绕组励磁同步电机无传感器矢量控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绕组励磁同步电机具有功率因数可调、效率高等优点,在工业大功率场合获得了广泛应用,因此研究和开发高性能的绕组励磁同步电机驱动系统具有重大的经济价值和社会效益。目前开发高性能绕组励磁同步电机驱动系统所采用的控制方案主要有两种:一种是直接转矩控制(DTC);另一种是磁场定向矢量控制(FOC)。绕组励磁同步电机的矢量控制策略具有控制结构简单,物理概念清晰,电流、转矩波动小,转速响应迅速,易实现数字控制等优点。因此,在交流传动领域中,越来越受到学者的关注。但是,无论在国内还是国外,交直交型绕组励磁同步电机矢量控制系统的研究还缺乏全面深入的理论研究,还没有建造起矢量控制系统的理论体系构架。本文对绕组励磁同步电机矢量控制系统进行了初步的理论探讨,并进行了详细的实践研究,为以后更深入、广泛地研究此系统,打好坚实的基础。本论文主要研究内容如下:
     通过广泛的查找文献,对几种常见的同步电机传动系统进行了综述,分析了同步电机变频调速原理,在此基础上,讲述了无传感器技术在同步电机中的应用现状。无传感器技术主要有两大类:基于基波量的检测方法和基于外加信号的激励法。随后,对转子初始位置的估计进行了综述,其方法有:基于电机定子铁芯饱和效应的转子位置估计,高频信号注入法,基于定子绕组感应电压的估计法和基于相电感计算法等。绕组励磁同步电机转子初始位置估计的研究还很少。
     对绕组励磁同步电机矢量控制的理论进行了全面深入地研究,建立起矢量控制的理论体系构架。
     首先,基于磁势等效原理,将三相静止交流信号等效变换为两相旋转直流信号,将交流电机等效为直流电机进行控制。在Clarke变换和Park变换的基础上,得到凸极同步电机转子磁场定向的电压矩阵方程、功率方程和运动方程。根据上述方程,绘出dq轴的等值电路及矢量图,得到状态空间描述的dq轴数学模型。
     其次,根据模型参考自适应原理,对同步电机转速进行估计。忽略同步电机d轴阻尼绕组的作用,取同步转速为零,得到同步电机αβ静止坐标系下的数学模型。将不含有转子转速信息的方程作为参考模型,将含有转速参数的方程作为可调模型,根据波波夫超稳定性和正性原理,对转子转速进行估计。
     最后,根据模型参考自适应估计的转子转速,设计磁通观测器来估计转子磁通,实现磁通反馈闭环控制。磁通观测器采用降维观测器,仅对转子磁通分量进行重构,并通过极点配置算法,合理配置观测器的极点,使观测器满足系统的性能指标,达到磁通观测的目的。
     新颖的空间矢量脉宽调制算法。从空间矢量的基本概念入手,深入分析了定子三相对称电压与空间电压矢量之间的关系。由三相电压源型逆变器输出电压波形得到六个有效开关状态矢量,这六个开关矢量和两个零矢量合成一组等幅不同相的电压空间矢量,去逼近圆形旋转磁场。其次,根据空间电压矢量所在的扇区,选择相邻有效开关矢量,在伏秒平衡的法则下,计算各有效开关矢量的作用时间。并且,探讨了扇区判断和扇区过渡问题,定性分析了空间矢量脉宽调制(SVPWM)的性能。最后,根据每个扇区中开关矢量作用时间,采用软件构造法,在TMS320LF2407A硬件上实现了SVPWM。实验结果表明,该算法简单易实现,能够有效的提高直流母线的电压利用率,具有在低频运行稳定,逆变器输出电流正弦度好等优点。
     空间矢量过调制算法的研究。在上述线性调制的基础上,提出一种基于电压空间矢量的过调制方法。过调制区域根据调制度分成两种不同的模式,分别为模式Ⅰ(0.907<m≤0.952)和模式Ⅱ(0.952<m≤1),然后,深入分析了两种过调制模式的调制特点和实现原理。当参考电压矢量位于过调制模式Ⅰ时,其轨迹位于六边形内部的部分仍保持为圆形,其幅值略大于参考电压矢量的模值,以补偿空间矢量在六边形边上的电压损失;在六边形之外的圆形轨迹变为六边形的边沿,此区域内,电压空间矢量的幅值扭曲,相位连续。当参考电压矢量位于过调制模式Ⅱ时,实际的电压空间矢量的轨迹不再是圆形,而是在六边形顶点处保持一定的时间后沿着六边形的边沿运动,此时,电压空间矢量的幅值扭曲,相角离散,在六边形顶点处存在保持角。根据上述原理得到过调制模式Ⅰ的六扇区计算公式,并在TMS320LF2407A硬件上进行实验,证明了过调制算法的可行性。
     基于定子电流矢量的死区补偿方法。分析了逆变器死区效应产生的原理,以及它对逆变器输出电压的影响,提出一种根据定子电流矢量所在扇区补偿偏差电压的方法。该方法检测两相定子电流,经过有限冲击响应(FIR)数字滤波器滤波后,得到静止坐标系下αβ轴上的分量,根据αβ轴分量合成定子电流矢量,计算电流矢量的相角,判断其所在的扇区,得到三相电流的极性,从而确定补偿电压矢量的大小和方向。通过仿真和实验,证明了所提死区补偿方法的正确性和可行性。
     最后,对本文所作的工作进行了总结,阐明了本文的研究成果,并指出了本课题需要进一步研究的内容。
Winding excited synchronous motor (ESM) has many advantages of adjustable power factor and high efficiency, so it has been widely applied in high power apparatus. It is of great economic value and social effects for researching and developing high performance driving system of excited synchronous motor. Recently, there are mainly two control schemes used to develop high performance ESM drive system: one is direct torque control (DTC), and the other is field orientation control (FOC). Field orientation control of ESM has many merits: its control structure is very simple, the physical concepts is clear, the fluctuation of current and torque is little, the response of speed is rapid, and control strategy is easy to digitization. So, more and more people pay attention to this method in AC drive fields. However, research of vector control system about ac-dc-ac excited synchronous motor lacks full and in-depth study. The theory of vector control system has not been constructed. This paper discusses the primary theory of excited synchronous motor and carries out the practice study in detail. And then solid foundations are completed for researching the system more depth and widely in the future. This thesis has mainly the following aspects:
     Above all, several familiar synchronous drive systems are reviewed, and the principle of variable voltage at variable frequency about synchronous motor is analyzed. Based on this theory, the application of sesorless schemes in synchronous motor is described, and the sensorless technology is classified into two kinds. One is based on the fundamental variables, and the other is based on external exciting signal. Then the estimation methods of the initial rotor position are reviewed and these methods can be classified as: basing on the saturate effect of motor magnetic circuit, high frequency signal injection, induced voltage of stator windings, and the calculation of stator inductance etc. There are few papers investigating ESM initial rotor position estimation.
     Vector control theory of excited synchronous motor is studied in detail and the control structure is built up.
     First, three phase stationary ac signals are transformed equivalently into two phase rotated dc signals and ac motor is controlled to act as dc motor. Then voltage matrix equation, power equation and motion equation of field oriented control of salient pole synchronous motor are obtained based on Clarke and Park transformation. According to above equations, the equivalent circuits and vector diagram in dq axis are plotted out and mathematical models described by state space in dq axis are constructed.
     Second, according to model reference adaptive control theory, the speed of synchronous motor is estimated. Neglecting the effect of damper windings in d axis and taking the synchronous speed equal to zero, the mathematical models ofsynchronous motor inαβstationary reference frame is obtained. The equationwithout speed information is acted as reference model and the equation with speed parameter is acted as adjustable model. The rotor speed is estimated in terms of Povpov's hyperstability criterion and positive theory.
     Then a flux observer is designed to estimate the rotor flux according to the rotor speed identified by model reference adaptive system and realize closed-loop control of feedback flux. A reduced order state observer is adopted to reconstruct the rotor flux component, and the poles of flux observer are assigned properly by pole assignment algorithm to satisfy the performance criteria of system and to get the purpose of observing flux.
     To start with the basis concept of space vector, the paper analyzes the relationship of stator phase voltages and voltage vectors in space. Six active switching state vectors come from the inverter output voltages. These six active switching vectors and two zero vectors compose a set of voltage space vectors with same amplitude in different phase to approach circle rotating flux. Second, . according to the sector of voltage space vectors, adjacent switching state vectors are selected to calculate on-durations under volt-second balance principle. The questions of judging sectors and sector transition are discussed and qualitative analysis of performance is carried out. At last, an experiment is carried out according to the time duration by means of software construction method.
     According to the linear modulation, an overmodulation technology based on voltage space vector is proposed. The overmodulation area subdivide into two different mode by modulation index, one is mode I (0.907 < m≤0.952) and the other is mode II (0.952 < m≤1). Then the modulation character and realize theory of two overmodulation mode are analyzed in depth. When the voltage space vector is located within overmodulation mode I, the locus in the hexagon remain the circular, but the amplitude is larger than the modulus of voltage space vector to compensate the voltage distortion on the edge of hexagon; the reference voltage vector tracks the hexagon sides in the remaining. In this field the amplitude of voltage space vector is distorted and phase angle is continuous. When the voltage space vector is in the overmodulation II, the reference voltage is no longer tracking the circle of radius and holds an angle at the vertex and then moves along the hexagon. In this mode, the amplitude of voltage vector is distorted and phase angle is discrete. There is a holding angle at the vertex of hexagon. The computational formulas of six sectors in mode I are derived from above theory and an experiment is carried out on the TMS320LF2407A. The results demonstrate the overmodulation algorithm feasible.
     The principle about dead-time effect of inverter is clarified. And then a method to compensate voltage deviation based on the phase current polarity is proposed to improve the inverter output voltage. In this method, two stator phase currents aredetected and the components ofαβaxis in stationary coordinate plane are obtained through a finite impulse response digital filter. The stator current vector is synthesized based on theαβcomponents and the sector that current vector islocated in is judged by calculating the phase angle of current vector. Then according to polarity of three phase currents, the magnitude and direction of compensated voltage vector is determinate. The validity and feasibility of dead time compensation is proved through simulation and experiment.
     At last, a summary is made about the work of this paper and states the researching achievement. The content that needs further studies on this project is pointed out.
引文
[1]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006
    [2]周扬忠.电励磁同步电动机直接转矩控制理论研究及实践[D].南京航空航天大学.2006.11
    [3]陈伯时.电力拖动自动控制系统--运动控制系统[M].北京:机械工业出版社,2003.7
    [4]Rusong Wu and Gordon R.Slemon.A Permanent Magnet Motor Drive Without a Shaft Sensor[J].IEEE Transactions on Industry Applications,1991,27(5):1005-1011.
    [5]Nesimi Ertugrul and Paul Acarnley.A New Algorithm for Sensorless Operation of Permanent Magnet Motors[J].IEEE Transactions on Industry Applications,1994,30(1):126-133.
    [6]Shigeo Morimoto,Keisuke Kawamoto,Masayuki Sanada,Yoji Takeda.Sensorless Control Strategy for Salient-Pole PMSM Based on Extended EMF in Rotating Refemce Frame[J].IEEE Transactions on Industry Applications,2002,38(4):1054-1061.
    [7]于艳君,程树康,柴凤.永磁同步电动机无传感器控制综述[J].微电机,2007,40(8):85-88.
    [8]梁艳,李永东.无传感器永磁同步电机矢量控制系统概述[J].电气传动,2003,4:4-9.
    [9]R.Dhaouadi,N.Mohan etal.Design and Implementation of an Extended Kalman Filter for the State Estimation of a Permanent Synchronous Motor[J]IEEE Trans on PE,1991,6(3):491-497.
    [10]A.Bado,S.Bolognani etal.Effective Estimantion of Speed and Rotor Position of a PM Synchronous Motor Drive by a Kalman Filtering Technique[C]IEEE PESC' 1992:951-957.
    [11]R.Ueda,H.Takata,S.Nakagaki,S.Takata.On the Estimation of Transient State of Power System by Discrete Nonlinear Observer[J].IEEE Transactions on Power Apparatus and Systems,Vol.PAS-94,no.6,pp2135-2140,November/December, 1975
    [12]E.H.Okongwu,W.J.Wilson,J.H.Anderson.Optimal State Feedback Control of a Microaltemator Using an Observer[J].IEEE Transactions on Power Apparatus and Systems.Vol.PAS-97,no.2,pp.594-602,March/April,1978.
    [13]Slotine,J.J and Sastry,S.S.Robustness Issues in the Sliding Control of Non-linear Systems[C].Decision and Control,1983.The 22~(nd) IEEE Conference on.Volume.22,Part Ⅰ,pp:1125-1127,Dec.1983.
    [14]Statoshi Ogasawara and Hirofumi.An Approach to Real-Time Position Estimation at Zero and Low Speed for a PM Motor Based on Saliency[J].IEEE Transactions on Industry Applications,1998,34(1):163-198.
    [15]Chuanyang Wang and Longya Xu.A Novel Approach for Sensorless Control of PM Machines Down to Zero Speed Without Signal Injection or Special PWM Technique[J].IEEE Transaction on Power Electronics,2004,19(6):1601-1607.
    [16]王丽梅,郭庆鼎.基于转子凸极跟踪的永磁同步电机转子位置的自检测方法[J].电工技术学报,2001,16(2):14-17.
    [17]董亚娟,景占荣,景志林,薛峰.基于高频电压信号注入凸极PMSM无传感器控制[J].电力电子技术,2006,40(5):27-28,61.
    [18]Matthew J.Corley and Robert D.Lorenz.Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds[J].IEEE Transactions on Industry Applications,1998,34(4):784-789.
    [19]Shin Nakashima,Yuya Inagaki,Ichiro Miki.Sensorless Initial Rotor Position Estimantion of Surface Permanent-Magnet Synchronous Motor[J].IEEE Transactions on Industry Applications,2000,36(6):1598-1603.
    [20]Stefan Ostlund and Michael Brokemper.Sensorless Rotor-Position Detection from Zero to Rated Speed for an Integrated PM Synchronous Motor Drive[J].IEEE Transactions on Industry Applications,1996,32(5):1158-1165.
    [21]Joohn Sheok Kim and Seung ki Sul.New Stand-still Position Detection Strategy for PMSM Drive without Rotational Transducers[C].Applien Power Electronics Conferece and Exposition,1994.APEC94.Vol.1 pp:363-369.
    [22]Haque M.E,Limin Zhong and Rahrnan M.F.A Sensorless Initial Rotor Position Estimation Scheme for a Direct Torque Controlled Interior Permanent Magnet Sychronous Motor Drive[J].IEEE Transactions on Power Electronics,2003,18(6):1376-1383.
    [23]马晓亮,魏学森.数字矢量控制和直接力矩控制调速系统中的电压模型[J].电工技术学报,2004,19(3):65-69.
    [24]田淳,胡育文.一种新颖的电磁式同步电机力矩控制方案[J].南京航空航天大学学报,2001,33(2):108-112.
    [25]Bimal K.Bose.现代电力电子学与交流传动[M].北京:机械工业出版社,2005.3
    [26]R.H.Park.Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis-Part Ⅰ[J].Transactions A.I.E.E.1929,48,716-730.
    [27]Hirokazu Tajima and Yoichi Hori.Speed Sensorless Field-Orientation Control of the Induction Machine[J].IEEE Transactions on Industry Applications,1993,29(1):175-180.
    [28]Hisao Kubota,Kouki Matsuse and Takayoshi Nakano.DSP-Based Speed Adaptive Flux Observer of Induction Motor[J].IEEE Transactions on Industry Applications,1993,29(2):344-348.
    [29]I.D.Landau,吴百凡译.自适应控制-模型参考方法[M].北京:国防工业出版社,1985.
    [30]Colin Schauder.Adaptive Speed Identification for Vector Control of Induction Motor Without Rotation Transducers[J].IEEE Transactions on Industry Applications,1992,28(5):1054-1061.
    [31]齐放,邓智泉,仇志坚,王晓琳.一种永磁同步电机无速度传感器的矢量控制[J].电工技术学报,2007,22(10):31-34.
    [32]沈安文,李自成.基于MRAS的感应电机无速度传感器矢量控制[J].华中科技大学学报(自然科学版),2005,33(12):51-53.
    [33]Geng Yang and Tung-Hai Chin.Adaptive-Speed Identification Scheme for a Vector-Controlled Speed Sensorless Inverter-Induction Motor Drive[J].IEEE Transactions on Industry Applications,1993,29(4):820-825.
    [34]祝龙记,王宾.基于MRAS速度辨识矢量控制系统的仿真研究[J].电工技术学报,2005,20(1):60-65.
    [35]张月芹,薛重德,张志林.基于MRAS的异步电动机无速度传感器矢量控制系统[J].农业装备与车辆工程,2007,8:20-23.
    [36]魏彦.基于DSP的感应电机无速度传感器矢量控制[J].电力电子技术,2008,42(4):66-67.
    [37]杨军,方杰,项恩毕.无速度传感器感应电动机矢量系统速度辨识方法[J].上海电机学院学报,2006,9(2):55-59.
    [38]巫庆辉,邵诚.一种基于锁相环原理的参考模型自适应感应电机转速估计方法[J].自动化学报,2006,32(5):713-721.
    [39]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.5.
    [40]郑大钟.线性系统理论[M].北京:清华大学出版社,1990.3.
    [41]D.G.Luenberger.Observers for Multivariable Systems[J].IEEE Transactions on Automatic Control,1966,vol.AC-11,no.2.
    [42]D.G.Luenberger.Observing the State of a Linear System[J].IEEE Transactions on Military Electronics,1964,8(2):74-80.
    [43]Jan C.Willems and Sanjoy K.Mitter.Controllability,Observability,Pole Allocation,and State Reconstruction[J].IEEE Transactions on Automatic Control,1971,vol.AC-16,no.6.
    [44]赵昌颖,宗润福.基于磁通观测器的转矩速度双闭环变频调速系统[J].控制与决策,1989,4(4):51-55.
    [45]李民,王溥仁.一种新型异步电动机磁通观测器[J].控制与决策,1990,5(5):55-58.
    [46]史岩,齐晓慧.基于全维观测器的系统控制律重构研究[J].河北省科学院学报,2006,23(2):32-35.
    [47]Yoichi Hod and Takaji Umeno.Implementation of Robust Flux Observer Based Field Orientation Controller for Induction Machines[C].Industry Application Society Annual Meeting,vol.1,1989:523-528.
    [48]陈晓义,孙红星,汪仁先,王成玖.基于降维观测原理的磁通观测器的 仿真研究[J].电气传动自动化,1998,20(3):35-39.
    [49]吴文海,解振华,于建立,王玉荣.飞行控制律的状态观测器重构研究[J].飞行力学,2001,19(1):59-62.
    [50]李罗文,王子栋,郭治.基于圆形区域极点配置的降维状态观测器设计[J].南京理工大学学报(自然科学版),1997,21(2):169-172.
    [51]刘畅,张庆范,高金波.同步电机功角δ的控制方法[J].变频器世界,2007,7:46-48.
    [52]高金波.同步电机变频驱动算法研究[D].山东大学,2007.5
    [53]张纯江,漆汉宏.空间矢量PWM与正弦PWM的比较研究[J].信息技术,2000.5:1-2.47
    [54]Joachim Holtz.Pulsewidth Modulation for Electronic Power Conversion[J].Proceedings of the IEEE,1994,82(8):1194-1214.
    [55]朱志昆,季文龙,宋小庆.基于DSP的SVPWM两种生成方式的比较[J].装甲兵工程学院学报,2002,16(1):73-77.
    [56]王建宽,崔巍,江建中.SVPWM技术的理论分析及仿真[J].微特电机,2006,34(6):15-17,20.
    [57]严洁,阮毅,徐静.基于DSP的SVPWM研究[J].电气传动自动化,2005,27(6):6-8.
    [58]李传海,李峰,曲继圣,赵栋利,周加强.空间矢量脉宽调制(SVPWM)技术特点及其优化方法[J].山东大学学报(工学版),2005,35(2):27-31.
    [59]吴凤江,高晗璎,孙力,王有琨.基于DSP的SVPWM快速算法研究[J].电气传动,2006,36(9):44-46.
    [60]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,1999.5
    [61]邢绍邦,赵克友.电压型SVPWM算法及其仿真[J].微特电机,2007,35(5):26-28.
    [62]翁力,韩林,赵荣祥,包辉.空间矢量脉冲调制(SVPWM)扇区过渡的分析研究[J].机电工程,2003,20(3):49-51.
    [63]杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [64]张俊洪,赵镜红.空间矢量脉宽调制和三相载波脉宽调制关系的研究[J].武汉理工大学学报(交通科学与工程版),2005,29(2):170-173.
    [65]Vladimir Blasko.Analysis of a Hybrid PWM Based on Modified Space-Vector and Triangle-Comparison Methods[J].IEEE Transactions on Industry Applications,1997,33(3):756-764.
    [66]Dae-Woong Chung,Joohn-Sheok Kim,Seung-Ki Sul.Unified Voltage Modulation Technique for Real-Time Three-Phase Power Conversion[J].IEEE Transactions on Industry Applications,1998,34(2):374-380.
    [67]熊健,康勇,张凯,陈坚.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术,1999,33(1):25-28.
    [68]李峰,赵栋利,夏超英.基于DSP的SVPWM调制技术的研究[J].电气传动自动化,2005,27(4):1-5.
    [69]洪珠琴,金涌涛,章恬,周芳,杨建军.基于TMS320F24X的SVPWM 变换器的研究[J].江西电力职业技术学院学报,2005,18(4):21-23,31.
    [70]何苏勤,王忠勇.TMS320C2000系列DSP原理及实用技术[M].北京:电子工业出版社,2003.
    [71]王晓明,王玲.电动机的DSP控制-TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [72]Zhenyu Yu.Space-Vector PWM With TM320C24x/F24x Using Hardware and Software Determined Switching Patterns,Texas Instruments Application Report SPRA524
    [73]David M.Alter.Getting Started in C and Assembly Code With the TMS320LF240x DSP,Texas Instruments Application Report SPRA755A,July 2002.
    [74]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2004.
    [75]王琰.基于高性能DSP的交流传动系统研究[D].华中科技大学,2004.4.
    [76]高莹,谢吉华,李庚.SVPWM过调制算法的分析和仿真[J].微特电机,2007,35(6):5-7,50.
    [77]许思猛,胡金高.SVPWM逆变器过调制算法的分析与实现[J].电气应用,2005,24(4):77-80,84.
    [78]Ahmet M.Hava,Russel J.Kerkman,Thomas A.Lipo.Carrier-Based PWM-VSI Overmodulation Stratergies:Analysis,Comparison,and Design[J].IEEE Transactions on Power Electronics,1998,13(4):674-689.
    [79]Silverio Bolognani and Mauro Zigliotto.Novel Digital Continuous Control of SVM Inverters in the Overmodulation Range[J].IEEE Transactions on Industry Applications,1997,33(2):525-530.
    [80]Dong-Choon Lee and G-Myoung Lee.A Novel Overmodulation Technique for Space-Vector PWM Inverters[J].IEEE Transactions on Power Electronics,1998,13(6):1144-1151.
    [81]Joachim Holtz,Wolfgang Lotzkat,and Ashwin M.Khambadkone.On Continuous Control of PWM Inverters in the Overmodulation Range Including the Six-Step Mode[J].IEEE Transactions on Power Electronics,1993,8(4):546-553.
    [82]杨文强,蔡旭,姜建国.空间电压矢量PWM的过调制策略[J].上海交通大学学报,2005,S1期:53-56.
    [83]张俊洪,赵镜红.空间矢量脉宽调制过调制技术研究[J].电气传动,2005,35(1):16-18.
    [84]王展英,秦连城.空间电压矢量过调制技术的两种简便算法及仿真研究[J].微电机,2007,40(1):61-65.
    [85]王琰,程善美.空间矢量PWM过调制策略的分析和仿真[J].电气传动,2005,35(4):37-40.
    [86]张艳芳,林飞,马志文,郑琼林.两种SVPWM过调制方法的比较[J].北京交通大学学报,2005,29(2):39-43.
    [87]梁振鸿,温旭辉.应用过调制技术扩展永磁同步电机运行区域[J].电工电能新技术,2003,22(1):39-42.
    [88]Joachim Holtz.Pulsewidth Modulation-A Survey[J].IEEE Transactions on Industrial Electronics,1992,39(5):410-420.
    [89]张立伟,刘钧,温旭辉,陈桂兰,华旸.基于基波电压幅值线性输出控 制的SVPWM过调制新算法[J].中国电机工程学报,2005,25(19):12-18.
    [90]赵海东,李剑中,孙文林.利用C504实现空间矢量调制和过调制[J].电力电子技术,2002,36(1):33.35.
    [91]闫士杰,于革.微型燃机电力变换SVPWM过调制策略的实现[J].控制工程,2006,13(5):502-505.
    [92]邵明,付麦霞.电压型逆变器死区产生原因分析及对策[J].河南纺织高等专科学校学报,2007,19(2):44-45.
    [93]姜向龙,尹泉,赵金,万淑芸.基于DSP控制器的一种死区补偿策略[J].电力电子技术,2005,39(4):44-46.
    [94]赵刚.交流传动中减少死区影响的改进空间矢量调制方法[J].微电机,2007,40(7):94-96.
    [95]郑伟,刘玮,苏彦民,陈昆鸿.一种基于电流矢量的死区时间补偿方案[J].电气传动,2005,35(4):34-36,54.
    [96]张震,李世毅,温旭辉.异步电机矢量控制中死区补偿的研究[J].微电机,2003,36(1):22-24.
    [97]许嘉曼,徐国卿,康劲松.基于永磁同步电机的SVPWM死区分析与补偿[J].电气传动,2007,37(2):29-31.
    [98]刘亮,邓名高,欧阳红林,周马山.基于预测电流控制的PWM逆变器死区补偿方法研究[J].电工技术学报,2005,20(8):78-83,98.
    [99]段善旭,孙朝晖,张凯,康勇,陈坚.基于重复控制的SPWM逆变电源死区效应补偿技术[J].电工技术学报,2004,19(2):51-57,63.
    [100]李娜.数控逆变器中的死区效应及补偿方法[J].煤炭技术,2007,26(5):32-33.
    [101]刘亮,邓名高.一种补偿PWM逆变器死区效应的新方法[J].电力电子技术,2005,39(6):123-125.
    [102]黄文新,胡育文,李磊.一种新颖的空间电压矢量调制逆变器的死区补偿方法[J].南京航空航天大学学报,2002,34(2):143-147.
    [103]Yoshihiro Murai,Tomofumi Watanabe,and Harumitu Iwasaki.Waveform Distortion and Correction Circuit for PWM Inverters with Switching Lag-Times [J].IEEE Transactions on Industry Applications,1987,IA-23,no.5,pp:881-886.
    [104]万健如,魏志强,李莲,张海波.针对SVPWM死区问题一种新的控制方法[J].电工技术学报,2006,21(7):105-108,120.
    [105]郑志波,刘开培,陈华,陈勇强.变频器逆变单元控制死区时间的补偿[J].电气传动,2005,35(11):24-28.
    [106]刘军锋,李叶松.死区对电压型逆变器输出误差的影响及其补偿[J].电工技术学报,2007,22(5):117-122.
    [107]刘军锋,李叶松.一种新颖的死区补偿和电机相电压检测方法[J].电力电子技术,2007,41(1):33-34,89.
    [108]孙向东,钟彦儒,任碧莹,周炳.一种新颖的死区补偿时间测量方法[J].中国电机工程学报,2003,23(2):103-107.
    [109]韩泽云,康勇,徐至新,邹旭东.异步电机矢量控制中死区效应补偿技术的研究[J].电力电子技术,2006,40(6):52-53,89.
    [110]夏向阳,罗安,李茂军,范瑞祥.有源滤波器中逆变器的死区效应与补偿方法[J].高电压技术,2006,32(8):73-75,83.
    [111]刘泉,阙大顺.数字信号处理原理与实现[M].北京:电子工业出版社,2005.
    [112]钟麟,王峰.Matlab仿真技术与应用教程[M].北京:国防工业出版社,2004.
    [113]王庆义,尹泉,刘杰,万淑芸.一种基于定子电流重构的死区补偿技术[J].电力电子技术,2006,40(2):73-75.
    [114]吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿[J].中国电机工程学报,2006,26(12):101-105.
    [115]吴茂刚,赵荣祥,汤新舟.空间矢量PWM逆变器死区效应分析与补偿方法[J].浙江大学学报(工学版),2006,40(3):469-473.
    [116]张俊洪,赵镜红.空间矢量逆变器死区分析及补偿[J].微电机,2005,33(5):24-26.
    [117]窦如振,刘钧,温旭辉,华旸.SVPWM控制逆变器死区补偿方法的研究[J].电力电子技术,2004,38(6):59-61.
    [118]赵春水,许镇琳.基于TMS320F240的死区效应补偿技术[J].电力电子 技术,2004,38(2):78-79.
    [119]吴茂刚,赵荣祥,汤新舟.矢量控制永磁同步电动机低速轻载运行的研究[J].电工技术学报,2005,20(7):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700