碳纳米管及其复合材料的力学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料增强结构具有高强度、高刚度和各种优越的物理特性,越来越多地应用于航空、机械、医疗、化工等许多领域。碳纳米管具有异常优异的力学、电磁学和化学性能,在比强度和比刚度方面都远优于目前使用的其他增强纤维材料,将其作为复合材料增强体,预计可表现出良好的强度、刚度及其它物理特性,碳纳米管增强复合材料能够使得新型复合材料的物理力学性能产生一次飞跃。因此研究碳纳米管及其增强复合材料结构的物理和力学特性对于新型复合材料在工程中的应用有着重要的理论意义和实际应用价值。
     本论文研究的主要内容和成果为:
     (1)基于分子结构力学理论和Lennard-Jones势函数建立模拟碳纳米管力学及物理特性的空间框架模型,求解了碳纳米管的材料性质、环境温度、应变率和结构形式对其力学特性的影响,给出了相应的解析表达式,讨论了碳纳米管的管径和温度环境等对其力学性质的影响。基于分子结构力学模型的有限元模拟结果表明,双壁碳纳米管的杨氏模量随应变率的增大而升高,并随环境温度的增加急剧减小,应变率和温度环境对杨氏模量的影响依赖于多壁碳纳米管的管壁数目;不同手性单壁碳纳米管的泊松比随着环境温度的增加而增加。研究结果给出了环境条件对碳纳米管物理特性的一般影响规律,为碳纳米管的工程应用提供了理论依据。
     (2)基于连续介质力学方法的Euler-Bernoulli梁和相应的层合梁模型模拟碳纳米管及其增强复合材料的振动和波传播的特性,推导了考虑任意两层间严格van derWaals力作用的碳纳米管中波传播的方程,研究了严格van der Waals力对碳纳米管中波传播特性的影响。多层梁与单一梁模型的对比表明考虑严格van der Waals力得到的碳纳米管及其复合材料的共振频率,尤其是管层间频率(inter-tube frequency),小于未考虑严格van der Waals力时的共振频率,两种梁模型在初始轴向载荷作用下的共振频率比较接近,其低阶振动模态数随着长径比增加而减少,这给碳纳米管及其复合材料在纳米驱动装置和超高频振荡器等方面的应用提供了理论参考依据。
     (3)考虑纳米尺度结构的表面效应,基于严格van der Waals力的多层梁和等效的单层梁模型,推导了表面弹性模量和表面张力共同作用下碳纳米管及其复合材料中波的传播方程并给出了相应的解析解,揭示了表面效应对碳纳米管的固有频率的影响机理。研究表明碳纳米管的表面效应使碳纳米管及其复合材料振动变得更加复杂。在一定条件下,表面效应使低阶固有频率降低,低阶振动模态相应减少,多层梁和单一梁模型的数值差异性进一步扩大,因此表面效应对碳纳米管及其复合材料动态性能的影响比较明显。研究表面效应对碳纳米管的动态力学特性的影响对其作为碳纳米管高敏传感器和纳米微谐振器等的优化设计和实际应用有着重要的工程应用价值。
     本文在上述研究方向上给出了一些发表的研究成果,揭示了多场作用下的碳纳米管及其复合材料结构的力学特性,对碳纳米管及其复合材料结构的静动态力学性能研究和该类结构性能的优化设计提供了有意义的理论参考和实际工程应用价值。
Composites reinforced structures are of superior performance of high strength, highstiffness, and many excellent physical characteristics, and more and more applied in manyfields of aviation, mechanics, medicine, chemistry and others. Carbon nanotubes havemany extremely excellent mechanical, electromagnetic and chemical properties, and are farsuperior to the currently used reinforced fiber materials on strength or toughness. It isexpected that the carbon nanotubes reinforced composites can bring a leap-forwarddevelopment of strength, stiffness and other physical properties of composite structures.The study of physical and mechanical characteristics of carbon nanotubes and theircomposite reinforcement have important and unique theoretical significance andengineering applications for new composite materials design.
     The main works and results of this thesis include:
     (1) Based on the molecular structural mechanics theory and the Lennard-Jones theory,a space frame model is established to simulate mechanical and physical properties of thecarbon nanotubes and study the effects of the material properties of carbon nanotubes,environment temperature, strain rates and structure forms and etc on its mechanicalproperties, and the corresponding analytical expressions are obtained. The finite elementsimulation results of the molecular structure mechanical model show that the Young'smodulus of double-walled carbon nanotubes increases with strain rates, and decreasesrapidly with increasing environment temperature, the effects of strain rates and temperatureenvironment on Young's modulus depends on the layer numbers of multi-walled carbon nanotubes; the Poisson's ratio of single-walled carbon nanotube of different chiral patternincreases as the environment temperature increases. The results show the general principlesof environmental conditions on the physical properties of carbon nanotubes and providetheoretical basis for the applications.
     (2) An Euler-Bernoulli beam and the corresponding elastic laminated beams model isused to investigate wave propagation in carbon nanotubes and their reinforced compositestructures based on continuum mechanics. Wave propagation equations in carbonnanotubes and their reinforced composite structures are derived considering van der Waalsinteraction between any two tubes of carbon nanotubes and used in calculation andsimulation to investigate the effect of van der Waals interaction on characteristics of wavepropagation in carbon nanotubes and their reinforced composite structures. Thecomparison between laminated beam model and single beam model shows that resonancefrequencies obtained considering van der Waals interaction between any two tubes ofcarbon nanotubes are lower than those which consider van der Waals interaction onlybetween two adjacent tubes, especially the inter-tube frequencies. Furthermore, theresonant frequencies obtained by these two beam models under different initial stresses arecloser than the latter, and the number of low-order vibration mode decreases when theaspect ratio increases. The studies have theoretical significances on the applications ofcarbon nanotubes and their composite such as nano-drive devices and ultra-high-frequencyoscillator.
     (3) Considering the surface effects on nano-scale structure, wave propagationequations in carbon nanotubes and their reinforced composite structures under the effectsof surface elasticity modulus and surface tension are derived and the correspondinganalytical solutions are given based on laminated beam model and the equivalent singlebeam model under van der Waals interaction between any two tubes. The results reveal thecommon influence mechanism of surface effects on the natural frequency of the carbonnanotubes and their reinforced composite structures. The studies show that the vibration of carbon nanotubes and their composites becomes more complex considering surface effects.Under certain conditions surface effects may decrease natural frequency and the number oflow-order vibration mode, and the difference in resonance frequency between laminatedbeam model and single beam model is wider while considering the surface effects. Theinvestigations of surface effects on the dynamic properties of carbon nanotubes and theircomposites have theoretical values on optimal designs and engineering applications ofcarbon nanotubes and their composite as nano-micro-resonators and high sensitivitysensors.
     Many researches have been published in the above fields and reveal mechanicalproperties of carbon nanotubes and their composite structures subjected to coupled fields.It is very meaningful for researches on static and dynamic mechanical properties of carbonnanotubes and their composite structures and the optimal design of the structuralperformance on theoretical reference and engineering value.
引文
[1] Xie SS. Carbon nanotubes and other nanometer materials. China Basic Science,2000,5:4-7.
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [3] Choi TY, Poulikakos D, Tharian J, et al. Measurement of the thermal conductivity ofindividual carbon nanotubes by the four-point three-omega method. Nano Letters,2006,6(8):1589-1593.
    [4] Krishnan A, Dujardin E, Ebbesen TW, et al. Young’s modulus of single-wallednanotubes. Physical Review B,1998,58(20):14013-14019.
    [5] Ruoff RS, Lorent DC. Mechanical and thermal properties of carbon nanotubes.Carbon,1995,33:925-928.
    [6] Salvetat JP, Bonard JM, Bacsa RR, et al. Elastic and shear moduli of single-walledcarbon nanotube ropes. Physical Review Letters,1999,82(5):944-947.
    [7] Litina K, Miriouni A, Gournis D, et al. Nanocomposites ofpolystyrene-b-polyisoprene copolymer with layered silicates and carbon nanotubes.European Polymer Journal.2006,42(9):2098-2107.
    [8] Ye F, Liu LM, Wang YJ, et al. Preparation and mechanical properties of carbonnanotube reinforced barium aluminosilicate glass-ceramic composites. ScriptaMaterialia,2006,55(10):911-914.
    [9] Walt AH, Philippe P, Claire B, et al. Liquid carbon, carbon-glass beads, and thecrystallization of carbon nanotubes. Science,2005,307:907-910.
    [10] Natsuki T, Tantrakarn K, Endo M. Effects of carbon nanotube structures onMechanical properties, Applied Physics A79,2004,10:117-124.
    [11] Ebbesen TW. Carbon nanotubes.Annual Review of Materials Science.1994,24:235.
    [12] Yakobson BI, Smalley RE, Fullerene nanotubes: C1000000and beyond. AmericanScientist,1997,85:324-337.
    [13] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulusobserved for individual carbon nanotubes. Nature,1996,381:678-680.
    [14] Lee J, Eggert S, Kim H, et al. Real space imaging of one-dimensional standing waves:Direct evidence for a Luttinger liquid. Physical Review Letters.2004,93, No.166403.
    [15] Valentin NP, Philippe L, Carbon Nanotubes: From Basic Research to Nanotechnology.NATO Science Series Series II: Mathematics, Physics and Chemistry. Vol.222,Springer,2005.
    [16] Rotkin SSV, Subramoney S, Applied Physics of Carbon nanotubes: Fundametentals ofTheory, optics and Transport Devices. Nanostructure Science and Technology.Springer,2006.
    [17] Terrones M, Science and technology of the twenty-first century: synthesis, properties,and applications of carbon nanotubes. Annual Review of Materials Research.2003,33:419-501.
    [18] Saito R, Dresselhaus MS, Dresselhaus G, Physical Properties of Carbon Nanotubes.London,1998.
    [19] Iijima S, Yudasaka M, Kasuya Y, et al. Mechanism of metal catalysts controllingformation of single-wall carbon nanotubes. Physics,2000,544:217-221.
    [20] Mirza S, Bryan A, Noori M, Fiber-reinforced composite cylindrical vessel with lugs.Composite Structures.2001,53,143-151.
    [21] Bernhole J, Brabee C, Nardelli B, et al. Theory of growth and mechanical propertiesof nanotubes. Applied Physics A,1998,67:39-46.
    [22] Nardelli BM, Yakobson BI, Bernholc J, Brittle and ductile behavior in carbonnanotubes. Physical Review Letters,1998,81:4656-4659.
    [23] Zhang P, Lammert PE, Crespi VH, Plastic deformations of carbon nanotubes. PhysicalReview Letters,1998,81:5346-5349.
    [24] Rittner MN, Metal Matrix Composites in the21st Century: Markets and opportunities.Norwalk: BCC Inc,2005.
    [25] Pan ZW, Xie SS, Tensile tests of ropes of very long aligned multiwall carbonnanotubes.Applied Physics Letters,1999,74:3152-3154.
    [26] Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalledcarbon nanotubes under tensile load. Science,2000,287:637-640.
    [27] Yu MF, Yakobson BI, Ruoff RS, Controlled sliding and pullout of nested shells inindividual multiwalled carbon nanotubes. Journal of Physical Chemistry B,2000,104:8764-8767.
    [28] Avouris P, Chen ZH, Perebeinos V, Carbon-based electronics. Nature Nanotechnology.2,2007,605-615.
    [29] Lee BY, Universal parameters for carbon nanotube network-based sensors: Cannanotube sensors be reproducible. ACS Nano.5,2011,4373-4379.
    [30] Itkis ME, Borondics F, Yu A, et al. Thermal conductivity measurements ofsemitransparent single-walled carbon nanotube films by a bolometric technique. NanoLetters.7,2007,900-904.
    [31] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strainsensor for human-motion detection. Nature Nano.6,2010,296-301.
    [32] Ajayan PM, Schadler LS, Giannaris C, et al. Single-walled carbon nanotube-polymercomposites: Strength and weakness.Advanced Materials.12,2000,750-754.
    [33] Dubois SMM, Zanolli Z, Declerck X, et al. Electronic Properties and QuantumTransport in Graphene-Based Nanostructures. The European Physical Journal B.2009,72,1-24.
    [34] Leghrib R, Felten A, Demoisson F, et al. Room-Temperature, Selective Detection ofBenzene at Trace Levels using Plasma-Treated Metal-Decorated Multiwalled CarbonNanotubes. Carbon.2010,48,3477-3484.
    [35] Charlier JC, Arnaud L, Avilov IV, et al. Carbon Nanotubes Randomly Decorated withGold Clusters: from Nano2Hybrid Atomic Structures to Gas Sensing Prototypes.Nanotechnology.2009,20,375501.
    [36] Kauffman DR, Sorescu DC, Schofield DP, et al. A Star, Understanding the SensorResponse of Metal-Decorated Carbon Nanotubes. Nano Letters.2010,10,958-963.
    [37] Cava CE, Salvatierra RV,Alves DCB, et al. Self-assembled films of multi-wall carbonnanotubes used in gas sensors to increase the sensitivity limit for oxygen detection.Carbon. Vol.50, No.5,2012,1953-1958.
    [38] Viry L, Derre A, Garrigue P, et al. Optimized carbon nanotube fiber microelectrodesas potential analytical tools. Analytic and Bioanalytical Chemistry.2007,389:499-505.
    [39] Viry L, Derre A, Garrigue P, et al. Carbon nanotube fiber microelectrodes: design,characterization, and optimization. Journal of Nanoscience and Nanotechnology.2007,7:3373-3377.
    [40] Zhu ZG, Garcia-Gancedo L, Flewitt AJ, et al. Design of carbon nanotube fibermicroelectrode for glucose biosensing. Journal of Chemical Technology andBiotechnology. Vol.87,2012,256-262.
    [41] Service RF, Is silicon's reign nearing its end. Science.2009,323,1000-1002.
    [42] Avouris P, Martel R, Progress in carbon nanotube electronics and photonics. MRSbulletin.2010,35,306-313.
    [43] Aaron DF, Mathieu L, Han SJ, et al. Sub-10nm Carbon Nanotube Transistor. NanoLetters,2012,12(2),758-762.
    [44] Luo YF, Gong ZQ, He MD, et al. Fabrication of high-quality carbon nanotube fibersfor optoelectronic applications. Solar Energy Materials and Solar Cells. Vol.97,2012,78-82.
    [45] Gong JL, Sun LC, Zhong YW, et al. Fabrication of multi-level carbon nanotube arrayswith adjustable patterns. Nanoscale,4,2012,278.
    [46] Fukushima T, Kosaka A, Ishimura Y, et al. Molecular Ordering of Organic MoltenSalts Triggered by Single-Walled Carbon Nanotubes. Science.300,2003,2072.
    [47] Carpy F, Smela E, Biomedical Applications of Electroactive Polymer Actuators,1sted.,AJohn Wiley Sons, Ltd, Publication, Chichester,2009.
    [48] Zhao HB, Zhang YY, Bradford PD, et al. Carbon nanotube yarn strain sensors.Nanotechnology.21,2010,305502.
    [49] Wu AS, Chou TW, Gillespie JW, et al. Electromechanical response and failurebehaviour of aerogel-spun carbon nanotube fibres under tensile loading. Journal ofMaterials Chemistry.22,2012,6792.
    [50] Foroughi J, Spinks GM, Wallace GG, et al. Torsional carbon nanotube artificialmuscles. Science.334,2011,494-497.
    [51] Arroyo M, Belytschko T. Nonlinear mechanical response and rippling of thickmultiwalled carbon nanotubes. Physical Review Letters,2003,91:215501-1-4.
    [52] Hea XQ, Kitipornchaia S, Liew KM, Buckling analysis of multi-walled carbonnanotubes: a continuum model accounting for van der Waals interaction. Journal ofMechanics and Physics of Solids,2005,53:303-326.
    [53] Venkateswaran UD, AM Rao, E Richter, et al. Probing the single-wall carbonnanotube bundle: Raman scattering under high pressure. Physical Review B.1999,59:928.
    [54] Peters MJ, LE McNeil, JP Lu, et al. Elastic buckling of single-walled carbon nanotuberopes under high pressure. Physical Review B.2000,61:5939.
    [55] Belytschko T, SP Xiao, GC Schatz, et al. Atomistic Simulations of Nanotube Fracture.Physical Review B.2002,65:235430.
    [56] Ni XG, Yu W, Zhang Z, et al. Atomic Simulation of Structure and Deformation'sInfluence on the Mechanical Properties of Single-walled Carbon Nanotubes, Jounal.ofChemical Physics,2006,19:498-512.
    [57] Jyotikolhe SA, Parallelization of carbon nanotubes based composites. USA,Department of Computer Science, the Florida State University,2004.
    [58] Liew KM, Wong CH, He XQ, Nanomechanics of single and multi-walled carbonnanotubes. Physical Review B,2004,69:115429-1-8.
    [59] Liew KM, He XQ, Wong CH, On the study of elastic and plastic properties ofmulti-walled carbon nanotubes under axial tension using molecular dynamicssimulation.Acta Materialia,2004,52:2521-2527.
    [60] Zhang YN, Zheng LX, Sun GZ, et al. Failure mechanisms of carbon nanotube fibersunder different strain rates. Carbon.50,2012,2887-2893.
    [61] Giannopoulos GI, Georgantzinos SK, Anifantis NK. A semi-continuum finite elementapproach to evaluate the Young’s modulus of single-walled carbon nanotubereinforced composites. Composites: Part B.41,2010,594-601.
    [62] Wu CD, Fang TH, Chan CY, A molecular dynamics simulation of the mechanicalcharacteristics of a C60-filled carbon nanotube under nanoindentation using variouscarbon nanotube tips. Carbon.49,2011,2053-2061.
    [63] Ke CH, Zheng M, Bae IT, et al. Adhesion-driven buckling of single-walled carbonnanotube bundles. Journal ofApplied Physics.107,2010,104305.
    [64] Yaglioglu O, Martens R, Hart A, et al. Conductive carbon nanotube compositemicroprobes. Advanced Materials.2008,20:357-62.
    [65] Panzer MA, Zhang G, Mann D, et al. Thermal properties of metal-coated verticallyaligned singlewall nanotube arrays. Journal of Heat Transfer.2008,130(5):052401.
    [66] Gao Y, Marconnet A, Panzer M, et al. Nanostructured interfaces for thermoelectrics.Journal of Electronic Materials.2010,39(9):1456-62.
    [67] Won YJ, Yuan G, Matthew AP, et al. Mechanical characterization of alignedmulti-walled carbon nanotube films using microfabricated resonators. Carbon.50,2012,347-355.
    [68] Tersoff J, New empirical approach for the structure and energy of covalent systems.Physical Review B,1988,37:6991-7000.
    [69]王立峰,胡海岩,一维纳米结构的若干力学问题[学位论文].南京航空航天大学,2005.4.
    [70] Philippe P, Wang ZL, Daniel U, Electrostatic deflections and electromechanicalresonances of carbon nanotubes. Science,1999,283:1513-1516.
    [71] Yoon J, Ru CQ, Mioduchowski A. Sound wave propagation in multiwalled carbonnanotubes. Journal ofApplied Physics,2003,93(8):1-6.
    [72] Menon M, Rinzler A, Venkateswaran UD, The molar fraction of carbon nanotubes insoot. Physical Review B,1999,59:10928-10931.
    [73] Charlier JC, Lambin P, Ebbesen TW, Wetting, filling and decorating carbon nanotubes.Physical Review B,1996,54:377.
    [74] Salvetat JP, Kulik AJ, Bonard JM, et al. Elastic Modulus of Ordered and DisorderedMultiwalled Carbon Nanotubes. Advanced Material.1999,11:161-165.
    [75] Garg A, Han J, Sinnott S, Interactions of Carbon-Nanotubule Proximal Probe Tipswith Diamond and Graphene. Physical Review Letters.1998,81:2260-3.
    [76] Poncharal P, Wang, ZL, Ugarte D, et al. Electrostatic deflections andelectromechanical resonances of carbon nanotubes. Science,1999,283:1513-1516.
    [77] Popov VN, Van Doren VE, Balkanski M, Elastic properties of single-walled carbonnanotubes. Physical Review B,2000,61:3078-84.
    [78] Wang XY, Wang X, Numerical simulation for bending modulus of carbon nanotubesand some explanations for experiment. Composites: part B.2004,35:79-86.
    [79] Ru CQ, Column buckling of multiwalled carbon nanotubes with interlayer radialdisplacements. Physical Review B,2000,62:16962-7.
    [80] Li CY, Chou TW. A structural mechanics approach for the analysis of carbonnanotubes. International Journal of Solids and Structures.2003;40:2487-99.
    [81] Li CY, Chou TW. Elastic moduli of multi-walled carbon nanotubes and the effect ofvan der Waals forces. Composites Science and Technology.2003;63:1517-24.
    [82] Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber.Science.2007,318,1892-1895.
    [83] Zhang XF, Li QW, Holesinger TG, et al. Ultrastrong, Stiff, and LghtweightCarbon-Nanotube Fibers. Advanced Materials.2007,19,4198-4201.
    [84] Boncel S, Sundaram RM, Windle AH, et al. Enhancement of the MechanicalProperties of Directly Spun CNT Fibers by Chemical Treatment. ACS Nano.2011,5,9339-9344.
    [85] Williams JC, Starke Jr EA., Progress in structural materials for aerospace systems.Acta Metall.2003,51(10):5775-99.
    [86] Noor AK, Venneri SL, Paul DB, et al. Structures technology for future aerospacesystems. Computers and Structures.2000,74:507-19.
    [87] Mangalgiri PD. Composite materials for aerospace applications. Bulletin of MaterialsScience.1999,22(3):657-4.
    [88] Pan ZW, Xie SS, Chang BH, et al. Direct growth of aligned open carbon nanotubes bychemical vapour deposition. Chemical Physics Letters.1999,299(1):97-102.
    [89] Falvo MR, Clary GJ, Taylor RM, et al. Bending and Bulking of carbon nanotubesunder large strain. Nature,1997,389:582.
    [90] Endo M, Takeuchi K, Lgarashi S, et al. The production and structure of pyrolyticcarbon nanotubes (PCNT). Journal of Physics and Chemistry of Solids.1993,54:1841-1846.
    [92] Gao Y, Li JZ, Liu LQ, et al. Axial Compression of Hierarchically Structured CarbonNanotube Fiber Embedded in Epoxy. Advanced Functional Materials.2010,20,3797-3803.
    [93] Ihab ES, Philippe AO, Philippe D, et al. Processing and electrical characterization of aunidirectional CFRP composite filled with double walled carbon nanotubes.Composites Science and Technology.2012,73,19-26.
    [94] Wang LH, Wang XT, Li YL, Relation between repeated uniaxial compressive pressureand electrical resistance of carbon nanotube filled silicone rubber composite.Composites PartA: Applied Science and Manufacturing, Vol43,2012,268-274.
    [95] Jin FL, Ma CJ, Park SJ, Thermal and mechanical interfacial properties of epoxycomposites based on functionalized carbon nanotubes. Materials Science andEngineering: A,2011,528(29-30):8517-8522.
    [96] Zu M, Li QW, Zhu YT, et al. The effective interfacial shear strength of carbonnanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon,Vol.50,2012,1271-1279.
    [97] Wang HK, Liu Y, Zhang X, The carbon nanotube composite simulation by materialpoint method. Computational Materials Science.2012,57,23-29.
    [98] KuronumaY, TakedaT, ShindoY, et al. Electrical resistance-based strain sensing incarbon nanotube/polymer composites under tension: Analytical modeling andexperiments. Composites Science and Technology.2012,72,1678-1682.
    [99] Zhu P, Lei ZX, Liew KM, Static and free vibration analyses of carbonnanotube-reinforced composite plates using finite element method with first ordershear deformation plate theory. Composite Structures,2012,94,1450-1460.
    [100] Abota JL, Bardin G, Spriegel C, et al. Thermal Conductivity of Carbon NanotubeArray Laminated Composite Materials. Journal of Composite Materials.2011,9,45:321.
    [101] Abota JL, Songa Y, Schulzb MJ, et al. Novel carbon nanotube array-reinforcedlaminated composite materials with higher interlaminar elastic properties.Composites Science and Technology.2008,68,2755-2760.
    [102] Davis DC, Wilkerson JW, Zhu J, et al. A strategy for improving mechanicalproperties of a fiber reinforced epoxy composite using functionalized carbonnanotubes. Composites Science and Technology.2011,71,1089-1097.
    [103] Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber.Science.2007,318,1892-1895.
    [104] Kim SL, Jang S, Vittal R, et al. Rutile TiO2-modified multi-wall carbon nanotubes inTiO2film electrodes for dye-sensitized solar cells. Journal of AppliedElectrochemistry.2006,36,1433-1439.
    [105] Trancik JE, Barton SC, Hone J, Ansparent and catalytic carbon nanotube films. NanoLetters.2008,8,982-987.
    [106] Berson S, Bettignies R, Bailly S, et al. Elaboration of P3HT/CNT/PCBM compositesfor organic photovoltaic cells. Advanced Functional Materials.2007,17,3363-3367.
    [107] Moniruzzaman M, Winey KI, Polymer nanocomposites containing carbon nanotubes.Macromolecules.2006,39,5194-5205.
    [108] Li X, Gao H, Murphy Catherine J, et al. Nano-indentation of silver nano-wires. NanoLetters.2003,3:1495-8.
    [109] Li X, Chang WC, Chao YJ, et al. Nano-scale structure and mechanicalcharacterization of a natural nano-composite material: the shell of red abalone. NanoLetters.2004,4:613-7.
    [110] Lau KT, Hui D. The revolutionary creation of new advanced materials-carbonnanotubes. Composite B.2003,33:263-77.
    [111] Li X, Bhushan B. A review of nanoindentation continuous stiffness measurementtechnique and its applications. Materials Characterization.2002,48:11-36.
    [112] Pantano A, Parks DM, Boyce MC. Mechanics of deformation of single-andmulti-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids.2004,52:789-821.
    [113] Wang X, Dai HL. Dynamic response of a single wall carbon nanotube subjected toimpact. Carbon.2006,44:158-93.
    [114] Wang Y, Ni X. Effect of temperature on deformation of carbon nanotubes undercompression. Chinese Physics.2003,12:1007-10.
    [115] Fereidoon A, Ghorbanzadeh AM, Ganj MD, et al. Density functional theoryinvestigation of the mechanical properties of single-walled carbon nanotubes.Computational Materials Science.2012,53,377-381.
    [116] Kiani K, Application of nonlocal beam models to double-walled carbon nanotubesunder a moving nanoparticle. Acta Mechanica.2010,216,165-195.
    [117] Shtogun YV, Woods LM, Mechanical properties of defective single wall carbonnanotubes. Journal ofApplied Physics.2010,107,061803.
    [118] Murmun T, Adhikari S, Wang CY, Torsional vibration of carbon nanotube-buckyballsystems based on nonlocal elasticity theory. Physica E.2011,43,1276-1280.
    [119] Tan SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a singlecarbon nanotube. Nature.1998,393:49-52.
    [120] Dai HJ, Hafner JH, Rinzler AG, et al. Nanotubes as nanoprobes in scanning probemicroscopy. Nature.1996,384:147-50.
    [121] Tu ZC, Hu X. Molecular motor constructed from a double-walled carbon nanotubedriven by axially varying voltage. Physical Review B.2005,72:033404.
    [122] Li CY, Chou TW. Signle-walled carbon nanotubes as ultrahigh frequencynanomechanical resonators. Physical Review B.2003,68:073405.
    [123] Li CY, Chou TW. Vibrational behaviors of multi-walled carbon nanotube-basednanomechanical resonators. Applied Physics Letters.2004,84(1):121-3.
    [124] Li CY, Chou TW. Strain and pressure sensing using single-walled carbon nanotubes.Nanotechnology.2004,15:1493-6.
    [125] Wang X, Yang HK. Axially critical load of multi-walled carbon nanotubes underthermal environment. Journal of Thermal Stresses.2005,28:185-96.
    [126] Kwon YK, Berber S, Tománek D. Thermal contraction of carbon fullerenes andnanotubes. Physical review letters.2004,92:015901.
    [127] Ageev OA, Il’in OI, Kolomiitsev AS, et al. Development of a Technique forDetermining Young’s Modulus of Vertically Aligned Carbon Nanotubes Using theNanoindentation Method. Nanotechnologies in Russia,2012, Vol.7,47-53.
    [128] Demczyk BG, Wang YM, Cumings J, et al. Direct Mechanical Measurement of theTensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes, Materialand Science Engineering A,2002,334:173-178.
    [129] Lau KT. Interfacial Bonding Characteristics of Nanotube/Polymer Composites,Chemical Physics Letters,2003,370:399-405.
    [130] Haskins RW, Maier RS, Ebeling RM, et al. Tight-binding molecular dynamics studyof the role of defects on carbon nanotube moduli and failure. Journal of ChemicalPhysics.2007,127,074708.
    [131] Ganji MD, Fereidoon A, Jahanshahi M, et al. Elastic properties of SWCNTs withcurved morphology: Density functional tight binding based treatment. Solid StateCommunications.2012,152,1526-1530.
    [132] Charles FC, Charles RW, Very-high-strength (60-GPa) carbon nanotube fiber designbased on molecular dynamics simulations. Journal of Chemical Physics.2011,134,204708.
    [133] Kleis J, Schr der E, Hyldgaard P, Nature and strength of bonding in a crystal ofsemiconducting nanotubes: van der Waals density functional calculations andanalytical results. Physical Review B.2008,77,205422.
    [134] Zhang X, Li Q, Enhancement of Friction between Carbon Nanotubes: An EfficientStrategy to Strengthen Fibers. ACS Nano.2009,4,312.
    [135] Mahmoudinezhad E, Ansari R, Basti A, et al. An accurate spring-mass model forpredicting mechanical properties of single-walled carbon nanotubes. ComputationalMaterials Science.2012,62,6-11.
    [136] Lu JP. Elastic Properties of Carbon Nanotubes and Nanoropes, Physical ReviewLetters,1997,79:1297-1300.
    [137] Jin Y, Yuan FG. Elastic Properties of Single-Walled Carbon Nanotubes. Collection ofTechnical Papers–AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamicsand Materials Conference,2002,3:1819-1825.
    [138] Popov VN, Van Doren VE, Balkanski M (2002). Elastic Properties of Single-WalledCarbon Nanotubes, Physical Review B,61:3078-3084.
    [139] Odegard GM, Gates TS, Nicholson LM, et al. Equivalent-continuum modeling withapplication to carbon nanotubes. National Aeronautics and Space Administration,Langley Research Center,2002.
    [140] Chang T, Gao H. Size-dependent elastic properties of a single-walled carbonnanotube via a molecular mechanics model. Journal of the Mechanics and Physics ofSolids.2003,51:1059-74.
    [141] Xiao SP, Belytschko T. A Bridging Domain Method for Coupling Continuum withMolecular Dynamics, Computer Methods in Applied Mechanics and Engineering,2004,193:1645-1669.
    [142] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilitybeyond linear response. Physical Review Letters.1996,76:2511-4.
    [143] Wang Y, Sun C, Sun X, et al.2-D nano-scale finite element analysis of a polymerfield. Composites Science and Technology.2003,63:1581-90.
    [144] Liu B, Huang Y, Jiang H, et al. The atomic-scale finite element method. ComputerMethods inApplied Mechanics and Engineering.2004,193:1849-64.
    [145] Tu ZC, Ou-Yang Z. Single walled and multiwalled carbon nanotubes viewed aselastic tubes with the effective Young’s moduli dependent on layer number. PhysicalReview B.2002,65:233407.
    [146] Allinger NL, Yuh YH, Lii JH. Molecular mechanics: the MM3force field forhydrocarbons. JAm Chem Soc.1989,111:8551-66.
    [147] Cornell WD, Cieplak P, Bayly CI, et al. A Second generation force field for thesimulation of proteins, nucleic acids, and organic molecules. Journal of the AmericanChemical Society.1995,117:5179-97.
    [148] Jorgensen WL, Severance DL. Aromatic interactions-free energy profiles for thebenzene dimmer in water, chloroform, and liquid benzene. Journal of the AmericanChemical Society.1990,112:4768-74.
    [149] Haile JM. Molecular dynamics simulation: elementary methods. New York: JohnWiley and Sons.1992.
    [150] Walther JH, Jaffe R, Halicioglu T, et al. Carbon nanotubes in water: structuralcharacteristics and energetics. Journal of Physics Chemical B.2001,105:9980-7.
    [151] Battezzatti L, Pisani C, Ricca F. Equilibrium conformation and surface motion ofhydrocarbon molecules physisorbed on graphite. Journal of the Chemical Society.1975,71:1629-39.
    [152] Lennard-Jones JE. On the determination of molecular fields: from the variation ofthe viscosity of a gas with temperature. Proceedings of the Royal Society of London.1924,106A:441.
    [153] Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and CarbonNanotubes, Academic Press, San Diego,1996.
    [154] Rappe AK, Casewit CJ, Colwell KS. A full periodic-table force-field for molecularmechanics and molecular dynamics simulations. Journal of the American ChemicalSociety.1992,114:10024-35.
    [155] Nicholas JB, Hopfinger AJ, Trouw FR, et al. Ab initio periodic Hartree-Fockinvestigation of a zeolite acid site. Journal of the American Chemical Society.1991,113:4792.
    [156] Xiao JR, Gama BA, Gillespie JJW, An Analytical Molecular Structural MechanicsModel for the Mechanical Properties of Carbon Nanotubes. International Journal ofSolids and Structures,2005,42:3075-3092.
    [157] Goze C, Vaccarini L, Henrard L, et al. Elastic and Mechanical Properties of CarbonNanotubes, Synthetic Metals,1999,103:2500-2501.
    [158] Ajayan PM, Zhou OZ, Applications of carbon nanotubes. Carbon Nanotubes.2001,80,391-425.
    [159] Tedesco JW, McDougal WG, Ross CA. Structural dynamics: theory and applications.Addison Wesley,1999.
    [160] Krane KS. Introductory Nuclear Physics.1987.
    [161] Hernández E, Goze C, Bernier P, et al. Elastic properties of C and BxCyNzcompositenanotubes. Physical Review Letters.1998,80:4502.
    [162] Tombler TW, Zhou C, Alexseyev L, et al. Reversible electromechanicalcharacteristics of carbon nanotubes under localprobe manipulation. Nature.2000,405:769-72.
    [163] Prato M, Kostarelos K, Bianco A, Functionalized carbon nanotubes in drug designand discovery.Accounts of Chemical Research,2008,41:60-8.
    [164] Yoon J, Ru CQ, Noncoaxial resonance of an isolated multiwall carbon nanotube.Physical Review B.2002,62,16962.
    [165] Ajayan PM, Zhou OZ, Applications of carbon nanotubes. Carbon Nanotubes.2001,80,391-425.
    [166] Dharap P, Li ZL, Nagarajaiah EV, et al. Nanotube film based on single-wall carbonnanotubes for strain sensing. Nanotechnology.2004,15,379.
    [167] Lau KT, Chipara M, Ling HY, et al. On the effective elastic moduli of carbonnanotubes for nanocomposite structures. Composites B.2004,3,263.
    [168] Louie SG, Electronic Properties, Junctions, and Defects of Carbon Nanotubes.Carbon nanotubes.2001,80,113-145.
    [169] Yakobso BI, Avouris P, Mechanical properties of carbon nanotubes. CarbonNanotubes.2001,80,287.
    [170] Ru CQ, Effective bending stiffness of carbon nanotubes. Physical Review B.2000,62,9973.
    [171] Li X, Gao H, Catherine J, Nanoindentation of silver nanowires. Nano Letters.2003,3,1495.
    [172] Han Q, Lu GX, Dai LM, Bending instability of an embedded double-walled carbonnanotube based on Winkler and van der Waals models. Composites Science andTechnology.2005,65,1337.
    [173] Reulet B, Kasumov AY, Kociak M, et al. Acoustoelectric effects in carbon nanotubes.Physical Review Letters.2000,85,2829-2832.
    [174] Yakobson BI, Brabec CJ, Bernholc J, Nanomechanics of carbon tubes: instabilitiesbeyond linear response. Physical Review Letters.1996,76,2511.
    [175] Jeon TI, Kim KJ, Kang C, et al. Terahertz conductivity of anisotropic single walledcarbon nanotube films.Applied Physics Letters.2002,80,3403.
    [176] Maris HJ, Malhotra SG, Harper JME, Picosecond ultrasonics study of the vibrationalmodes of a nanostructure. Journal ofApplied Physics.2002,91,3261.
    [177] Feurer T, Vaughan JC, Nelson KA, Spatiotemporal coherent control of latticevibrational waves. Science.2003,299,374.
    [178] Zhao Y, Ma CC, Chen GH, et al. Energy dissipation mechanisms in carbon nanotubeoscillators. Physical Review Letters.2003,91,175504.
    [179] Dragoman D, Dragoman M, Biased micromechanical cantilever arrays as opticalimage memory.Applied optics,2003,42(8):1515-1519.
    [180] Sirtori C,Applied physics: Bridge for the terahertz gap. Nature.2002,417,132.
    [181] Poncharal P, Wang ZL, Ugarte D, et al. Electrostatic deflections andelectromechanical resonances of carbon nanotubes. Science.1999,283,1513.
    [182] Yu J, Kalia RK, Vashishta P, Phonons in graphitic tubules: A tight-binding moleculardynamics study. Journal of Chemical Physics.1995,103,6697.
    [183] Popov VN, Doren VE, Balkanski M, Elastic properties of single-walled carbonnanotubes. Physical Review B.2000,61,3078.
    [184] Wang XY, Wang X, Numerical simulation for bending modulus of carbon nanotubesand some explanations for experiment. Composites B.2004,35,79.
    [185] Wang X, Zhang YC, Xia XH, et al. Effective bending modulus of carbon nanotubeswith rippling deformation. International Journal of Solids and Structures.2004,41,6429.
    [186] Wang X, Yang HK, Axially critical load of multiwall carbon nanotubes underthermal environment. Journal of Thermal Stresses.2005,28,185.
    [187] Yoon J, Ru CQ, Mioduchowski A, Timoshenko-beam effects on transverse wavepropagation in carbon nanotubes. Composites B.2004,35,87.
    [188] Yoon J, Ru CQ, Mioduchowski A, Vibration of an embedded multiwall carbonnanotube. Composites B.2002,66,233402.
    [189] Yakobson BI, Brabec CJ, Bernholc J, Nanomechanics of carbon tubes: instabilitiesbeyond linear response. Physical Review Letters,1996,76:2511-2514.
    [190] Li CY, Chou TW, Elastic wave velocities in single-walled carbon nanotubes.Physical Review B,2006,73(24):245407.
    [191] He XQ, Kitipornchaia S, Liew KM, Buckling analysis of multi-walled carbonnanotubes: a continuum model accounting for van der Waals interaction. Journal ofMechanics and Physics of Solids,2005,53:303-326.
    [192] Girifalco LA, Interaction potential for C60molecules. Journal of Physical Chemistry,1991,95:5370-5371.
    [193] Gurtin ME, Weissmüller J, Larche F, A general theory of curved deformableinterfaces in solids at equilibrium. Philosophical MagazineA.1998,78,1093.
    [194] He XQ, Wang CM, Yan Y, et al. Pressure dependence of the instability ofmultiwalled carbon conveying fluids. Archive of Applied Mechanics.2008,78:637-648.
    [195]蔡慧,王熙,碳纳米管的弯曲振动和横波传播[学位论文].上海交通大学,2006.6.
    [196] Harik VM, Ranges of applicability for the continuum beam model in the mechanicsof carbon nanotubes and nanorods. Solid State Communications.2001,120,331.
    [197] Wang CY, Ru CQ, Mioduchowski A, Axisymmetric and beamlike vibrations ofmultiwall carbon nanotubes. Journal ofApplied Physics.2005,97,024310.
    [198] Popov VN, Henrard L, Breathinglike phonon modes of multiwalled carbonnanotubes. Physical Review B.2002,65,235415-1.
    [199] Narendar S, Ravinder S, Gopalakrishnan S, Study of non-local wave properties ofnanotubes with surface effects. Computational Materials Science,2012,56,179-184.
    [200] Wang GF, Feng XQ, Effects of surface elasticity and residual surface tension on thenatural frequency of microbeams. Journal ofApplied Physics.2007,101,013510.
    [201] Wang GF, Feng XQ, Timoshenko beam model for buckling and vibration ofnanowires with surface effects. Applied Physics Letters.2007,90,231904.
    [202] Abbasion S, Rafsanjani A, Avazmohammadi R, et al. Free vibration of microscaledTimoshenko beams. Applied Physics Letters.2009,95,143122.
    [203] Farshi B, Assadi A, Alinia-Ziazi A, Frequency analysis of nanotubes withconsideration of surface effects. Applied Physics Letters.2010,96,093105.
    [204] Lee HL, Chang WJ. Surface effects on axial buckling of nonuniform nanowiresusing non-local elasticity theory. Micro&Nano Letters, IET,2011,6(1):19-21.
    [205] Chen H, Hu G, Huang Z, Effective moduli for micropolar composite with interfaceeffect. International Journal of Solids and Structures.2007,44,8106.
    [206] Benoit JM, Buisson JP, Chauvet O, et al. Low-frequency Raman studies ofmultiwalled carbon nanotubes: Experiments and theory. Physical Review B.2002,66,073417-1.
    [207] Wong EW, Sheehan PE, Lieber CM, Nanobeam mechanics: elasticity, strength, andtoughness of nanorods and nanotubes. Science.1997,277,1971-1975.
    [208] Salvetat JP, Bonard JM, Thomson NH, et al. Mechanical properties of carbonnanotubes. Applied Physics A.1999,69,255-260.
    [209] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Physical ReviewLetters.1997,79(7):1297.
    [210] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes.Science-AAAS-Weekly Paper Edition,1996,273(5274):483-487.
    [211] Chen CQ, Shi Y, Zhang YS, et al. Size dependence of Young’s modulus in ZnOnanowires. Physical Review Letters,2006,96(7):075505.
    [212] Bar On B, Altus E, Tadmor EB. Surface effects in non-uniform nanobeams:continuum vs. atomistic modeling. International Journal of Solids and Structures,2010,47(9):1243-1252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700