭结构的温差变形自调节研究[D].武汉:武汉理工大学,2004
    [122]陈念贻,钦佩等.模式识别方法在化学化工中的应用[M].科学出版社,2002.
    [123] Hoskuldsson. PLS regression methods[J].Journal of Chemometrics,1988,2(3):211-228.
    [124] Chung D.D.L. Electrically conductive cement-based materials[J]. Advances in CementResearch,2004,16(4):167-176.
    [125]刘汉,童谷生.碳纤维水泥基复合材料力电性能及尺寸效应研究进展[J].玻璃钢/复合材料,2011,(2):53-58.
    [126]南雪丽,李晓民,卢学峰等.碳纤维水泥基复合材料导电机理的探讨[J].兰州理工大学学报,2012,38(2):114-119.
    [127]高超,杨鼎宜,俞君宝等.纤维水泥高温后力学性能的研究[J].水泥,2013,(1):33-36.
    [128]侯作富,李卓球,王建军.碳纤维水泥基复合材料研究中存在的若干问题探讨[J].电工材料,2007,(2):28-31.
    [129]叶青,胡国君,张泽南.含石墨水泥基导电材料的物理性能研究[J].硅酸盐通报,1995,14(6):37-40.
    [130]秦志桂,王勇,毛仙鹤等.石墨导电水泥的制备及在接地工程中的应用[J].新型建筑材料,2009,(11):46-48.
    [131] Cook D J. Expanded polystyrene beads as lightweight aggregate for concrete[J].Precast Concr,1973,4(4):691-693.
    [132] Ravindrarajah R S,Tuck A J.Properties of hardened concrete containing treatedexpanded polystyrene beads[J]. Cement and Concrete Composites,1994,16(3):273-277.
    [133] Sussman V. Lightweight plastic-aggregate concrete[J]. J Am Coner Inst,1975,72(3):321-323.
    [134] Bischoff P H. Polystyrene aggregate concrete subjected to hard impact[J]. Proc InstnCiv Engrs(Part2),1990,6(2):225-239.
    [135]谢明辉.大掺量粉煤灰泡沫混凝土的研究[D].吉林:吉林大学,2006.
    [136]闫振甲,何艳君.泡沫混凝土实用生产技术[M].北京:化学工业出版社,2006.1.
    [137]王少武.提高泡沫混凝土的抗压强度[D].湖南:中南大学,2005.
    [138] Alaettin K l c, Cengiz Duran Atis,Ergul Yasar,Fatih Ozcan. High-strength lightweightconcrete made with scoria aggregate containing mineral admixtures[J]. Cement andConcrete Research,2003,33(10):1595.
    [139] Paul J. Tikalsky, James Pospisil, William MacDonald. A method for assessment of thefreeze–thaw resistance of preformed foam cellular concrete[J]. Cement and ConcreteResearch,2004,34(5):889.
    [140] Jamal Alduai, Khalid Alshaleh, M. Naseer Haque, Khalid Ellaithy. Lightweightconcrete in hot coastal areas[J]. Cement&Concrete Composites,1999,21(5):453.
    [141]高倩,王兆利.泡沫混凝土[J].青岛建筑工程学院学报,2002,23(6):113.
    [142]谭伟,魏天伟,陈明等.对以双氧水为发泡剂的泡沫混凝土的探究[J].山西建筑,2013,39(24):129-130.
    [143]闫振甲.泡沫混凝土发展状况与发展趋势[J].混凝土世界,2009(5):48-55.
    [144]潘志华.新型高性能泡沫混凝十制备技术研究[J].建筑石膏与胶凝材料,2002,(5):1-5.
    [145]谢慈仪.混凝十外加剂作用机理及合成基础[M].重庆:西南师范大学出版社,1998.
    [146]张磊蕾,王武祥,廖礼平等.用普硅水泥制备发泡水泥的试验研究[J].新型墙材,2013(7):29-32.
    [147]徐文,钱冠龙,化子龙.用化学方法制备泡沫混凝土的试验研究[J].混凝土与水泥制品,2011(12):1-4.
    [148]龚洛书.混凝土实用手册[M].北京:中国建筑工业出版社,1995:827-881.
    [149]温晓尉.水环境下碳纤维混凝土渗透性和导电机理的研究[D].山东:山东大学,2010.
    [150]关新存,欧进萍.碳纤维机敏混凝土材料的研究与进展[J].哈尔滨建筑大学学报,2002,35(6):55-59.
    [151]陈兵,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性[J].材料科学与工程.2001,19(1):76-79.
    [152] Janoo. Conerete for Magnetic Shielding[J]. Cement and Conerete Research,1998(5):939-944.
    [153] AI-Qadi. Carbon fiber reinforced conerete for smart strutures capable ofnon-destructive flow detection. Smart Mater[J]. Struct,1993,2(l):22-30.
    [154] Wen Sihai, DDI Chung. Seebeek effete in carbon fiber reinforced cement[J]. Cementand Conerete Research,1999,29:1989-1993.
    [155] P.J.汉南特.纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1986:234-236.
    [156]张终颖,赵惠卿.碳纤维对超细水泥基体的增强作用[J].新型碳材料,1997(4):34-35.
    [157]张纯颖.轻质碳纤维-水泥-硅粉复合材料[J].硅酸盐学报,1995(5):65-66.
    [158]邓宋才,孙成栋.碳纤维混凝土的压缩韧度指数[J].混凝土与水泥制品,2000(4):37-38.
    [159]郭全贵,李安邦,刘郎.碳纤维干混水泥及其力学性能研究[J].碳素技术,1996(6):13-17.
    [160]郭全贵,岳秀珍,李安邦等.单丝拔出试验表征碳纤维增强水泥复合材料的界面[J].纤维复合材料,1959(3):42-46.
    [161]郭全贵,李安邦,刘郎.集束效应对CFRC复合材料界面及力学性能的影响[J].纤维复合材料,1996(3):34-37.
    [162]毛起沼,杨元霞,李卓球等.碳纤维增强水泥压敏性的研究[J].硅酸盐报.1997(6):734-742.
    [163]毛起招,赵斌元,李卓球等.水泥基碳纤维复合材料压敏性的研究[J].复合材料学报,1996(4):8-11.
    [164]吴科如,陈兵,姚武.碳纤维机敏水泥基材料性能研究[J].同济大学学报,2002(4):456-463.
    [165]陈兵,姚武,吴科如等.受压载荷下碳纤维水泥基材料机敏性研究[J].建筑材料学报,2002(2):108-113.
    [166]姚武,陈兵,吴科如.碳纤维水泥基材料的机敏性研究[J].复合材料学报,2002,19(2):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700