新型单层钎焊金刚石砂轮磨削工程陶瓷的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷材料目前在航空航天、汽车及切削刀具等领域的应用日益广泛,且需求正逐年增加。金刚石砂轮性能及相关的磨削工艺参数对陶瓷工件的加工成本、效率和磨削表面完整性有决定性的影响,因此研制性能优异的新型金刚石砂轮并对其磨削性能进行科学评价,将有助于推动工程陶瓷材料的优质和高效加工。凭藉单层钎焊工具钎料层对磨料的超强把持作用和有序排布技术,本课题研制了磨粒有序排布的新型单层钎焊金刚石砂轮,并将其应用于工程陶瓷的高性能磨削,以期进一步拓宽钎焊工具的应用领域。
     本文完成的主要研究工作包括:
     (1)为实现工程陶瓷的精密磨削,根据钎焊工艺要求设计了新型结构磨粒有序排布的单层钎焊金刚石镶块砂轮。确定了合适的钎焊工艺和砂轮结构件制造工艺,重点对其回转精度进行了控制,并对磨粒的等高性进行了有效控制,成功研制出应用于工程陶瓷磨削的磨粒有序排布的细粒度新型单层钎焊金刚石砂轮。
     (2)阐明了单层钎焊金刚石砂轮磨削工程陶瓷的工艺基础条件,探讨了陶瓷材料脆-延性转变机理和临界条件,并对氧化锆(Y-PSZ)陶瓷的延性域去除进行了基础试验研究,进行了钎焊金刚石砂轮延性域磨削陶瓷的可行性分析。针对普通精密磨床和和高速磨床试验条件,基于脆延性转变机理对延性域磨削参数进行了科学调控。
     (3)通过磨削试验和磨损试验对新型单层钎焊金刚石砂轮的磨削加工性能进行了探讨,重点对氧化铝(99%)和氧化锆(Y-PSZ)两种工程陶瓷的磨削力和磨削比能进行了研究。基于单颗磨粒磨削力及力比两方面分析了钎焊金刚石砂轮的锋利度,详细分析了工程陶瓷磨削能量的耗散机制,论证了工程陶瓷磨削过程中材料去除方式存在脆-延性转变的规律。此外,进行了新型单层钎焊金刚石砂轮磨损试验研究,阐明了磨损的主要形式。
     (4)应用研制的单层新型钎焊金刚石砂轮进行了两种陶瓷材料的不同磨削参数下表面完整性研究,从工程陶瓷磨削后表面粗糙度、残余应力、抗弯强度以及表面/亚表面损伤等四个方面阐明了不同单颗磨粒最大切厚下的表面完整性
Engineering ceramics are now widely used under great and complex demands to produce different parts in many fields such as aviation and aerospace industry, automotive industry, cutting tools manufacturing industry, etc. Because the diamond grinding wheel performance and the related grinding process parameters significantly influence the cost, efficiency and surface integrity, it is helpful to develope the innovative diamond grinding wheel and scientifically to evaluate the performance of grinding wheel for promoting ceramics machining with good quality and high productivity.
     Depending on the strong joining effects induced by the chemical and metallurgical behavior among the abrasive grains, the filler alloy and the metal substrate and the orderly distributed grains technology, the innovative monolayer brazed diamond grinding wheels with orderly distributed grains are developed. Subsequently the special tools were evaluated in the high performance grinding of engineering ceramics in order to further broaden the application field of the brazing diamond grinding wheels.
     The main contents in this paper are as follows:
     1) The innovative monolayer brazed diamond segmented grinding wheels with orderly distributed grains is designed according to the requirements of brazing technique to realize the precision grinding of engineering ceramics. Moreover, on the basis of determined the suitable brazing process, the machining process of the grinding wheel with structural components mainly controlling the rotary accuracy of the wheel and the equal height characteristics of grains is effectively controlled, this kind of fine-grained diamond grinding wheel applied to engineering ceramics is successfully developed.
     2) The technique foundation conditions of grinding engineering ceramics by the monolayer brazed diamond are elucidated and the mechanism and the critical conditions of brittle–ductile transition are investigated. What’s more, the fundamental experimental researches of the ductile mode cutting of zirconia ceramic are conducted and the feasibility of ductile grinding engineering ceramics with the brazed diamond tools is presented. Furthermore, ductile grinding parameters are scientifically optimized based on the mechanism of brittle–ductile transition according to the ordinary precision grinding machine and the high speed grinding machine.
     3) Grinding performance of the innovative monolayer brazed grinding wheel was investigated based on the grinding and wear experiments. The grinding force and the specific grinding energy of the alumina ceramic and the zirconia ceramic are mainly discussed. The sharpness of the brazed diamond grinding wheel is analyzed based on both the single grain grinding force and the grinding force ratio. The energy dissipation mechanism of the engineering ceramics is elucidated and the brittle–ductile transition exists in the material removal modes when grinding engineering ceramics. Furthermore, the wear experiments for the innovative monolayer brazed grinding wheel are conducted and the wear main form of the grinding wheel is investigated.
     4) Research on the grinding surface integrity of the two different ceramics is conducted with the fabricated innovative monolayer brazed diamond grinding wheel. The variation law of the surface integrity of engineering ceramics after being ground under the different maximum undeformed chip thickness is discussed from four aspects: surface roughness, residual stress, flexural strength and surface/subsurface damage. Furthermore, the surface integrity in the ductile grinding process is mainly investigated.
引文
[1]任敬心.难加工材料的磨削,北京:国防工业出版社,1999
    [2]王秦生.超硬材料制造,北京:中国标准出版社,2001
    [3]宋健明.钻石磨轮的简介,机械工业杂志,2004,254:148~159
    [4]许昌裕,翁林钧,黄振佳.陶瓷材料磨削微沟槽之研究,机械工业杂志(台湾),2005,266,30~36
    [5] Licht R H, Ramanath S, Simpson M,et al. Innovative Grinding Wheel Design for Cost-Effective Machining of Advanced Ceramics, Phase ? Final Report, Subcontract No. 87X-SM037V, Publishued by Oak Ridge National Laboratory Ceramic Technology Project, Report Number ORNL/Sub/93-SM037/1, February 1996
    [6]金志浩,高积强,乔冠军.工程陶瓷材料,西安:西安交通大学出版社,2000.8
    [7]段继光著.工程陶瓷技术,长沙:湖南科学技术出版社,1994
    [8]樊新民,张骋,蒋丹宇.工程陶瓷及其应用,北京:机械工业出版社,2006.7
    [9] Inasaki I. High Efficiency Grinding of Advanced Ceramics, Annals of the CIRP, 1986, 35(1): 211~214
    [10] Inasaki I. Grinding of Hard and Brittle Materials, Annals of the CIRP, 1987, 36(2): 463~472
    [11] Wobker H G, Tonhoff H K. High Efficiency Grinding of Structural Ceramics, NIST Special Publication: Machining of Advanced Materials, No.847,1993: 171~175
    [12] Zhang Bi. Howes T D. Material-Removal Mechanisms in Grinding Ceramics, Annals of the CIRP, 1994, 43(1): 305~308
    [13] Malkin S, Hwang T. Grinding Mechanisms for Ceramics, Annals of the CIRP, 1996, 45(2): 569~580
    [14] Julathep Kajornchaiyakul. Abrasive Machining of Ceramics: Assesment of Near-surface Characteristics in High Speed Grinding, [Ph.D.Dissertation], Storrs, University of Connecticut, 2000
    [15]徐燕申,田欣利,于爱兵,等.工程陶瓷材料加工技术的研究进展,中国机械工程,1996,7(6),59~62
    [16]于思远,林滨,林彬.国内外先进陶瓷材料加工技术的进展,金刚石与磨料磨具工程,2001,(4),36~39
    [17]钱瑛,赵波,张波,等.工程陶瓷材料精密磨削加工技术的新发展,焦作工学院学报(自然科学版),2003,22(3),217~220
    [18]谢桂芝,黄红武,黄含.工程陶瓷材料高效深磨的试验研究,机械工程学报,2007,43(1):176~184
    [19] Rezaei S M. Creep Feed Grinding of Advanced Ceramics, Journal of Engineering Manufacture, 1992, 206(B2): 93~99
    [20] ICHIDA Yoshio, KISHI Kozo, HASUDA Yuichi. Study on One-Pass Mirror Finish Grinding Technology of Fine Ceramics (1st Report): Development of New Metal Bonded Fine Grain Diamond Wheels and their Application to Mirror Finish Grinding, Journal of the Japan Society of Precision Engineering, 1992, 58(3): 463~470
    [21] Hwang T W, Evans C J, Whitenton E P, et al. High Speed Grinding of Silicon Nitride with Electroplated Diamond Wheels, Part 1: Wear and Wheel Life, Journal of Manufacturing Science and Engineering, 2000, 122(2): 32~41
    [22] Hwang T W, Evans C J, Malkin S. High Speed Grinding of Silicon Nitride with Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding Mechanisms, Journal of Manufacturing Science and Engineering, 2000, 122(2): 42~50
    [23] Huang Han, Yin Ling, Zhou Libo. High Speed Grinding of Silicon Nitride with Resin Bond Diamond Wheels, Journal of Materials Processing Technology, 2003, 141: 329~336
    [24] Zhang L C. Grindability of Some Metallic and Ceramic Materials in CFG Regimes, International Journal of Machine Tool & Manufacture, 1994, 34(8): 1045~1057
    [25] Liao T W, Li K, McSpadden S B, et al. Wear Mechanisms of Diamond Abrasives during Transition and Steady Stages in Creep-Feed Grinding of Structural Ceramics, Wear, 2000, 242: 28~37
    [26] Malkin S.磨削技术理论与应用(蔡光起译),沈阳:东北大学出版社,2002.8
    [27] Yin Ling, Huang Han. Ceramic Response to Gigh Speed Grinding, Machining Science and Technology, 2004, 8(1): 21~37
    [28] Huang Han. Machining Characteristics and Surface Integrity of Yttria Stabilized Tetragonal Zirconia in Gigh Speed Deep Grinding, Materials Science and Engineering, 2003, A345: 155~163
    [29] Huang Han, Liu Y C. Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding, International Journal of Machine Tools & Manufacture, 2003, 43: 811~823
    [30] Bifano T G. Ductile-Regime Grinding: A New Technology for Machining Brittle Materials, ASME Journal of Engineering for Industry , 1991, 113: 184~189
    [31] Zhong Z, Venkatesh V C, Semi-Ductile Grinding and Polishing of Ophtalmic Aspherics and Spherics, Annals of the CIRP, 1995, 44(1): 339~442
    [32]柯宏发,陈友良.陶瓷半延展性磨削试验研究,金刚石与磨料磨具工程,1998,1(103):25~28
    [33] Spur G. Ultrasonic Assisted Grinding of Ceramics, Industrial Ceramics, 2001, 21(3): 177~181
    [34]王军.工程陶瓷超声波磨削加工技术,金刚石与磨料磨具工程,2000,3:32~34
    [35] Marinescu I D. Laser-assisted Grinding of Ceamics, International Ceramic, 1998, 47(5): 314~316.
    [36] Mmehara. Magnetic Fluid Grinding of Advanced Ceramic Balls, Wear, 1996, 200(1-2): 148~153.
    [37] Bandyopadhyay B P, Ohmori H, Takahashi I. Ductile Regime Mirror Finish Grinding of Ceramics with Electrolytic In-process Dressing (ELID) grinding, Journal of Materials and Manufacturing Processes,1996, 11(5): 789~802
    [38] Zarudi I, Zhang L C. On the Limit of Surface Integrity of Alumina by Ductile-Mode Grinding, Transactions of the ASME, Journal of Engineering Materials and Technology, 2000, 122(1): 129~134
    [39] Ngoi B K A, Sreejith P S. Ductile Regime Finish Machining–A Review, International Journal of Advanced Manufactured Technology, 2000, 16: 547~550
    [40]陈明君,张飞虎,董申,等.光学玻璃塑性模式超精密磨削加工的研究,中国机械工程,2001,12(4):460~462
    [41]赵清亮,于光,Ekkard Brinksmeier.应用超硬大磨粒金刚石砂轮实现BK7光学玻璃的超精密磨削,机械工程学报,2006,42(10):95~101
    [42] BRINKSMEIER E,MALZ R,PREUSS W. Investigation of a Novel Tool Concept for Ductile Grinding of Optical Glass[C]//Proceedings of ASPE 2000 Annual Meeting,Scottsdale,Arizona,2000(10): 74-77
    [43] KANAI A,MIYASHITA M,SATO M,et al. Proposal of High Productivity in Ductile Mode Grinding of Brittle Materials[C]//Proceedings of ASPE 10th Annual Meeting,Austin,Texas,1995(10): 167~170
    [44] Ioan D. Marinescu, Tonshoff Hans K, Ichiro Inaski. Handbook Of Ceramic Grinding AndPolishing, New Jersey, Noyes Publications, 1998
    [45]孙毓超,刘一波,王秦生.金刚石工具与金属学基础,北京:中国建材出版社,1999
    [46] Webster J, Tricard M. Innovations in Abrasive Products for Precision Grinding, Annals of the CIRP, 2004, 53(2): 597~617
    [47] Marinescu Ioan D, Hitchiner Mike, Eckart Uhlmann et al. Handbook of Machining with Grinding Wheels, Boca Raton, CRC Press/Taylor & Francis Group, 2007
    [48] Jahanmir S, Ives L K, Ruff A W, et al. Ceramic Machining: Assessment of Current Practice and Research Needs in the United States, NIST Special Publication, 1992
    [49] Licht H, Kuo P, Liu S, Murphy D, Picone J W, et al. Innovative Grinding Wheel Design for Cost-Effective Machining of Advanced Ceramics, PhaseⅡFinal Report, Subcontract No. 87X-SM037V, publishued by Oak Ridge National Laboratory Ceramic Technology Project, Report Number ORNL/Sub/93-SM037/2, February 2000
    [50] Xu H J, Fu Y C, Xiao B, et al. Fabrication of Monolayer Brazed Diamond Tools with Optimum Grain Distribution, Key Engineering Materials, 2004, 259: 6~9
    [51]傅玉灿,徐鸿钧.一种适于国内引进开发的新型超硬磨料砂轮,中国机械工程,1999, 10(4):24~27
    [52] Huerta M, Malkin S. Grinding of Glass: The Mechanics of the Process, Transactions of the ASME, Journal of Engineering for Industry, 1976, 88(2): 459~467
    [53] Huerta M, Malkin S. Grinding of Glass: Surface Structure and Fracture Strength, Transactions of the ASME, Journal of Engineering for Industry, 1976, 88(2): 468~473
    [54]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究,[博士学位论文],长沙,湖南大学,2003
    [55]龚江宏著.陶瓷材料断裂力学,北京:清华大学出版社,2001
    [56] Lawn B R. Fracture of brittle solids, 2nd Editions, Cambridge University Press, 1993: 249~306
    [57] Warneche G, Barth C. Optimization of the Dynamic Behavior of Grinding Wheels for Grinding of Hard and Brittle Materials Using the Finite Element Method, Annals of the CIRP, 1999, 4(1): 261~264
    [58]林滨,林彬,于思远.陶瓷材料延性域去除临界条件新研究,金刚石与磨料磨具工程,2002,1(127):44~45
    [59] Kitajima K, Cai G Q, Kumagai N. Study on Mechanism of Ceramics grinding, Annals of the CIRP, 1992, 41(1): 367~371
    [60] Warnecke G. Basics of Parameter Selection in Grinding of Advanced Ceramics, Annals of the CIRP, 1995, 44(1): 283~290
    [61]邓朝晖,张璧,孙宗禹.陶瓷磨削的材料去除机理,金刚石与磨料磨具工程,2002,2(128):47~50
    [62] Richerson D W. Modern Ceramics Engineering, Properties Processing and Use in Design, Ed, Marced Dekker, Ine. Newrork, EUA, 1992
    [63] Xu H H K, Jahanmir S, Ives K. Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride, Journal of Materials Research, 1996, 11(7): 1717~1724
    [64] Xu H H K, Jahamir S. Microstructure and Material Removal in Scratching of Alumina, Journal of Materials Science, 1995, 30:2235~2247
    [65] Zhang B, Howes T D. Subsurface Evaluation of Ground Ceramics, Annals of the CIRP, 1995, 44(1): 263~266
    [66]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨,纳米技术与精密工程,2003, 1(1):48~56
    [67] Shimada Shoichi et al. Brittle-Ductile Transition Phenomena in Microindentation and Micromachining. Annals of the CIRP, 1995, 44(1): 523~526
    [68] Subramanian K, Kopp R N. Grinding Advanced Ceramics: A Forecast for the 1990s, American Ceramic Society Bulletin, 1988, 67(12): 1892~1893
    [69]李伯民,赵波主编.现代磨削技术,北京:机械工业出版社,2003.1
    [70] [日]工业调查委员会编,陈俊彦译.最新精细陶瓷技术,北京:中国建筑出版社,1988
    [71] Agarwal Sanjay, Venkateswara Rao P. A Probabilistic Approach to Predict Surface Roughness in Ceramic Grinding, International Journal of Machine Tools & Manufacture,2005, 45(6): 609~616
    [72]米谷茂.残余应力的产生和对策(第7版),北京:机械工业出版社,1983
    [73]袁发荣,伍尚礼.残余应力的测试与计算,长沙:湖南大学出版社,1987
    [74]张纯清.陶瓷材料的力学性能,北京:科学出版社,1987
    [75]铃木弘茂主编.陈世兴译,工程陶瓷,北京:科学出版社,1989
    [76] Zheng Yesha, Vieira Joaquim Manuel, Filipe Jose Oliveira. Relationship Between Flexural Strength and Surface Roughness for Hot-pressed Si3N4 Self-reinforced Ceramics, Journal of the European Ceramic Society 2000, 20: 1345~1353
    [77] Willmann G. Finish Machining and the Strength of Ceramic Parts, IDR, 1985(4): 201~205
    [78] Malkin S, Ritter J E. Grinding Mechanism and Strength Degradation for Ceramics, Journal of Engineer Industry, 1989, 111(5):165~174
    [79] Rice R W, Mecholsky J J. The Nature of Strength Controlling Maching Flaws in Ceramics, The Science of Ceramic Machining and surface FinishingⅡ, NBS Special Publication 1979, 562: 351~378
    [80] Rice R W, Mecholsky J J, Jr. The Effect of Grinding Direction on Flaw Character and Strength of Single Crystal and Polycrystalline Ceramics, Journal of Material Science, 1981, 16: 853~862
    [81] Shemilt J E, Siddiqui A A, Bradwell S C. Investigation of the Influence of Machining of Machining on the Fracture of Engineering Ceramics, Journal of Material Science Letter, 1994(13):1546~1550
    [82]王西彬,任敬心.结构陶瓷磨削表面微裂纹的研究,无机材料学报,1996,11(4):658~664
    [83]王西彬,任敬心.结构陶瓷磨削表面损伤的研究,硅酸盐学报,1997,25(1):101~105
    [84] Xu H H K, Jahanmir S. Simple Technique for Observing Subsurface Damage in Machining of Ceramic, Journal of American Ceramics Society, 1994,77:1388~1390
    [85]肖冰.单层超硬磨料工具高温钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2001
    [86]武志斌.高效磨削的瓶颈与对策,[博士学位论文],南京,南京航空航天大学,2001
    [87]卢金斌.金刚石钎焊机理与工艺基础研究,[博士学位论文],南京,南京航空航天大学,2004
    [88]马伯江.金刚石磨粒高频感应钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2005
    [89]丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制,[博士学位论文],南京,南京航空航天大学,2006
    [90] Hed P P, Edwards D F. Relationship Between Subsurface Damage Depth and Surface Roughness during Grinding of Optical Glass with Diamond Tools, Applied Optics, 1987, 26: 4677~4680
    [91] Funkenbusch P D, Zhou Y, Takahashi T, et al. Grinding of Single Crystal Sapphire: Workpiece Roughness Correlations, Wear, 1998, 218(1): 1~7
    [92]鲁东主编.钢铁材料标准数据手册,北京:科学技术文献出版社,1994.12
    [93]罗格夏特E,庄鸿寿.高温钎焊,北京:国防工业出版社,1989.4
    [94]熊中实,吕芳斋著.常用金属材料实用手册,北京:中国建材工业出版杜,2001.3
    [95]成大先主编.机械设计手册,北京:化学工业出版社,2004.1
    [96]郭爱莲主编,赵必洁等编著.磨工基本技术,北京:金盾出版社,2000.1
    [97] Yengenoglu K, Roth M. Good Surface Finish with Electroplated cBN Wheels, Industrial Diamond Review, 1987, 114: 3~7
    [98] Ghosh A, Chattopadhyay A K. Experimental Investigation on Performance of Touch-dressed Single-layer Brazed cBN Wheels, International Journal of Machine Tools & Manufacture, 2007, 47(7-8): 1206~1213
    [99]诸兴华主编.磨削原理,北京:机械工业出版社,1988
    [100] Bifano T, Dow T, Scattergood R. Ductile-regime Grinding of Brittle Materials: Experimental Results and the Development of a Model, SPIE, 1988, 966: 108~15.
    [101] Sun X, Stephenson D J, O Ohnishi. A. Baldwin. An Investigation into Parallel and Cross Grinding of BK7 Glass, Precision Engineering, 2006, 30: 145~153
    [102]陈明君,董申,李旦,等.脆性材料超精密磨削时转变临界条件的研究,高技术通讯,2002,2:64~67
    [103]林滨,林彬,于思远.陶瓷材料延性域去除临界条件新研究,金刚石与磨料磨具工程,2002(1):44~45
    [104] SREEJITH P S, NGOI B K A. Material Removal Mechanisms in Precision Machining of New Materials, Int J Mach Tool Manuf, 2001, 41(12): 1831~1843
    [105]纳米尔,林滨,关强,等.几种工程陶瓷的延性域磨削,天津大学学报,1999,32(4):486~491
    [106]张幼桢.金属切削理论,北京:航空工业出版社,1988
    [107]傅玉灿,徐鸿钧.高效磨削用砂轮地貌的优化设计研究,应用科学学报,2001,19(1):48~52
    [108]傅玉灿.关于进一步开发高效磨削潜力的基础研究,[博士学位论文],南京,南京航空航天大学,1999
    [109]陈雪梅.关于高效磨削时砂轮地貌有序排布及其优化设计的基础研究,[硕士学位论文],南京,南京航空航天大学,1999
    [110] Koshy P, Iwasaki A, Eibestawi M A. Surface Generation with Engineered Diamond Grinding Wheels:Insights from Simulation. Annals of the CIRP, 2003, 52(1): 271~274
    [111] Komanduri R. On Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses, Annals of the CIRP, 1996, 45(1): 509~514
    [112] Huetra M., Malkin S. Grinding of Glass:The Mechanics of the Proess, Journal of Engineering for Industry, 1976, 5: 459~467
    [113] Hwang T W. Grinding Energy and Mechanisms for Ceramics, [Ph.D.Dissertation],Amherst, University of Massachusetts Amherst, 1997
    [114]徐西鹏,黄辉,于怡青,等.锯切过程中花岗石与金刚石间的摩擦效应,摩擦学学报,1999,19(4):344~309
    [115] Hwang T W, Malkin S. Grinding Mechanism and Energy Balance for Ceramics, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1999, 121(4): 623~631
    [116] Gilormini P, Felder E. Theoretical and Experimental Study of the Ploughing of a Rigid-Plastic Semi-Finite Body by a Rigid Pyramidal Indenter, Wear, 1983, 88: 195~206
    [117] Jahanmir S, Ramulu M, Koshy P. Machining of Ceramics and Composites, New York, Marcel Dekker, 1999: 11~84
    [118]陈于萍,高晓康编著.互换性与测量技术,北京:高等教育出版社,2002.7
    [119] Anne Venu Gopal P, Venkateswara Rao. A new chip-thickness model for performance assessment of silicon carbide grinding, The International Journal of Advanced Manufacturing Technology, 2004, 24: 816~820
    [120] Hecker R L, Liang S Y. Predictive modeling of surface roughness in grinding, International Journal of Machine Tools & Manufacture, 2003, 43: 755~761
    [121]周玉,武高辉.材料分析测试技术,哈尔滨:哈尔滨工业大学出版社,1998
    [122]邓朝晖,张璧,周志雄,等.陶瓷磨削的表面/亚表面损伤,湖南大学学报,2002,29(5):61~71
    [123] Outwater J O, Shaw M C. Surface Temperature in Grinding, Transaction of American Society of Mechanical Engineers, 1952, 74: 73~86
    [124] Malkin S. Thermal Aspects of Grinding, Journal of Engineering for Industry, 1974, 96(5): 1184~1191
    [125] Lavine A S, Jen T C. Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel, and Fluid, Journal of Heat Transfer, 1991, 113: 296~303
    [126] Jaeger J C. Moving Sources of Heat and the Temperature at Sliding Contacts, Royal Society of N.S.W. Journal and Proceedings., 1942, 76: 203~224
    [127] Takazawa K. Effects of Grinding Variables on Surface Structure of Hardened Steels, Bull. Jpn. Soc. Prec. Eng., 1966, 2: 14~21.
    [128] Annamalai V E, Sornakumar T. Transformations during Grinding Ceria-Stabilized Tetragonal Zirconia Polycrstals, Journal of American Ceramic Society, 1992, 75(9): 2559~2561
    [129] Kitajima K, Cai G Q, Kumagai N et al. Study on Mechanism of Ceramics Grinding, Annals CIRP, 1982, 41(1): 367~371
    [130] [美]David J.Green著.陶瓷材料力学性能导论(龚江宏译),北京:清华大学出版社,2003.11
    [131] Green D J. An Introduction to the Mechanical Properties of Ceramics, Cambridge, United Kingdom, Cambridge University Press, 1998
    [132] Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics, Journal of Material Processing Technology, 2002, 132: 353~364
    [133]王西彬.结构陶瓷磨削及变质层的研究,[博士学位论文],西安:西安交通大学, 1994
    [134] Ruff A W, Ssin H, Evans C J. Damage Process in Ceramics Resulting from Diamond Tool Indentation and Scratching in Various Environments, Wear, 1995, 551: 181~183
    [135] Xu H H K, Jahanmir S, Ives L K. Effect of Machining on Mechanical Properties of Zirconia and Zirconis-toughened Alumina, Machining Science Technology, 1997, 1: 49~66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700