油田钻探用PDC热残余应力及界面结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚晶金刚石复合片(Polycrystalline Diamond Compact,简称PDC)钻头因具有极高的耐磨性、抗冲击韧性以及锐利的切削刃,在地质和石油钻探中受到了广泛的应用。但目前国内外油田上所使用的复合片有80%的非正常失效断裂是由于PDC的残余应力致裂及界面结构问题引起的,热残余应力是造成PDC非正常失效的主要因素。针对上述问题,结合博士点基金项目“油田钻探用金刚石复合片热残余应力致裂与止裂研究”(20070533113),本文采用理论分析、数值计算、实验研究和现场测试与应用相结合的方法,对油田钻探用PDC热残余应力及界面结构优化问题进行了系统深入的研究。主要研究内容如下:
     (1)针对金刚石与粘结金属之间的界面结合问题,对PDC复合机理以及复合机理、合成技术对界面强度的影响作了深入系统的研究,这为PDC残余应力、界面结构等的研究提供了先决条件。
     (2)根据PDC合成过程中的热力学规律及弹性理论,建立了平界面结构PDC热残余应力理论模型,推导出复合材料界面剪应力和金刚石层内正应力的理论计算公式,得出对残余应力起决定因素的是金刚石与硬质合金的热膨胀系数差值。通过数值计算方法,对平界面结构PDC热残余应力的大小及分布规律等作了详细的计算和分析,得到了PCD(Polycrystalline Diamond)层厚度与热残余应力、变形之间的相互关系。
     (3)利用理论分析、有限元数值计算等方法,对PDC界面精细结构及性质、界面反应的控制以及界面结构对力学性能的影响规律作了深入研究,对不同界面结构PDC热残余应力分布规律作了详细的计算和分析,给出了热残余应力与界面结构之间的相互关系,并在此基础上对PDC界面结构进行了优化设计。
     (4)通过改进的应力释放法、X射线衍射法和Raman光谱法,结合有限元与曲线拟合等数值方法,成功得到了金刚石层表面和界面各点的热残余应力值及其完整的分布规律,且测试结果均与有限元数值计算结果相吻合。本文所用实验方法克服了传统PDC残余应力测量方法中只能测有限几个点的弊端,为PDC刀具的优化设计提供了实验基础,并为准确测试PDC的其他应力,如环向应力等,提供了参考。
     (5)针对国内PDC耐磨性测试方法中称量法存在较大误差的缺陷,对PDC耐磨性测试方法进行了改进,采用显微镜测量磨耗面边长来计算出磨耗量,从而得到PDC的磨耗比。通过对测量法与称量法测试数据的比较,证明测量法误差小,数据精确,代替天平称重法是完全可行的。另外,对PDC测试部位几何形状对耐磨性测试结果的影响作了实验研究,结果表明对同一片PDC,测试部位几何角度越大,测出的磨耗比越高,测试部位为未经切割的圆弧时,磨耗比最高。本文研究为精确测定PDC耐磨性提供了实验依据。
     (6)利用Instorn1342材料试验机,采用单轴压缩实验,成功得到了PCD材料的弹性模量、泊松比值。与超声波速率测量法和自由振动频率测量法相比,该方法简单、可靠,测试费用低。利用Instron1342伺服材料试验机以及SHPB装置,成功实现了对PDC从静态→准动态→动态的加载过程,得到了不同加载速率下PDC的侧压强度以及加载速率与侧压强度之间的相关关系,实验结果表明PDC的侧压强度随着加载速率的提高而提高,出现三个最主要阶段的变化:即静态强度、准动态强度以及动态强度(应变率分别为10-6、10-2、和102量级),其中准动态侧压强度为静态侧压强度的7.3倍,而动态侧压强度为静态侧压强度的52.4倍。另外,通过二次破坏性冲击加载的方式,成功得到了PDC试样损伤前后的侧压强度值以及PDC损伤与加载速率、PCD层厚度之间的相关关系。实验结果说明,加载速率越高,PCD层越厚,由冲击载荷引起的PDC内部损伤就越严重。
     (7)将近十几年来出现的功能梯度材料的概念设计方法引入到PDC的设计中来,将非平面连接技术与梯度过渡技术相结合,综合考虑热残余应力、使用性能及合成工艺三方面因素,设计、研制了高品质的内置过渡层结构PDC,克服了平面结构PDC在残余应力方面所存在的问题,并通过数值计算和实验,证明了该产品的优异性能,成功申请了该产品的实用新型专利。
     (8)在研究了PDC钻头的碎岩机理以及影响PDC切削齿受力因素的基础上,建立了精确的PDC切削齿受力模型,为PDC钻具工作参数的合理设置提供了依据。同时,对PDC现场使用中的相关问题作了深入探讨,并用内置过渡层结构复合片制作的钻头进行了油田现场钻井实验,取得了相当好的使用效果。
     本文结合工程中的重大力学问题,综合运用物理、数学、力学理论及方法,结合数值计算工具和先进的实验手段,对油田钻探用PDC热残余应力的分布规律和控制理论及界面结构优化问题进行了深入研究。得到的研究成果对PDC热残余应力的致裂与止裂研究具有重要意义,为有效降低PDC热残余应力,优化PDC界面结构,提高PDC生产合格率及使用寿命,从而降低油田钻探成本,提供了理论与实验依据。
Polycrystalline diamond compacts(PDC)bits have gained wide commercial acceptance in oil and gas drilling due to their high rats of penetration, long life and mechanical simplicity. However, eighty percent of PDC failure, according to statistical data, is due to microchipping, gross fracturing and delamination between diamond-layer and the substrate.The thermal residual stress is the main cause leading to PDC failure.Supported by the Doctoral Fund'Study on rupturing and arresting of crack due to thermal residual stresses of polycrystalline diamond compacts for oil drilling'(No.20070533113),the author studied systematically on the residual stresses and interface optimization of polycrystalline diamond compacts for oil drilling.Theoretical and experimental method, as well as finite element method and in-site drilling test were used in the present investigation.The main research contents and results obtained in the dissertation are as follows:
     The recombination mechanism and sintering technology of PDC have been studied systematically, the relationship between composite mechanism, synthesis technology and interfacial strength is presented, which provides the theoretical basis for researching the residual stresses and interface composition of PDC.
     The distribution features of residual stresses in plane-interface PDC was studied by theoretical analysis and finite element method. The formulas for calculating the shear stress in complex material interface and the normal stress in polycrystalline diamond (PCD) layer were presented. The obtained results show that the difference of thermal expansion coefficients between PCD and cemented carbide is the main reason for the initiation of residual stresses in PDC.The relationship between the thickness of PCD layer, residual stresses and deformation of PDC is proposed.
     The property and composition of interface of PDC complex material have been systematically studied.The theory about interface reaction controlling is described. The residual stresses in PDC with different interface structures were calculated using finite element method. The relationship between residual stresses and interface structure is obtained, based on which a new PDC with an optimized interface is proposed.
     The residual stresses in flat-interface PDC have been measured in laboratories using improved stress-release method, X-Ray diffraction and Raman Spectroscopy method, respectively. The values of residual stresses and it's distribution on the surface of PCD table were obtained.The tested results were coincident well with that obtained by the numerical method. The shortage existing in traditional experimental method in which only finite points on the PCD table surface can be tested for one specimen has been overcome by the improved method used in the present test. These methods provide an experimental basis for PDC optimum design.
     The shortcoming of the present method in measuring PDC wear resistance is analyzed. Considering that the weighing of PDC is hard to guarantee the accurate of testing results, the author suggests to measure the length of PDC abrasion facet by microscope and then calculate the abrasion volume instead of weighing it. A formula for calculating the volume was derived. The veracity and reliability of the method have been proved by the testing results.The influence of geometrical shape of PDC on C-ratio testing was also studied. The obtained results show that the test values of PDC wear resistance increase with the increasing of geometric angles.
     Conventional mechanical properties of PCD, such as Young's modulus and Poisson's ratio,were tested using Instronl342 testing machine.The obtained results show that it's feasible to measure the Young's modulus and Poisson's ratio of PCD by simple compressive loading test.Comparing to ultrasonic transfer velocity method and free vibration frequency method, the method used in present investigation is quite simple, reliable and cost-effective.Istron1342 testing machine and Hopkinson pressure bar(SHPB)were also used to obtain the strain rate varying from 10-6/s to 102/s,and the edgewise compressive strength of PDC in different loading speeds were successfully obtained.The relationship between loading speed and edgewise compressive strength of PDC is presented. The compressive strength under this loading condition for intact and damaged PDC were also obtained. The relationship among damage, loading speed and thickness of PCD layer is presented. This research provides the theoretical and experimental basis for reusing the damaged PDC.
     A new technique which combines non-planar junction with gradient transition is proposed, with which an inner gradient layer is designed in PDC.It can decrease the greatly problem on the residual stresses in flat-interface PDC.It's excellent service performance was proved by the results of numerical analysis, experimental investigation and in-site drilling test. This new design has been successfully applied for a patent.
     Rock drilling feature and mechanism of PDC bit in service were studied.A numerical mode for calculating the PDC strength when cutting rock was then presented, which provides the theoretical basis for choosing the working parameters of PDC cutter. On this basis a new PDC cutter was designed and used in the Daqing oil well drilling. The obtained results show the excellent service performance of the new PDC.
     In short, the research work in this dissertation is based on the frontal of the subject, which is combined closely with engineering practice.The theoretical analysis and methods of mathematical,mechanical,numerical simulation and advanced experimental means,were used in studying on the residual stresses and interface optimization of PDC.It founded a theoretical and technical basis for studying thermal residual stress fracturing and preventing fracture.This research is helpful for reducing effectively the residual stresses, optimizing the composition of the interface and improving the eligible rate in manufacturing.It is of important theoretical significance and engineering application prospect.
引文
[1]P W Bridgman. Synthetic Diamond[P].Science of America,1955,193(1):42-26
    [2]L F Veshchagin. Method of making superhard particles. USA:USP 4164527,1967: 22-24
    [3]寇自力.超硬刀具的发展与应用[J].工具技术,2000,34(8):6-8
    [4]郑超,张志军,李东平.我国金刚石木工刀具发展评述[J],金刚石与磨料磨具工程,2003,(2):77-80
    [5]Bai Qingshun, Yao Yingxue, Chen Shuodong. Reawh and development of polycrystalline diamond woodworking tools[J].International Journal of Refractory Metals & Hard Materials,2002,20(2):395-400
    [6]Clark E. Guide to mining metal matrix composite with sintered PCD[J].Ind Diamond Rev,1994,45(3):135-138
    [7]王光祖.多晶金刚石(PDC)在工业中的应用[J].超硬材料与工程,1995,(1):1-6
    [8]陈启武.人造金刚石超高设备大型化的几个问题[J].矿冶工程,1996,16(3):60-63
    [9]赵大钢.PDC磨耗比检测中称重问题的探讨[J].金刚石与磨料磨具工程,2003,134(2):1-4
    [10]袁公仪.人造金刚石合成与金刚石工具制造.长沙:中南工业大学出版社,1992:89-90
    [11]Kenneth, A Darrow. Method for producation of Diamond compact Abrasive. USA:USP 3306,1996
    [12]William I, Wilson. Diamond and Cubic Borton Nitride Abrasive compacts and conglomerates.USA:USP 4219,1996
    [13]邓福铭.PDC超硬复合材料高压合成规律及其机理的研究(博士学位论文).长沙:中南工业大学,1998:10-18
    [14]Dyer Henry, B Phaal,Cornelius. Thermally stable diamond abrasive compact body. USA:USP4940,1988
    [15]Dennis,Mahlon D.Cutting element having composite formed of cemented carbide substrate and diamond layer and method of making same. USA: USP4784,1988
    [16]JIAO Shujing, GAO Wanfu. Interface conformations of polycrystalline diamond compact and their performances [J].Diamond & Abrasives Engineering,2004, 140(2):61-66
    [17]P N Tomlison,R J Wediake. Gegenwartiger entwicklungsstand bei erbundstoffen ausdiamant and kubischem bomitrid. Industric Diamonten Rundschau,1987, 4:234-241
    [18]焦魁一.国外金刚石聚结体的研制技术.磨料磨具磨削,1987,4:42-45
    [19]于鸿昌,李尚诸.烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响.高压物理学报,1989,3:221-224
    [20]Jean Michel Cerceau,France.Method of manufacturing composite thermal abrasive products [P].USA:United States Patent 4,1989:824442
    [21]Mahlon D denis,Kingwood,Tex. Cutting element having composite formed of cemented carbide substrate and diamond layer and method of making same[P]. USA:US Patent 4784 023,1988
    [22]Gary M Flood,Canal Winchester,David M Johnson. Abrasive toll insert[P]. USA:US Patent 5 484 330,1996
    [23]David M Johnson,Westerville,Ohio,etc. Polycrystalline diamond compact with reduced failure during brazing[P].USA:US Patent 6042 463,2000
    [24]Robert H Frushour, Ann Abort, Christopher J Torber. Composite polycrystalline compact with discrete parthal size areas[P].USA:US Patent 6 187 068,2001
    [25]王适,张弘豉.感应加热聚晶金刚石热损伤机理的研究[J].材料科学与工艺,2005,13(5):492-495
    [26]张祖培,李国民,孙友宏等.DFZY型金刚石单晶及复合片冲击破碎能测定仪[J].金刚石与磨料磨具下程,1999,109(1):14-15
    [27]育煦,胡志忠.材料研究方法[M].北京:机械工业出版社,2004:143
    [28]鄢国强.材料质量检测与分析技术[M].北京:中国计量出版社,2005:58
    [29]赵大钢.PDC的超声检测[J].金刚石与磨料磨具工程,2004,142(4):68-71
    [30]李颖,郝兆印.复合片耐磨性能检测方法的研究[J].金刚石与磨料磨具工程,1997,99(3)5-7
    [31]李颖.金刚石复合片掺杂烧结的微观结构分析[J].金刚石与磨料磨具工程,1996,(3):8-10
    [32]M Less D, Raig. Fracture toughness and thermal resistance of polycrystalline diamond compacts[J].Materials Science and Engineering,1996,209(2):270-276
    [33]Marid, Kraw A D, Richardson J W. Residual stress in WC-Co measured by neutron diffraction[J].Materials Science and Engineering,1996,209(2):197-205
    [34]Coats D L, Kraw A D. Effect of particles size on thermal residual stress in WC-Co composites[J].Materials Science and Engineering A,2003,(9):338-342
    [35]徐国平,尹志民,陈启武.聚晶金刚石复合片(PDC)残余应力的检测方法[J].金刚石与磨料磨具工程,2007,158(2):30-33
    [36]J C Walmsley, A R Lang. Characteristics of diamond regrowth in a synthetic diamond compact[J].Journal of Materials Science,1988,23(5):1829-1834
    [37]J W Harris, J J Gurney. The Properties of Diamond[J].J E Field,1979,3:555
    [38]邓福铭,陈启武,黄培云.D-D结合型金刚石聚晶晶界结构及其生长模式[J].矿冶工程,1999,19(1):63-66
    [39]王明智,王艳辉,藏建兵.Ti中介的聚晶金刚石复合片界面结构与性能的研究[J].人工晶体学报,1996,25(3):236-239
    [40]Hanu Pratap Singh. Study of polycrystalline sintered compacts of diamond[J]. Journal of Materials Science,1987,22(7):2407-2410
    [41]A Molinari, F Marchetti, A Tiziani.Study of the Diamond-Matrix interface in Hot-pressed Cobalt-based Tools[J].Materials Science and Engineering,1990, A130(2):257-262
    [42]S Naka, A Tsuzuki, S Hirano. Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems[J].J Mater Sci,1984,(19):259-262
    [43]Y S Liao, S Y Luo.Effects of matrix characteristics on diamond composites[J].J Mater Sci,1993,28(5):1245-1251
    [44]Evans, S T Davey, S H Roberson. Photoluminescence studies of sintered diamond compacts[J].J Mater Sci,1984,19(7):2405-2414
    [45]S M Hong. Behavior of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate[J].J Mater Sci,1988,23(11):3821-3826
    [46]M Akaishi, T Ohsawa, S Yamaoka. Synthesis of fine-grained Polycrystalline Diamond Compact and its Microstructure. J Am Ceram Soc,1991,74(1):5-10
    [47]李国安,宋全胜.聚晶金刚石复合片(PDC)钻头的失效分析[J].华中科技大学学报(自然科学版),2002,30(1):62-65
    [48]陈启武主编.人造金刚石合成实用技术(内部培训教材)[M].湖南:湖南省超硬材料协会,1994:254
    [49]陈启武.Y-500型金刚石合成设备及合成工艺鉴定报告,2000,6
    [50]李植华,郭永存,卢飞雄.金刚石制造[M].北京:机械工业出版社,1983:101
    [51]K A Darrow. Method for the production of diamond compact abrasives[P]. USA:USP 3306702,1967:
    [52]W T Wilison. Diamond and cubic boron nitride abrasive compacts and conglomerates[J].USA:USP 4219336,1980:
    [53]H K Katzman, W F Libby. Sintered diamond compacts with a cobalt binder. Science,1971,172:1132-1134
    [54]奈基奇,科列斯尼钦科.熔融金属与金刚石(石墨)表面的相互作用.人工晶体,1978,11(1):71-79
    [55]周储伟,杨卫,方岱宁.金属基复合材料的强度与损伤分析[J].固体力学学报,2000,21(2):161-165
    [56]孙毓超,刘一波,王秦生.金刚石工具与金属学基础[M].北京:中国建筑工业出版社,1999:14-23
    [57]于鸿昌,主光祖.石墨-金刚石平衡曲线[J].磨料磨具与磨削,1984,(1):30-40
    [58]焦魁一.熔融金属与金刚石和石墨表面的相互作用.人工晶体,1979,(1):14-36
    [59]V F BRITUN, G S OLEYNIK. Deformation Processes during high-pressure sintering of the diamond powders produced by catalytic synthesis[J].Joural of Materials Science,1992,27:4472-4476
    [60]沈主同,孙国显,池用谦等.高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究.高压物理学报,1988,(2):104-111.
    [61]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M].北京:冶金工业出版社,1999:139-140
    [62]杨丽,陈康民.PDC钻头的应用现状与发展前景[J].石油机械,2007,35(12):70-72
    [63]王四清.金刚石高压合成中的控制形核研究(博士学位论文).长沙:中南工业大学,1997:65
    [64]Muzaffer Zeren, Sadi Karagoz. Sintering of polycrystalline diamond cutting tools. Materials and Design,2007,28(3):1055-1058
    [65]Clark I E, Bex P A. The use of PDC for petroleum and mining drilling[J]. Industrial Diamond review,1999,59(1):43-49
    [66]周建强.陶瓷-硬质合金复合刀片的研制及其损坏机理研究(博士学位论文).济南:山东工业大学,1998:
    [67]Kuo An-Yu. Thermal stresses at the edge of a bimetallic thermostat[J].Journal of Applied Mechanics,1989,56(3):585-589
    [68]Goland M, Reissner. The stresses in cemented joints[J].Journal of Applied Mechanics,1994,11(2):11-27
    [69]A Lammer. Mechanical properties of polycrystalline diamond[J].Material Science and Technology,1988,4(11):949-955
    [70]邓福铭,陈启武,李文铸.Φ25mmPDC复合材料的组成、结构和性能[J].无机材料学报,2001,16(4):757-762
    [71]王明智,王艳辉,减建兵.Ti中介结合PDC界面结构与性能研究[J].人工晶体学报,1996,25(3):236-239
    [72]贾志宏,王贵成,刘菊东.梯度聚晶金刚石复合材料的开发[J].工具技术,2004,38(10):31-32
    [73]J w Paggett, E F Drake,A.D.Krawitz. Residual stress and stress gradients in polycrystalline diamond[J].Refactory Metals & Hard Materials,2002,20(3): 187-194
    [74]A DKrawitz, R Andrew,Winholtz. Residual stresses in polycrystalline diamond compacts[J].Refactory Metals & Hard Materials,1999,17(1):117-122
    [75]Ken E Bertagnolli,Craig H Cooley. Polycrystalline diamond compact (PDC) design methodology utilizing strain energy capacity. Houston:23rd Energy Source Conference and Exihibition,2001:1-8
    [76]Tze-Pin Lin,Michael Hood,George A Cooper. Residual stresses in polycrystalline diamond compacts[J].JAM Ceram soc,1994,77(6):1562-1568
    [77]张沪,张福勤.复合技术在超硬材料上的应用[J].矿冶工程,1999,19(2):7-10
    [78]马保松.PDC钻头的新发展及应用[J].世界地质,1996,15(4):94
    [79]D E Scott. The History and Impact of Synthetic Diamond Cutters and Diamond Enhanced Inserts on the Oil and Gas Industry. Barcelona:1st International Industrial Diamond Conference,2005
    [80]徐国平,尹志民,陈启武.聚晶金刚石复合片(PDC)残余应力的检测方法[J].金刚石与磨料磨具工程,2007,158(2):30-33
    [81]K E Bertagnolli, R Vale.Understanding and Controlling Residual Stresses in Thick Polycrystalline Diamond Cutters for Enhanced Durability. Proceedings, Canada:An International Technical Conference on Diamond, Cubic Boron Nitride and their Applications,2000
    [82]Yu-Zan Hsieh, Shun-Tian Lin. Diamond tool bits with iron alloys as the binding metrics[J].Materials Chemistry and Physics,2001,(72):121-125
    [83]K E Bertagnolli, M A Vail, et al.High-Energy Synchrotron X-Ray Investigation of Residual Stress/Strain and Metal Distribution in Polycrystalline Diamond Compacts. Proceedings, Barcelona:1st International Industrial Diamond Conference,2005
    [84]Bertagnolli K E,Vale R. Understanding and Controlling residual stresses in thick polycrystalline diamond cutters for enhanced durability[C].Canada:Proceedings An International Technical Conference on Diamond Cubic Boron Nitride and their Aplications,2000
    [85]ZHANG Gaofeng, ZHANG Bi, DENG Zhaohui.Material removal mechanism of the grinding and polishing of PDC cutting tools[J].Journal of Hunan University Natural Sciences,2008,35(9):33-38
    [86]CAO Pinlu, LIU Baochang, YIN Kun. Optimization design and residual thermal stress analysis of PDC functionally graded materials[J].Journal of Zhejiang University (Science),2006,7(8):1318-1323
    [87]周玉,武高辉.材料分析测试技术一材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998:251-258
    [88]Lin T P, Hood M, and Cooper G A. Residual stresses in polycrystalline diamond compacts [J].J AM Ceram soc,1994,77(6):1562-1568
    [89]曹品鲁,刘宝昌,殷琨.梯度结构金刚石复合片残余热应力的有限元分析[J].探矿工程,2006,(3):50-53
    [90]韩强,黄小清,宁建国.高等板壳理论[M].北京:科学出版社,2002:15-42
    [91]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996:23-67
    [92]王国荣,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,2000:7-61
    [93]崔成翔,吴人洁,王洁伟.金属基复合材料界面特征与力学性能[J].宇航材料工艺,1997,(1):1-3
    [94]林增栋.金刚石表面金属化机制的研究[J].粉末冶金,1990,(12):14
    [95]叶恒强.材料界面结构与特性[M].北京:科学出版社,1999:11-12
    [96]李晨辉,吕海波,刘雄飞.镀钦金刚石与结合剂间的结合状态[J].稀有金属材料与工程,1999,28(6):401-405
    [97]匡同春,刘正义,代明江等.金刚石膜与硬质合金刀片间的界面Co相的研究[J].金属学报,1999,35(6):643-647
    [98]宋月清,康志君,高云.金刚石与金属(或合金)的结合界面分析[J].人工晶体学报,1999,28(4):404-408
    [99]沈主同,孙国显,池用谦等.高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究[J].高压物理学报,1988,(2):104-111
    [100]焦淑静,高万夫.金刚石复合片的界面形态及性能特点[J].金刚石与磨料磨具工程,2004,140(2):61-66
    [101]LIU Sha, YI Danqing, YU Zhiming. Chemical pretreatments at surface of WC-6% Co for diamond coatings[J].Transactions of Nonferrous Metals Society of China,2002,12(3):396-399
    [102]Ralph M. Horton,Murray,Royce A. Multilayer coated abrasive element for
    bonding to a backing[P].USA:United States Patent 5 049 164,1991:
    [103]贾志宏,王贵成,刘菊东.梯度聚晶金刚石复合材料的开发[J].工具技术,2004,38(10):31-32
    [104]Gary M Flood, Canal Winchester,David M Johnson. Abrasive toll insert[P]. USA:United States Patent 5494477,1996:
    [105]John W Hdrdy, Bill J Paper, Kevin G Graham. Composite polycrystalline cutting element with improved fracture and delamination resisting[P]. USA:United States Patent 5355969,1994:
    [106]Mahlon Denton Dennis, Rankin Rd, Houston. Drill bit insert with sinusoidal interface[P].USA:United States Patent 5709279,1998:
    [107]Robert H Frushour, Devonshire, Ann Arbor. Composite polycrystalline diamond compact with improved impact and thermal stability[P].USA:United States Patent 5645617,1997:
    [108]张幸红,韩杰才,王宝林.Tic-Ni梯度功能材料的燃烧合成与残余应力分析[J].宇航学报,2001,(1):89-94
    [109]Tze-Pin Lin, Michael Hood, George A Cooper. Residual stresses in polycrystalline diamond compacts. JAM Ceram soc,1994,77(6):1562-1568
    [110]韩强,黄小清,宁建国.高等板壳理论[M].北京:科学出版社,2002
    [111]陈启武,李飞跃,陈石林.20世纪的超硬材料.长沙:湖南省超硬材料论文集,2003:1-8
    [112]ZHU Yongwei, XIE Guangzhuo, ZHANF Xinming. Study on interface between titanium-coated diamond and metal matrices. Transactions of Nonferrous Metals Society of China,2001,11(5):717-720
    [113]缪青维.钻井条件下复合片的自锐问题[J].磨料磨具与磨削,1992,(67):24-28
    [114]Kraw A D, Andrew R. Residual stresses in polycrystalline diamond compacts. International Journal of Refractory & Hard Materials,1999,(17):117-122
    [115]杨迎新.PDC钻头切削力学研究(博士论文).四川:西南石油学院,2003:6
    [116]李树盛,马德坤,侯季康.PDC切削齿工作角度的精确计算与分析[J].西南石油学院学报,1996,(11):67-74
    [117]Gustav Marttncek. The determination of Poisson's ratio and the dynamic modulus of elasticity from the frequencies of natural vibration in thick circular plates[J].J Sound Vi6,1965,(2):116-127
    [118]Teasdal P, Riley N, Mackinnon P.New PDC technology delivers significant savings in Oman[J].Society of Petroleum Engineers,2005,57(12):66-67
    [119]梁红原,徐国平,何利民等.落锤法测定PDC抗冲击韧性的影响因素[J].超硬材料工程,2006,18(3):23-25
    [120]王适,张弘叟.PCD高频感应钎焊模糊控制及同步数据采集系统[J].中国机械工程,2003,14(1):53-55
    [121]王适,张弘韬.聚晶金刚石热损伤层的研究[J].金刚石与磨料磨具工程,2004,139(1):58-61
    [122]梁英教.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:45-89
    [123]郝润蓉,方锡义.无机化学丛书(第三卷)[M].北京:科学出版社,1998:43-56
    [124]邓福铭.PDC超硬复合刀具材料及其应用[M].北京:化学工业出版社,2003:
    [125]Sea-Fue Wang,Yung-Fu Hsu. Determination of acoustic wave velocities and elastic properties for diamond and other hard materials[J].Materials Chemistry and Physics,2004 (85):432-437
    [126]M D Whitfield,B Audic, C M Flannery. Polycrystalline diamond films for acoustic wave devices[J].Diamond Related Mater,1998,(7):533-539
    [127]H Nakahata, K Higaki, S Fujii.SAW devices on diamond in Proceedings of the IEEE[J].Ultrasonics Symposium,1995,(6):361-370
    [128]E Dogheche, XLansiaux, D Remiens. Improvement of LiNbO3 surface roughness by using a multi-step process relationship between optical and AFM analysis[J].Integr Ferroelectrics,2002,(49):211-219
    [129]K Higaki, H Nakahata, H Kitabayashi, etc. High frequency SAW filter on diamond in Proceedings of the IEEE[J].MTT-S Digest,1997,(pp):829-832
    [130]Mark P D Evelyn, Takashi Taniguchi. Elastic properties of translucent polycrystalline cubic boron nitride as characterized by the dynamic resonance method[J].Diamond and Related Materials,1999,(8):1522-1526
    [131]赵尔信,贾美玲,蔡家品等.国内外钻探用金刚石复合片性能的研究[J].探矿工程.,2003,(增刊):27-31
    [132]李颖,韩秀丽,王孝琪等.金刚石复合片机械性能的研究[J].金刚石与磨料磨具下程,2001,125(5):27-31
    [133]Zeren M, Karaqoz S.Sintering of polycrystalline diamond cutting tools[J]. Materials and Design,2007,28(3):1055-1058
    [134]Gittel H J. Cutting tool materials for high performance machining [J].Industrial diamond review,2001,61(588):17-21
    [135]马宝松,张祖培,郑治川等.PDC抗冲击性能测试及测定仪的研制[J].金刚石与磨料磨具工程,2000,120(6):10-13
    [136]Depattment of Physics,Illinois,State University,Normal,Ⅱ,61790-4560, USA.
    Possion's ratios in diamond/zincblende crystals.Phys Chem Solids,1998,59(1): 22-26
    [137]Anstis G R. Chantikul P. J Am Ceram Soc,1981,(64):533
    [138]Lin T P, Hood M, Cooper A G Wear and failure mechanism of polycrystalline diamond compact bits[J].Wear,1992,(156):133-148
    [139]Ohkoshi M, Akashi T, Yamada K. Microstructures of shock-consolidated diamond/silicon composites[J].Materials Processing Technology,1999, (85):131-134
    [140]Norihiko Narotaki.Machining of difficult-to-cut material[J].Int J Japan Soc. Prec Eng,1993,27(4):35-37
    [141]邓福铭.PDC超硬复合刀具材料及其应用[M].北京:化学工业出版,2003:
    [142]赵秋艳.无损检测技术的发展及应用[J].航天返回与遥感,1997,18(4):40-46
    [143]赵人刚.PDC的超声检测[J].金刚石与磨料磨具工程,2004,142(4):68-71
    [144]J W Paggett, E F Drake, A D Krawrite. Residual stress and stress gradients in polycrystalline diamond compacts[J].Refractory Metals & Hard Materials, 2002,20:187-194
    [145]Bobrovnitchii GS.Monitoring diamond synthesis by changes in the heating electric current[J].J Superhard Mater,2001,133(5):9-13
    [146]徐根,陈枫,徐国平.不同界面形态金刚石复合片热残余应力分析[J].超硬材料工程,2007,19(4):10-15
    [147]徐国平,梁红原,杨世珍.对国内金刚石复合片(PDC)耐磨性测试方法的探讨[J].金刚石与磨料磨具工程,2001,124(4):11-12
    [148]徐国平,陈启武,尹志民等.PDC测试部位的几何形状对耐磨性测试结果的影响[J].金刚石与磨料磨具工程,2007,19(1):23-25
    [149]魏析,王成勇.聚晶金刚石复合片的磨损规律[J].磨料磨具与磨削,1995,(3):10-13
    [150]刘文建.霍普金森杆在复合材料动态测试中的应用[J].纤维复合材料,2005,44(2):44-46
    [151]徐国平,梁红原,何利民等.高品质油田钻探用金刚石复合片(PDC)的研制[J].矿冶工程,2005,25(4):66-72
    [152]常领,陈华忠.PDC钻头在胜利油田深井钻井中的应用[J].石油钻头技术,2007,35(4):92-93
    [153]S J Jiao, W F Gao. Interface conformations of polycrystalline diamond compact and their performances[J].Diamond & Abrasives Engineering,2004,140(2): 61-66
    [154]Zhou SZ, Duan ML, Estefen S.Stress analisys and optimum design of PDC die for offshore drilling engineering[J].China Ocean Engineering,2005,19(4): 681-691
    [155]Jaworska L, Gibas T, Krolicka. Reactions and stresses in polycrystalline diamond-metal and diamond-carbide compacts[J].High Pressure Research, 2000,18(1-6):271-277
    [156]Bhanu Pratap Singh. Study of polycrystalline sintered compacts of diamond[J]. Journal of Materials Science,1987,(22):2407-2410
    [157]S J Jiao, W F Gao. Interface conformations of polycrystalline diamond compact and their performances. Diamond & Abrasives Engineering,2004,140(2):61-66
    [158]Minoru Akaishi, Shinobu Yamaoka, Fumihiro.Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties[J]. Diamond and Related Materials,1996,(5):2-7
    [159]徐根,陈枫,肖建清.油田钻探用金刚石复合片热残余应力分析[J].石油钻探技术,2008,36(4):49-52
    [160]Marcia Giardinieri de, Andrei Potemkin. The high temperature-high pressure sintering of diamond-Cu-Si-B composite[J].Diamond and Related Materials, 2001,(10):1607-1611
    [161]P A Bex,G R Shafto.Influence of temperature and heating time on PCD performance[J].Industrial Diamond Review,1984,44(502):128-132
    [162]郑子樵,梁叔全.梯度功能材料的研究与展望[J].功能材料,1992,10(1):1-5
    [163]王保林,韩杰才,张仁红.非均匀材料力学[M].北京:科学出版社,2003:3-25
    [164]Suresh S,MortensenA.功能梯度材料基础[M].北京:国防工业出版社,2000:1-7
    [165]孟祥军.梯度功能材料的设计[J].材料开发与应用,1994,9(3):28-32
    [166]滕立东,王福明,李文超.梯度功能材料数值模拟进展[J].稀有金属,1999,23(4):298-303
    [167]徐自立,魏伯康.浅析梯度功能材料几种物性值的推定[J].武汉科技学院学报,2000,13(1):1-5
    [168]王建平,翟鹏程,张广辉.梯度功能材料热应力缓和优化设计[J].武汉工业大学学报,1998,20(3):40-43
    [169]张开银,张建刚,吕运冰.功能梯度材料复合板的热应力计算分析[J].湛江海洋大学学报,1997,17(1):34-38
    [170]沈强,王文涛,张联盟等.Ni/Ni3Al-TiC系梯度功能材料的热应力缓和特性设计[J].硅酸盐通报,1997,(2):34-36
    [171]K S Ravichandran. Thermal residual stresses in a functionally graded material system[J].Materials Science and Engineering,1995,201(1-2):269-276
    [172]Y M Shabana, N Noda. Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration[J]. Composites Part B,2001,32B(2):111-121
    [173]赵军.新型梯度功能刀具材料的设计制造及其切削性能研究(博士学位论文).济南:山东土业大学,1998:
    [174]林峰,吕智,劳善东.提高三角形金刚石多晶烧结体耐磨性的研究[J].粉末冶金技术,1995,13(3):206-210
    [176]方建锋,张晋远,金成海等.人造金刚石中包裹体含量的测定.金刚石与磨料磨具工程,2001,121(1):13-16
    [177]李达明,刘光照,周军学.水促进的叶腊石在超高压高温下的相转变以及对技术应用的影响[J].科学通报,978,(8):481-495
    [178]Akaishi M,Kanda H, Sato Y. Sintering behavior of the diamond-cobalt system at high temperature and pressure[J].J Mater Sci,1982,(17):193-198
    [179]Gu J, Tung SC, Barber G.Cutting tool performance of laser coated diamond coating and diamond facing inserts[J].Tribology Transactions,2002,45(1): 61-66
    [180]Toshio Nomura, Hideki Moriguchi,Keiichi Tsuda. Material design method for the functionally graded cemented carbide tool[J].Refractory Metals & Hard Materials,1999,17(6):397-404
    [181]王适.金刚石热稳定性及其刀具受热损伤的研究[D].大连:大连理工大学图书馆,2003:23-68
    [182]邓福铭,陈启武.PDC超硬复合刀具材料及其应用[M].北京:化学工业出版社,2001
    [183]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998:12
    [184]陶景光,廖兆曙,盛先平等.金刚石复合界面扩散系数的电子探针研究[J].分析测试学报,1997,16(3):6-9
    [185]McClurq, R B.The hindered rotor density-of-states interpolation function[J]. Journal of Chemical Physics,1999,111(15):7163-7164
    [186]M Yoshikawa, Y Mori,H obata. Raman scattering from nanometer-sized diamond synthetic diamond[J].Appl Phys Lett,1995,67(5):694-696
    [187]P W Bridgeman. Proc Amer Acal.Art and Science,1972,62(7):187-206
    [188]Greer A L, Spaepen F S.Synthetic Modulated Structures edited by L L Chang and B C Giessen. New York:Academic Press,1985:419
    [189]秦喜杰.金刚石工具胎体中碳化物形成元素的行为[J].粉末冶金技术,1992,10(2):87-91
    [190]司效东.金刚石复合片烧结体磨耗比的提高[J].大庆石油学院学报,2004,28(1):86-88
    [191]林铭西.金属触媒的催化效应及其在合成金刚石中的应用[J].人工晶体,1984,(3):142-145
    [192]陈石林,陈启武等.聚晶金刚石复合体界面组织及界面反应的研究[J].矿冶工程,2003,23(6):82-85
    [193]Hanu Pratap Singh. Study of polycrystalline sintered compacts of diamond[J].J Mater Sci,1987,(22):2407-2410
    [194]A Molinari, F Marchetti, A Tiziani.Study of the Diamond-Matrix interface in Hot-pressed Cobalt-based Tools[J].Materials Science and Engineering,1990, (130):257-262
    [195]S Naka, A Tsuzuki, S Hirano.Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems[J].J Mater Sci,1984,(19):259-262
    [196]Y S Liao, S Y Luo.Effects of matrix characteristics on diamond composites[J]. J Mater Sci,1993,(28):1245-1251
    [197]Evans, S T Davey, S H Roberson. Photoluminescence studies of sintered diamond compacts[J].J Mater Sci,1984,(19):2405-2414
    [198]S M Hong. Behavior of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate[J].J Mater. Sci,1988,(23):3821-3826
    [199]M Akaishi, T Ohsawa, S Yamaoka. Synthesis of fine-grained Polycrystalline Diamond Compact and its Microstructure[J].J Am Ceram Soc,1991,74(1):5-10
    [200]Arthur A Chaves,Sandy,UT(US).Reduced residual tensile stress supperabrasive for earth boring and drilling bit so equipped[P].USA:US Patent 196341,2001:
    [201]CAO Pinlu, LIU Baochang, YIN Kun. Optimization design and residual thermal stress analysis of PDC functionally graded materials[J].Journal of Zhejiang University (Science),2006,7(8):1318-1323
    [202]Li XB, Summers DA, Rupert G.Experimental investigation on the breakage of hard rock by the PDC cutters with combined action modes[J].Tunnelling and Underground Space Technology,2001,16(2):107-114
    [203]A Ersoy, M D Waller. Wear characteristics of PDC pin and hybrid core bits in rock drilling[J].Wear,1995,(188):150-165
    [204]Hideki Moriguchi,Katsunori Tsuduki, Akihiko Ikegaya. Sintering behavior and properties of diamond/cemented carbides[J].Refractory Metals & Hard Materials,2007,(25):237-243
    [205]李树盛,王镇泉,马德坤.PDC钻头切削齿的运动分析和破损机理[J].石油机械,1997,25(2):17-19
    [206]李树盛,马德坤,侯季康.PDC钻头几何学研究[J].西南石油学院学报,1996,(5):82-86
    [207]孙风莲等.金刚石与Co-Si合金的国固相连接[J].焊接学报,1997,18(3):177-181
    [208]王德新等.金刚石-碳化钨烧结体的研制[J].人工晶体学报,1996,28(3/4):346-349
    [209]Trent N Butcher Sandy, Ralph M Murray. Polycrystalline diamond cutters having modified residual stresses[P].USA:United States Patent 6220375,2001:
    [210]新野正之,平井敏雄,渡边龙三.倾斜机能材料——宇宙机用超耐热材料目指[J].日本复合材料学会志,1987,13(6):257-264
    [211]Koizumi M, Niino M. Overview of FGM research in Japan[J].Functionally Gradient Materials,1995,(8):19-21
    [212]许杨健,涂代惠.梯度功能材料的体积分数和物性系数的研究状况[J].河北建筑科技学院学报,2000,17(3):27-31
    [213]方亭亭.用数控磨耗比测定仪测定人造金刚石复合片、烧结体磨耗比[J].金刚石与磨料磨具工程,1996,(3):24-33
    [214]梁英教.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:
    [215]Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J].Journal of the American Chemical Society,1977, 99(15):5215-5217
    [216]Tian Z Q, Ren B, Wu D Y. Surface-enhanced raman scattering:form noble to transition metals and from rough surfaces to ordered nanostructures[J].Journal of Physical Chemistry B,2002,106(37):9463-9483
    [217]Shane A Catledge, Yogesh K Vohra, Ram Ladi.Micro-Raman stress investigation and X-ray diffraction analysis of polycrystalline diamond (PCD) tools[J].Diamond and Related Materials,1996,(5):1159-1165
    [218]徐根.动静态岩石抗拉强度的理论与实验研究(硕士学位论文).长沙:中南大学资源与安全工程学院,2005:63-65
    [219]肖建清,陈枫,徐根.加载速率与加载波形对混凝土抗拉强度的影响[J].土工基础,2005,19(4):70-76
    [220]刘宝昌.新型梯度结构金刚石-硬质合金复合球齿的研究(博士学位论文).吉林长春:吉林大学建设工程学院,2005:46-52
    [221]许爱.PDC钻头切削齿破岩载荷规律的分析[J].探矿工程,2006,33(7):59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700