时域积分方程及其混合算法在电磁脉冲效应中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子、电气设备的微电子化,电子系统在电磁脉冲照射下的敏感性和易损性日趋严重。与此同时,越来越多的天线装载于电大尺寸平台上,也更易遭受电磁干扰(Electromagnetic interference,EMI)。为了应对现代战争的电子对抗,尤其是超大功率超宽带电磁脉冲(EMP)武器以及电磁脉冲弹等新概念电子战武器,各国争相开展研究电磁兼容(Electromagnetic compatibility,EMC)、电磁干扰及电磁防护技术。正是本着这样的目标,本文系统地研究了时域积分方程的精确和高效求解及其混合数值方法,以及在外界电磁脉冲(EMP)作用下电磁效应的仿真计算和作用机理。
     首先,本文从显式时间步进和隐式时间步进递推算法求解时域电场积分方程(TD-EFIE)的计算公式出发,给出了EMP照射下线面结构的TDIE-TDPO-MOT方法,推导了显式时间步进和隐式时间步进递推算法求解时域电场积分方程的计算公式。与TDIE-MOT相比,在精度变化不大的情况下,TDIE-TDPO-MOT减少了计算时间。同时也编程仿真了典型结构在EMP照射下散射体上感应电流的瞬态响应,并比较了数值结果。
     第二,为了提高算法稳定性,提出了自适应阶数递推法和确定拉盖尔(Laguerre)多项式尺度因子的通用规则。为了消除中心近似和提高精度,又提出了准确时域伽辽金(Galerkin)检验的时域磁场(TD-MFIE)和混合场积分方程(TD-CFIE)。同时利用快速傅立叶变换(FFT),提出了加速MOD方法中卷积过程的分块算法,把MOD的计算复杂度从O(N2ON2S)降低至O(N2SNOlog2(NO))。
     第三,基于对影响积分收敛速度的详细分析,提出了处理弱奇异和近奇异积分的径向积分法,这一方法可以看作是对极坐标积分法的本质改进。通过对被积函数进行光滑处理的多项式变换,相比传统的弱奇异处理技术,本文方法的积分收敛速度明显加快。文中也给出了数值算例以验证本章所提出方法的精度和收敛速度。
     第四,为了精确快速地计算时域电场、磁场和混合场积分方程的矩阵元素,本文提出了一种新的四维(4-D)奇异积分方法,包括用以处理内层二维(2-D)奇异和高阶近奇异积分的径向积分法。然后仔细分析了外层2-D积分被积函数导数的性质,提出了处理外层2-D积分的被基函数平滑技术。相比传统高斯积分规则,本文方法的效率和精度大幅提高,同时也给出了数值算例以验证本章所提出方法的精度和收敛速度。因为本文提出的方法保留了处理各类被积函数的灵活性,所以其用途不仅仅限于时域积分方程,也同样适用于频域积分方程(frequency-dOmain integral equations, FDIE)、
     第五,基于加权Laguerre多项式和阶数步进法(MOD),提出了具有高度稳定性的TDIE-TDPP混合方法,这一方法可以处理混合三维PEC结构的时域响应问题,其中TDPP近似应用于表面光滑的电大部分。为了正确实现混合方法,把问题的几何结构分为两个部分:TDIE区域和TDPO区域。在TDPO区域中,使用MOD方法求解一组时域电场积分方程来获得未知电流。在TDPO区域中,PO电流的求解通过入射场以及TDIE电流的辐射场得到。本文中提出的混合算法有两点优势。第一个优点是,只需要改变TDIE区域在整体中所占的比例,就可以控制近似误差,这优于单纯的TDPP近似。第二个优点是,提出的混合方法只依靠TDPP近似来节省内存需求和CPU时间,而不需要诸如PWTD这一类算法的加速。因此本文的方法可以很容易地推广到MOT以及FDDM的时间步进架构下。
     最后,本文提出了基于RWG函数的投影方法,这一方法可以将系数矩阵的TDPP-TDPO部分变为单位块矩阵。因此可以基于这一投影方法对系数矩阵进行降维压缩处理。系数矩阵的维数等于NIES,而与NPOS无关,其中NIES和NPOP分别是TDIE和TDPO区域中空间基函数的数目。对于大多数混合问题,TDIE区域并不是电大尺寸,因此就可以使用直接法求解线性方程组,也避免了迭代法可能产生的收敛问题。同时,本文提出的TDIE-TDPO-MOD方法使用了自适应阶数递推,以及FFT加速MOD卷积过程的分块算法。
With the miniaturization of electronic and electrical devices, systems are increasingly sensitive and susceptible to electromagnetic interference (EMI). Similarly, many antennas are mounted on electrically large platforms, which will suffer much more EMI problems than before. In modern electronic countermeasures, especially, after the emergence of some new-style weapons such as the high-power wideband EMP launcher and EM bomb, countries around the world initiate a new round competition in the research of electromagnetic interference (EMI) and protection techniques. This dissertation is focused on the development of time-domain integral equations and its hybrid methods with high accuracy and efficiency to study electromagnetic pulse effects and interaction mechanism in some typical systems illuminated by a high-power electromagnetic pulse (EMP).
     Firstly, time-domain integral equations with explicit and implicit marching-on-in-time (MOT) schemes are presented. An efficient hybrid method, TDIE-TDPO-MOT, is proposed for studying electromagnetic responses of several groups of wire and surface structures illuminated by an electromagnetic pulse (EMP), respectively. In comparison with the full TDIE-MOT method, computational complexity can be reduced drastically using our developed TDIE-TDPO-MOT method, and computational accuracy is still maintained.
     Secondly, a time-domain magnetic (TD-MFIE) and combined field integral equations (TD-CFIE) for analyzing scattering from3-D PEC objects are presented. The surface current density is directly used as the unknown, and an exact temporal Galerkin testing procedure is performed with no central approximation used. An adaptive marching-on-in-degree method with FFT-based blocking scheme is proposed, with the approach to determine the optimal scaling factor also given. It is indicated that the proposed scheme can guarantee the accuracy of MOD scheme without increasing the computational cost. Our numerical results also show that the O(NO2NS2) dependence of the MOD method can be reduced to O(NS2NOlog2(NO)) now.
     Thirdly, a radial integration scheme is proposed for handling weakly singular and near-singular potential integrals, which is an essentialimprovement over the previous polar integration method. We at first carryout some careful investigations on the problem of slow convergence. Then,a new technique of smoothing integrand based on polynomialtransformation is presented, which results in much faster convergencerate than that of the polar integration. Finally, some numerical resultsare given to demonstrate both accuracy and convergence rate of ourproposed scheme.
     Fourthly, a new integration approach is proposed for accurate andefficient calculation of time-domain EFIE, MFIE, and CFIE matrixelements over triangular domains. It mainly consists of a radialintegration scheme for handling weakly singular and near-hypersingularinner integrals as well as some new smoothing techniques for treatingthe outer surface integrals. As the proposed method preserves theflexibility for handling different integral kernels, they are applicablefor both time-domain and frequency-domain integral equations.
     Fifthly, an efficient hybrid TDIE-TDPO method with high stability,based on the weighted Laguerre polynomials and MOD scheme, is proposedfor investigating transient electromagnetic responses of3-D compositePEC objects, while the TDPO approximation is applicable to the large PECobjects with smooth surface. These objects are partitioned into tworegions: TDIE and TDPO ones. In the TDIE region, currents are updatedby solving a set of time-domain electric field integral equation (TD-EFIE)using the MOD. In the TDPO region, PO currents are obtained accordingto the incident fields as well as the ones radiated by all currents inthe TDIE one. The hybrid TDIE-TDPO method has advantages over TDPOapproximation alone, as it can control the approximation errors bychanging the percentage of TDIE regions. On the other hand, the proposedmethod does not require any specific acceleration algorithm such as PWTD,and its saving of both memory and CPU time is obtained by TDPOapproximation. Therefore, the hybrid formula can be directly applied forMOT scheme as well as finite difference delay modeling method with nodifficulty.
     Finally, the TDPO-TDPO projection part of the system matrix is madeto be an identity block matrix by a projection procedure for theRao–Wilton–Glisson (RWG) basis functions. Thus, the reduction of dimension of system matrix can be obtained by this projection procedure. In other words, the reduced dimension of system matrix is equal to NIES and irrespective of NPOS, where NIES and NPOS is the number of spatial unknowns in TDIE and TDPO regions, respectively. Since the TDIE region is not electrically large for most hybrid problems, we can solve the linear equations by direct solver without convergence problem introduced by iterative methods. The method for adaptively determining the number of temporal basis functions and the fast Fourier transform (FFT)-based blocking scheme for accelerating the temporal convolutions, is also employed.
引文
[1]周璧华,陈彬,石立华,电磁脉冲及其工程防护,北京,国防工业出版社,2003.
    [2] M. Abrams,“Dawn of the E-Bomb,” IEEE Spectrum,2003,40(11):24-30.
    [3] W. A. Radasky, C. E. Baum, and M. W. Wik,“Introduction to the special issueon high-power electromagnetic (HPEM) and intentional electromagneticinterference,” IEEE Trans. Electromagn. Compat.,2004,46(3):314-321.
    [4] M. Camp, H. Gerth, H. Garbe, and H. Haase,“Predicting the breakdownbehavior of microcontroller under EMP/UWB impact using a statisticalanalysis,” IEEE Trans. Electromagn. Compat.,2004,46(3):368-379.
    [5] D. Nitsch, M. Camp, F. Sabath, J. L. ter Haseborg, and H. Garbe,“Susceptibilityof some electronic equipment to HPEM threats,” IEEE Trans. Electromagn.Compat.,2004,46(3):380-389.
    [6] R. Hord, N. J. Carter, D. Herke, and S. P. Watkins,“Trends in EM susceptibilityof IT equipment,” IEEE Trans. Electromagn. Compat.,2004,46(3):390-395.
    [7] M. G. Backstrom, and K. G. Lovstrand,“Susceptibility of electronic systems tohigh-power microwaves: summary of test experence,” IEEE Trans. Electromagn.Compat.,2004,46(3):396-403.
    [8] Y. V. Parfenov, L. N. Zdoukhov, W. A. Radasky, and M. Ianoz,“ConductedIEMI threats for commercial buildings,” IEEE Trans. Electromagn. Compat.,2004,46(3):404-411.
    [9] A. C. Marvin, J. F. Dawson, S. Ward, J. Clegg, and A. Weissenfeld “A proposednew definition and measurement of the shielding effect of equipmentenclosures,” IEEE Trans. Electromagn. Compat.,2004,46(3):459-468.
    [10]M. W. Wik, and W. A. Radasky,“Development of high-power electromagnetic(HPEM) standards,” IEEE Trans. Electromagn. Compat.,2004,46(3):439-445.
    [11]J. C. Maxwell, A treatise on electricity and magnetism, Dover, N. Y.,1954.
    [12]J. M. Jin, Theory and Computation of Electromagnetic Fields, John Wiley&Sons, Inc, New Jersey,2010.
    [13]G. Green, An Essay on the Application of Mathematical Analysis to the Theoriesof Electricity and Magnetism, T. Wheelhouse, Nottingham,1828.
    [14]O. M. Bucci and G. Franceschetti, On the degrees of freedom of scattered fields,IEEE Trans. Antennas Propagat.,1989,37: pp.918–926.
    [15]A. Bondeson, T. Rylander, and P. Ingelstrom, Computational Electromagnetics,Springer-Verlag, Berlin,2005.
    [16]R. Lee and A. C. Cangellaris,“A study of discretization error in the finiteelement approximation of wave solution,” IEEE Trans. Antennas Propag.,1992,40(5):542-549.
    [17]J. M. Jin, The Finite Element Method in Electromagnetics, New York, JohnWiley and Sons,2002.
    [18]P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford UniversityPress,2003.
    [19]J. F. Lee and D. K. Sun,“p-Type Multiplicative Schwarz (pMUS) Method withVector Finite Elements for Modeling Three-Dimensional WaveguideDiscontinuities,” IEEE Trans. Micro. Theory Tech.,2004,52(3):864-870.
    [20]K. Zhao, V. Rawat, S. C. Lee, and J. F. Lee,“A domain decomposition methodwith non-conformal meshes for finite periodic and semi-periodic structures,”IEEE Trans. Antennas Propagat.,2007,55(9):2559–2570.
    [21]J. M. Jin and D. J. Riley, Finite Element Analysis of Antennas and Arrays,Hoboken, Wiley,2008.
    [22]R. F. Harrington, Field Computation by Moment Methods, New York, IEEEPress,1993.
    [23]V. Rokhlin, Rapid solution of integral equations of scattering theory in twodimensions, J. Comput. Phys.,1990,86(2):414–439.
    [24]R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for thewave equation: A pedestrian prescription. IEEE Antennas Propagat. Mag.,1993,35(3):7-12.
    [25]W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and EfficientAlgorithms in Computational Electromagnetics, Boston, MA, Artech House,2001.
    [26]W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods forElectromagnetic and Elastic Waves, San Rafael, CA, Morgan&Claypool,2008.
    [27]F. P. Andriulli, K. Cools, H. Ba gc, F. Olyslager, A. Buffa, S. Christiansen, andE. Michielssen,“A multiplicative Calderón preconditioner or the electric fieldintegral equation,” IEEE Trans. Antennas Propagat.,2008,56(8):2398–2412.
    [28]A. Taflove and S. C. Hagness, Computational Electrodynamics: TheFinite-Difference Time-Domain Method, Boston, Artech House,2005.
    [29]葛德彪,闰玉波,电磁波时域有限差分方法,西安电子科技大学出版社,2002.
    [30]T. Namiki, and K. Ito,“Numerical simulation of microstrip resonators and filtersusing the ADI-FDTD method,” IEEE Trans. Microwave Theory Tech.,2001,49(4):665-670.
    [31]C. H. Yuan and Z. Z. Chen,“A three dimensionally unconditionally stableADI-FDTD method in the cylindrical coordinate system,” IEEE Trans.Microwave Theory Tech.,2002,50(10):2401-2405.
    [32]G. Waldschmidt and A. Taflove,“Three-dimensional CAD-based mesh generatorfor the Dey-Mittra conformal FDTD algorithm,” IEEE Trans. on Antennas andPropagat.,2004,52(7):1658-1664.
    [33]G. Rodriguez, Y. Miyazaki, and N. Goto,“Matrix-based FDTD parallelalgorithm for big areas and its applications to high-speed wirelesscommunications,” IEEE Trans. Antennas Propagat.,2006,54(3):785-796.
    [34]M. Cai, T. Xiao, G. Zhao, and Q. H. Liu,“A hybrid PSTD/ADI-CFDTD methodfor mixed-scale electromagnetic problems,” IEEE Trans. Antennas Propagat.,2007,55(5):1398-1406.
    [35]I. Ahmed, E. Chan, E. Li and Z. Chen,“Development of the three-dimensionalunconditionally stable LoD-FDTD method,” IEEE Trans. Antennas Propagat.,2008,56(11):3596-3600.
    [36]J. F. Lee, R. Lee and A. C. Cangellaris,“Time-domain finite element method,”IEEE Trans. Antennas Propagat.1997,45(3):430-442.
    [37]H. P. Tsai, Y. Wang, and T. Itoh,“An unconditionally stable extended (USE)finite-element time-domain solution of active nonlinear microwave circuitsusing perfectly matched layers,” IEEE Trans. Microw. Theory Tech.,2002,50(10):2226–2232.
    [38]D. Jiao, J. M. Jin, E. Michielssen, and D. J. Riley,“Time-domain finite-elementsimulation of three-dimensional scattering and radiation problems usingperfectly matched layers,” IEEE Trans. Antennas Propagat.,2003,51(2):296–305.
    [39]A. Monorchio, A.R. Bretones, R. Mittra, G. Manara, and R.G. Martin,“A hybridtime-domain technique that combines the finite element, finite difference andmethod of moment techniques to solve complex electromagnetic problems,”IEEE Trans. Antennas Propagat.,2004,52(10):2666–2674.
    [40]S. M. Rao and D. R. Wilton,“Transient scattering by conducting surfaces ofarbitrary shape,” IEEE Trans. Antennas Propag.,1991,39(1):56-61.
    [41]S. M. Rao and T. K. Sarkar,“An alternative version of the time domain electricfield integral equation for arbitrarily shaped conductors,” IEEE Trans. AntennasPropagat.,1993,41:831–834.
    [42]G. Manara, A. Monorchio, and R. Reggiannini,“A space-time discretizationcriterion for a stable time-marching solution of the electric field integralequation,” IEEE Trans. Antennas Propagat.,1997,45:527–532.
    [43]M. J. Bluck and S. P. Walker,“Time-domain BIE analysis of large threedimensional electromagnetic scattering problems,” IEEE Trans. AntennasPropagat.,1997,45:894–901.
    [44]D. S. Weile, G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen,“Anovel scheme for the solution of the time-domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propagat.,2004,52(1):283–295.
    [45]X. Wang, R.A. Wildman, D.S. Weile, P. Monk,“A finite difference delaymodeling approach to the discretization of the time domain integral equations ofelectromagnetics”, IEEE Trans. Antennas Propagat.,2008,56(8):2442–2452.
    [46]F. P. Andriulli, K. Cools, F. Olyslager, E. Michielssen,“Time domain Calderónidentities and their application to the integral equation analysis of scattering byPEC objects part II: stability”, IEEE Trans. Antennas Propagat.,2009,57(8):2365–2375.
    [47]B. H. Jung, Y. S. Chung, and T. K. Sarkar,“Time-domain EFIE, MFIE, andCFIE formulations using Laguerre polynomials as temporal basis functions forthe analysis of transient scattering from arbitrarily shaped conductingstructures,” Progress Electromagn. Res.,2003,39:1–45.
    [48]Y. S. Chung, T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. M.Jang, and K.J. Kim,“Solution of time domain electric field Integral equation using theLaguerre polynomials,” IEEE Trans. Antennas Propagat.,2004,52(9):2319–2328.
    [49]Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma,“Solving timedomain electric field integral equation without the time variable,” IEEE Trans.Antennas Propagat.,2006,54(1):258–262.
    [50]B. H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan,“A comparisonof marching-on in time method with marching-on in degree method for theTDIE solver,” Progress Electromagn. Res.,2007,70:281–296.
    [51]B. Shanker, A. A. Ergin, and E. Michielssen,“Plane-wave-time-domain-enhanced marching-on-in-time scheme for analyzing scattering fromhomogeneous dielectric structures,” J. Opt. Soc. Amer. A,2002,19(4):716–726.
    [52]A. E. Y lmaz, J. M. Jin, and E. Michielssen,“Time domain adaptive integralmethod for surface integral equations,” IEEE Trans. Antennas Propagat.,2004,52(10):2692–2708.
    [53]A. E. Yilmaz, D. S. Weile, B. Shanker, J. M. Jin, and E. Michielssen,“Fastanalysis of transient scattering in lossy media,” IEEE Antennas WirelessPropagat. Lett.,2002,1:14–17.
    [54]A. E. Y lmaz, D. S. Weile, J. M. Jin, and E. Michielssen,“A fast Fouriertransform accelerated marching-on-in-time algorithm for electromagneticanalysis,” Electromagn.,2001,21(3):181–197.
    [55]A. E. Y lmaz, D. S. Weile, J. M. Jin, and E. Michielssen,“A hierarchical FFTalgorithm (HIL-FFT) for the fast analysis of transient electromagnetic scatteringphenomena,” IEEE Trans. Antennas Propagat.,2002,50(7):971–982.
    [56]A. Geranmayeh, W. Ackermann, and T. Weiland,“Toeplitz property on orderindices of laguerre expansion methods,” Proc. IEEE MTT-S Int. Symp., Jun.2009, pp.253–256.
    [57]S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propagat.,1982,30(3):409–418.
    [58]M. Yuan, A. De, T. Sarkar, J. Koh, and B. H. Jung,“Conditions for generation ofstable and accurate hybrid TD-FD MoM solutions,” IEEE Trans. Microw.Theory Tech.,2006,54(6):2552–2563.
    [59]E. Hairer, C. H. Lubich, and M. Schlichte,“Fast numerical solution of nonlinearVolterra convolution equations,” SIAM J. Sci. Stat. Comput.,1985,6(3):532–541.
    [60]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Solution of Time-Domain MFIE andCFIE Using Adaptive MOO Method for Transient Scattering in the Presence ofan EMP,” IEEE Int. Symp. Electromagn. Compat.,2011.
    [61]Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products,Academic Press, New York,1980.
    [62]D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. AL-Bundak,and C. M. Butler,“Potential integrals for uniform and linear source distributionson polygonal and polyhedral domains,” IEEE Trans. Antennas Propagat.,1984,32(3):276–281.
    [63]R. D. Graglia,“On the numerical integration of the linear shape functions timesthe3-D Green’s function or its gradient on a plane triangle,” IEEE Trans.Antennas Propagat.,1993,41(10):1448–1455.
    [64]T. F. Eibert, and V. Hansen,“On the calculation of potential integrals for linearsource distributions on triangular domains,” IEEE Trans. Antennas Propagat.,1995,43(12):1499–1502.
    [65]P. Arcioni, M. Bressan, and L. Perregrini,“On the evaluation of the doublesurface integrals arising in the application of the boundary integral method to3-D problems,” IEEE Trans. Microw. Theory Tech.,1997,45(3):436–439.
    [66]P. Yl-Oijala, and M. Taskinen,“Calculation of CFIE impedance matrixelements with RWG and n×RWG functions,” IEEE Trans. Antennas Propagat.,2003,51(8):1837–1846.
    [67]M. G. Duffy,“Quadrature over a pyramid or cube of integrands with asingularity at a vertex,” SIAM, J. Numer. Anal.,1982,19(6):1260–1262.
    [68]L. Rossi, and P. J. Cullen,“On the fully numerical evaluation of the linear-shapefunction times the3-D Greens function on a plane triangle,” IEEE Trans.Microw. Theory Tech.,1999,47(4):398–402.
    [69]M. A. Khayat, and D. R. Wilton,“Numerical evaluation of singular andnear-singular potential integrals,” IEEE Trans. Antennas Propagat.,2005,53(10):3180–3190.
    [70]Ismatullah, and T. F. Eibert,“Adaptive singularity cancellation for efficienttreatment of near-singular and near-hypersingular integrals in surface integralequation formulations,” IEEE Trans. Antennas Propagat.,2008,56(1):274–278.
    [71]R. D. Graglia, and G. Lombardi,“Machine precision evaluation of singular andnearly singular potential integrals by use of Gauss quadrature formulas forrational functions,” IEEE Trans. Antennas Propagat.,2008,56(4):981–998.
    [72]A. C. Yücel, and A. A. Ergin,“Exact evaluation of retarded-time potentialintegrals for the RWG bases,” IEEE Trans. Antennas Propagat.,2006,54(5):1496–1502.
    [73]H. A. ülkü, and A. A. Ergin,“Analytical evaluation of transient magnetic fieldsdue to RWG current bases,” IEEE Trans. Antennas Propagat.,2007,55(12):3565–3575.
    [74]B. Shanker, M. Lu, and E. Michielssen,“Time domain integral equation analysisof scattering from composite bodies via exact evaluation of radiation fields,”IEEE Trans. Antennas Propagat.,2009,57(5):1506–1520.
    [75]Y. Shi, M. Xia, R. Chen, E. Michielssen, and M. Lu,"Stable electric field TDIEsolvers via quasi-exact evaluation of MOT matrix elements," IEEE Trans.Antennas Propagat.,2011,59(2):574-585.
    [76]S. Chakraborty, and V. Jandhyala,“Accurate computation of vector potentials inlossy media,” Microw. Opt. Technol. Lett.,2003,36(5):359–363.
    [77]S. Chakraborty, and V. Jandhyala,“Evaluation of Green’s function integrals inconducting media,” IEEE Trans. Antennas Propag.,2004,52(12):3357–3363.
    [78]J. Pingenot, S. Chakraborty, and V. Jandhyala,“Polar integration for exactspace-time quadrature in time-domain integral equations,” IEEE Trans.Antennas Propagat.,2006,54(10):3037–3042.
    [79]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Radial Integration Scheme for HandlingWeakly Singular and Near-Singular Potential Integrals,” IEEE AntennasWireless Propagat. Lett.,2011,10:792–795.
    [80]A. G. Polimeridis, and J. R. Mosig,“Evaluation of weakly singular integrals viageneralized Cartesian product rules based on the double exponential formula,”IEEE Trans. Antennas Propagat.,2010,58(6):1980–1988.
    [81]L. Scuderi,“On the computation of nearly singular integrals in3D BEMcollocation,” Int. J. Numer. Meth. Eng.,2008,74(2):1733–1770.
    [82]K. Hayami,“Variable transformations for nearly singular integrals in theboundary element method,” Publ. Res. Inst. Math. Sci.,2005,41(4):821–842.
    [83]S. Caorsi, D. Moreno, and F. Sidoti,“Theoretical and numerical treatment ofsurface integrals involving the free-space Green’s functions,” IEEE Trans.Antennas Propagat.,1993,41(9):1296–1301.
    [84]G. Monegato, and L. Scuderi,“Numerical integration of functions with boundarysingularities,” J. Comput. Appl. Math.,1999,112(1-2):201–214.
    [85]K. Aygün, B. Shanker, A. A. Ergin, and E. Michielssen,“A two-level plane wavetime-domain algorithm for fast analysis of EMC/EMI problems,” IEEE Trans.Electromagn. Compat.,2002,44(1):152–164.
    [86]C. Yang and V. Jandhyala,“Combined circuit electromagnetic simulation usingmultiregion time domain integral equation scheme,” IEEE Trans. Electromagn.Compat.,2006,48(1):2–9.
    [87]H. Bagci, A. E. Yilmaz, J. M. Jin, and E. Michielssen,“Fast and rigorousanalysis of EMC/EMI phenomena on electrically large and complexcable-loaded structures,” IEEE Trans. Electromagn. Compat.,2007,49(2):361–381.
    [88]H. Bagci, A. C. Yucel, J. S. Hesthaven, and E. Michielssen,"A FastStroud-based collocation method for statistically characterizing EMI/EMCphenomena on complex platforms," IEEE Trans. Electromagn. Compat.,2009,51(2):301-311.
    [89]B. Shanker, A. A. Ergin, M. Lu, and E. Michielssen,“Fast analysis of transientelectromagnetic scattering phenomena using the multilevel plane wave timedomain algorithm,” IEEE Trans. Antennas Propagat.,2003,51(3):628–641.
    [90]E. Y. Sun and W. V. T. Rusch,“Time-domain physical-optics,” IEEE Trans.Antennas Propagat.,1994,42(1):9–15.
    [91]U. Jakobus and F. M. Landstorfer,“Improved PO-MM hybrid formulation forscattering from three-dimensional perfectly conducting bodies of arbitraryshape,” IEEE Trans. Antennas Propagat.,1995,43(2):162-169.
    [92]R. E. Hodges and Y. Rahmat-Samii,“An iterative current-based hybrid methodfor complex structures,” IEEE Trans. Antennas Propagat.,1997,43, pp.265–276.
    [93]F. Obelleiro, J. M. Taboada, J. L. Rodríguez, J. O. Rubi os, and A. M. Arias,“Hybrid moment-method physical-optics formulation for modeling theelectromagnetic behavior of on-board antennas,” Microwave Opt. Technol. Lett.,2000,27(2):88–93.
    [94]M. Djordjevi and B. M. Notaro,“Higher order hybrid method ofmoments-physical optics modeling technique for radiation and scattering fromlarge perfectly conducting surfaces,” IEEE Trans. Antennas Propagat.,2005,53(2):800–813.
    [95]M. Chen, Y. Zhang, X. W. Zhao and C. H. Liang,“Analysis of antenna aroundNURBS surface with hybrid MoM-PO technique,” IEEE Trans. AntennasPropagat.,2007,55(2):407–413.
    [96]S. P. Walker and M. J. Vartiainen,“Hybridization of curvilinear time-domainintegral equation and time-domain optical methods for electromagneticscattering analysis,” IEEE Trans. Antennas Propagat.,1998,46(3):318–324.
    [97]G. Kobidze, B. Shanker, and E. Michielssen,“Hybrid PO-PWTD schemefor analyzing of scattering from electrically large PEC objects,” IEEE Antennasand Propagation Society Int. Symp.,2003,3:547–555.
    [98]G. P. Junker, A. A. Kishk, and A. W. Glisson,“A novel delta gap source modelfor center fed cylindrical dipoles,” IEEE Trans. Antennas Propagat.,1995,43(5):537-540.
    [99]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“An adaptive marching-on-in-ordermethod with FFT-based blocking scheme,” IEEE Antennas Wireless Propagat.Lett.,2010,9:436–439.
    [100] A. S. Glassner,“An Introduction to Ray Tracing,” Academic Press,1989.
    [101] J. M. Rius, M. Ferrando, and L. Jofre,“High-frequency RCS of complex radartargets in real-time,” IEEE Trans. Antennas Propagat.,1993,41(9):1308-1319.
    [102] J. Asvestas,“The physical-optics integral and computer graphics,” IEEE Trans.Antennas Propagat.,1995,42(12):1459-1460.
    [103] E. Hairer, C. H. Lubich, and M. Schlichte,“Fast numerical solution ofnonlinear Volterra convolution equations,” SIAM J. Sci. Stat. Comput.,1985,6(3):532–541.
    [104] T. W. Veruttipong,“Time domain version of the uniform GTD,” IEEE Trans.Antennas Propagat.,1990,38(11):1757–1764.
    [105] A. Alt nta and P. Russer,“Time-domain equivalent edge currents for transientscattering,” IEEE Trans. Antennas Propagat.,2001,49(4):602–606.
    [106] M. F. Xue and W. Y. Yin,“Wideband pulse responses of fractal monopoleantennas under the impact of an EMP,” IEEE Trans. Electromagn. Compat.,2010,52(1):98–107.
    [107] W. Luo, W. Y. Yin, M. D. Zhu, and J. Y. Zhao,“Hybrid TDIE-TDPO methodfor studying on transient responses of some wire and surface structuresilluminated by an electromagnetic pulse,” Progress In ElectromagneticsResearch,2011,116:203-219.
    [108] M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Investigation on electromagneticresponses of double objects illuminated by a high-power EMP using hybridTDIE-TDPO method,” in Proc. IEEE. Int. Symp. Electronmagn. Compat.,2010, pp.547-555.
    [109] Q. F. Liu, W. Y. Yin, J. F. Mao, and Z. Z. Chen,“Accurate characterization ofshielding effectiveness of metallic enclosures with thin wires and thin slots,”IEEE Trans. Electromagn. Compat.,2009,51(2):293-300.
    [110] G. H. Zhang, M. Xia, and X. M. Jiang,"Transient analysis of wire structuresusing time domain integral equation method with exact matrix elements,"Progress In Electromagnetics Research,2009,92:281-298.
    [111] W. Luo, W. Y. Yin, M. D. Zhu, and J. F. Mao,“Investigation onelectromagnetic responses of some complex wire-surface composite objectsusing hybrid TDIE-TDPO based MOT method,” IEEE Electronmagn. Compat.Symp., Aug.2011, pp.579-584.
    [112] H. Zhu, Z.-H. Wu, X. Y. Zhang, and B.-J. Hu,"Time-domain integral equationsolver for radiation from dipole antenna loaded with general bi-isotropicobjects," Progress In Electromagnetics Research B,2011,35:349-367.
    [113] Y. Guan, S.-X. Gong, S. Zhang, B. Lu, and T. Hong,"A novel time-domainphysical optics for computation of electromagnetic scattering of homogeneousdielectric objects," Progress In Electromagnetics Research M,2010,14:123-134.
    [114] J. Li, B. Wei, Q. He, L.-X. Guo, and D.-B. Ge,"Time-domain iterativephysical optics method for analysis of EM scattering from the target halfburied in rough surface: PEC case," Progress In Electromagnetics Research,2011,121:391-408.
    [115]武胜波,三维目标电磁散射的时域积分方程方法,成都,电子科技大学,2005.
    [116]周东明,时域积分方程快速算法及其应用研究,长沙,国防科技大学,2006.
    [117]俞文明,旋转对称频域和时域积分方程方法及其软件实现和应用,南京,南京理工大学,2007.
    [118]任猛,时域边界积分方程及其快速算法的研究与应用,长沙,国防科技大学,2008.
    [1] G. Manara, A. Monorchio, and R. Reggiannini,“A space-time discretizationcriterion for a stable time-marching solution of the electric field integralequation,” IEEE Trans. Antennas Propag.,1997,45(3):527–532.
    [2] J. L. Hu and C. H. Chan,“Improved temporal basis functions using for timedomain electric field integral equation method,” Electron. Lett.,1999,35:883–885.
    [3] J. L. Hu, C. H. Chan, and Y. Xu,“A new temporal basis function for thetime-domain integral equation method,” IEEE Microwave Wireless Comp. Lett.,2001,11:465–466.
    [4] D. S. Weile, G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen,“A novelscheme for the solution of the time-domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propag.,2004,52(1):83–295.
    [5] S. M. Rao and D. R. Wilton,“Transient scattering by conducting surfaces ofarbitrary shape,” IEEE Trans. Antennas Propag.,1991,39(1):56–61.
    [6] S. M. Rao, and T. K. Sarkar,“An alternative version of the time domain electricfield integral equation for arbitrarily shaped conductors,” IEEE Trans. AntennasPropag.,1993,41(6):831–834.
    [7] S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,1982,30(3):409–418.
    [8] I. Hanninen, M. Taskinen, and J. Sarvas.“Singularity subtraction integralformulae for surface integral equations with RWG, rooftop and hybrid basisfunctions,” Progress in Electromagn. Research,2006,63:101–129.
    [9] G. H. Zhang, M. Xia, and C. H. Chan.“Time domain integral equation approachfor analysis of transient responses by metallic-dielectric composite bodies,”Progress in Electromagn. Research,2008,87:1–14.
    [10]G. H. Zhang, M. Xia, and X. M. Jiang.“Transient analysis of wire structuresusing time domain integral equation method with exact matrix elements,”Progress in Electromagn. Research,2009,92:281–298.
    [11]M. J. Bluck, and S. P. Walker,“Time-domain BIE analysis of large threedimensional electromagnetic scattering problems,” IEEE Trans. AntennasPropag.,1997,45(5):894–901.
    [12]X. Wang, R.A. Wildman, D.S. Weile, and P. Monk,“A finite difference delaymodelling approach to the discretization of the time domain integral equationsof electromagnetic,” IEEE Trans. Antennas Propag.,2008,56(8):2442–2452.
    [13]F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen,“Time domaincalderón identities and their application to the integral equation analysis ofscattering by PEC objects Part II: stability,” IEEE Trans. Antennas Propag.,2009,57(8):2365–2375.
    [14]M. F. Xue, W. Y. Yin,“Wideband pulse responses of fractal monopole antennasunder the impact of an EMP,” IEEE Trans. Electromagn. Compat.,2010,52(1):98–107.
    [15]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“An adaptive marching-on-in-ordermethod with FFT-based blocking scheme,” IEEE Antennas Wireless PropagationLett.,2010,9:436–439.
    [16]M. Y. Xia, G. H. Zhang, and G. L. Dai,“Stable solution of time domain integralequation methods using quadratic B-spline temporal basis functions,”International Journal of Computational Mathematics.,2007,25(3):374–384.
    [17]S. P. Walker and M. J. Vartiainen,“Hybridization of curvilinear time-domainintegral equation and time-domain optical methods for electromagneticscattering analysis,” IEEE Trans. Antennas Propag.,1998,46(3):318–324.
    [18]G. Kobidze, B. Shanker and E. Michielssen,“Hybrid PO-PWTD scheme foranalysing of scattering from electrically large PEC objects,” IEEE AntennasPropagation Society Int. Symp.,2003,3:547–555.
    [19]E.-Y. Sun, and W. V. T. Rusch,“Time-domain physical-optics,” IEEE Trans.Antennas Propag.,1994,42:9–15.
    [20]M. Reng, D. M. Zhou, Y. Li, and J. G. He,“Coupled TDIE-PO method fortransient scattering from electrically large conducting objects,” Electronics Lett.,2008,44(4):258–260.
    [21]S. T. Qin, S. X. Gong, R. Wang, and L. X. Guo.“A TDIE/TDPO hybrid methodfor the analysis of TM transient scattering from two-dimensional combinativeconducting cylinders,” Progress in Electromagn. Research,2010,102:181–195.
    [22]B. H. Jung, T. K. Sarkar, and Y.-S. Chung.“A survey of various frequencydomain integral equations for the analysis of scattering from three-dimensionaldielectric objects,” Progress in Electromagn. Research,2002,36:193–246.
    [23]G. Fikioris and C. A. Valagiannopoulos.“Input admittances arising from explicitsolutions to integral equations for infinite-length dipole antennas,” Progress inElectromagn. Research,2005,55:285–306.
    [24]G. Wen.“New magnetic field integral equation for antenna system,” Progress inElectromagn. Research,2006,63:153–170.
    [25]Z. Ji, T. K. Sarkar, B. H. Jung, Y. S. Chung, M. Salazar-Palma, and M. Yuan,“Astable solution of time domain electric field integral equation for thin-wireantennas using the Laguerre polynomials,” IEEE Trans. Antennas Propag.,2004,52(10):2641–2649.
    [26]S. U. Hwu, D. R. Wilton, and S. M. Rao,“Electromagnetic scattering andradiation by arbitrary wire/surface configurations,” IEEE Antennas PropagationSociety Int. Symp.,1998,6(2):890-893.
    [27]G. P. Junker, A. A. Kishk, and A. W. Glisson,“A novel delta gap source modelfor center fed cylindrical dipoles,” IEEE Trans. Antennas Propag.,1995,43(5):537–540.
    [28]S. Makarov,“MoM antenna simulation with Matlab: RWG basis functions,”IEEE Trans. Antennas Propagation Magazine, vol.43, no.5, pp.100–107,2001.
    [29]K. Aygün, B. Shanker, and A. A. Ergin,“A two-level plane wave time-domainalgorithm for fast analysis of EMC/EMI problems,” IEEE Trans. Electromagn.Compat.,2002,44(1):152–164.
    [1] S. M. Rao and D. R. Wilton,“Transient scattering by conducting surfaces ofarbitrary shape,” IEEE Trans. Antennas Propag.,1991,39(1):56-61.
    [2] S. M. Rao and T. K. Sarkar,“An alternative version of the time-domain electricfield integral equation for arbitrarily shaped conductors,” IEEE Trans. AntennasPropag.,1993,41(6):831-834.
    [3] G. Manara, A. Monorchio, and R. Reggiannini,“A space-time discretizationcriterion for a stable time-marching solution of the electric field integralequation,” IEEE Trans. Antennas Propag.,1997,45(3):527–532.
    [4] M. J. Bluck and S. P. Walker,“Time-domain BIE analysis of large threedimensional electromagnetic scattering problems,” IEEE Trans. AntennasPropag.,1997,45(5):894–901.
    [5] D. S. Weile, G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen,“Anovel scheme for the solution of the time-domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propag.,2004,52(1):283–295.
    [6] X. Wang, R.A. Wildman, D.S. Weile, and P. Monk,“A finite difference delaymodeling approach to the discretization of the time domain integral equations ofelectromagnetics”, IEEE Trans. Antennas Propag.,2008,56(8):2442–2452.
    [7] F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen,“Time domainCalderón identities and their application to the integral equation analysis ofscattering by PEC objects part II: stability”, IEEE Trans. Antennas Propag.,2009,57(8):2365–2375.
    [8] B. H. Jung, Y. S. Chung, and T. K. Sarkar,“Time-domain EFIE, MFIE, andCFIE formulations using Laguerre polynomials as temporal basis functions forthe analysis of transient scattering from arbitrarily shaped conductingstructures,” Progress Electromagn. Res.,2003,39:1–45.
    [9] Y. S. Chung, T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. M.Jang, and K.J. Kim,“Solution of time domain electric field Integral equation using theLaguerre polynomials,” IEEE Trans. Antennas Propag.,2004,52(9):2319–2328.
    [10]Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma,“Solving timedomain electric field integral equation without the time variable,” IEEE Trans.Antennas Propag.,2006,54(1):258–262.
    [11]B. H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan,“A comparisonof marching-on in time method with marching-on in degree method for theTDIE solver,” Progress Electromagn. Res.,2007,70:281–296.
    [12]B. Shanker, A. A. Ergin, and E. Michielssen,“Plane-wave-time-domain-enhanced marching-on-in-time scheme for analyzing scattering fromhomogeneous dielectric structures,” J. Opt. Soc. Amer. A,2002,19(4):716–726.
    [13]A. E. Y lmaz, J. M. Jin, and E. Michielssen,“Time domain adaptive integralmethod for surface integral equations,” IEEE Trans. Antennas Propag.,2004,52(10):2692–2708.
    [14]A. E. Yilmaz, D. S. Weile, B. Shanker, J. M. Jin, and E. Michielssen,“Fastanalysis of transient scattering in lossy media,” IEEE Antennas Wireless Propag.Lett.,2002,1:14–17.
    [15]A. E. Y lmaz, D. S. Weile, J. M. Jin, and E. Michielssen,“A fast Fouriertransform accelerated marching-on-in-time algorithm for electromagneticanalysis,” Electromagn.,2001,21(3):181–197.
    [16]A. E. Y lmaz, D. S. Weile, J. M. Jin, and E. Michielssen,“A hierarchical FFTalgorithm (HIL-FFT) for the fast analysis of transient electromagnetic scatteringphenomena,” IEEE Trans. Antennas Propag.,2002,50(7):971–982.
    [17]A. Geranmayeh, W. Ackermann, and T. Weiland,“Toeplitz property on orderindices of laguerre expansion methods,” Proc. IEEE MTT-S Int. Symp., Jun.2009, pp.253–256.
    [18]S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,1982,30(3):409–418.
    [19]M. Yuan, A. De, T. Sarkar, J. Koh, and B. H. Jung,“Conditions for generation ofstable and accurate hybrid TD-FD MoM solutions,” IEEE Trans. Microw.Theory Tech.,2006,54(6):2552–2563.
    [20]E. Hairer, C. H. Lubich, and M. Schlichte,“Fast numerical solution of nonlinearVolterra convolution equations,” SIAM J. Sci. Stat. Comput.,1985,6(3):532–541.
    [21]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“An adaptive marching-on-in-ordermethod with FFT-based blocking scheme,” IEEE Antennas Wireless Propag.Lett.,2010,9:436–439.
    [22]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Solution of Time-Domain MFIE andCFIE Using Adaptive MOO Method for Transient Scattering in the Presence ofan EMP,” IEEE Int. Symp. Electromagn. Compat.,2011.
    [23]Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products,Academic Press, New York,1980.
    [1] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. AL-Bundak,and C. M. Butler,“Potential integrals for uniform and linear source distributionson polygonal and polyhedral domains,” IEEE Trans. Antennas Propag.,1984,32(3):276–281.
    [2] R. D. Graglia,“On the numerical integration of the linear shape functions timesthe3-D Green’s function or its gradient on a plane triangle,” IEEE Trans.Antennas Propag.,1993,41(10):1448–1455.
    [3] T. F. Eibert, and V. Hansen,“On the calculation of potential integrals for linearsource distributions on triangular domains,” IEEE Trans. Antennas Propag.,1995,43(12):1499–1502.
    [4] P. Arcioni, M. Bressan, and L. Perregrini,“On the evaluation of the doublesurface integrals arising in the application of the boundary integral method to3-D problems,” IEEE Trans. Microw. Theory Tech.,1997,45(3):436–439.
    [5] P. Yl-Oijala and M. Taskinen,“Calculation of CFIE impedance matrix elementswith RWG and n×RWG functions,” IEEE Trans. Antennas Propag.,2003,51(8):1837–1846.
    [6] L. Rossi, and P. J. Cullen,“On the fully numerical evaluation of the linear-shapefunction times the3-D Greens function on a plane triangle,” IEEE Trans.Microw. Theory Tech.,1999,47(4):398–402.
    [7] M. A. Khayat and D. R. Wilton,“Numerical evaluation of singular andnear-singular potential integrals,” IEEE Trans. Antennas Propag.,2005,53(10):3180–3190.
    [8] R. D. Graglia and G. Lombardi,“Machine precision evaluation of singular andnearly singular potential integrals by use of Gauss quadrature formulas forrational functions,” IEEE Trans. Antennas Propag.,2008,56(4):981–998.
    [9] D. J. Taylor,“Accurate and efficient numerical integration of weakly singularintegrals in Galerkin EFIE solutions,” IEEE Trans. Antennas Propag.,2003,51(7):1630–1637.
    [10]A. G. Polimeridis, and T. V. Yioultsis,“On the direct evaluation of weaklysingular integrals in Galerkin mixed potential integral equation formulations,”IEEE Trans. Antennas Propag.,2008,56(9):3011–3019.
    [11]A. G. Polimeridis, and J. R. Mosig,“Complete semi-analytical treatment ofweakly singular integrals on planar triangles via the direct evaluation method,”Int. J. Numerical Methods Eng.,2010,83:1625–1650.
    [12]S. Chakraborty and V. Jandhyala,“Accurate computation of vector potentials inlossy media,” Microw. Opt. Technol. Lett.,2003,36(5):359–363.
    [13]S. Chakraborty and V. Jandhyala,“Evaluation of Green’s function integrals inconducting media,” IEEE Trans. Antennas Propag.,2004,52(12):3357–3363.
    [14]J. Pingenot, S. Chakraborty, and V. Jandhyala,“Polar integration for exactspace-time quadrature in time-domain integral equations,” IEEE Trans.Antennas Propag.,2006,54(10):3037–3042.
    [15]Z. G. Qian, and W. C. Chew,“Generalized impedance boundary condition forconductor modeling in surface integral equation,” IEEE Trans. Microw. TheoryTech.,2007,55(11):2354-2364.
    [16]H. A. ülkü, and A. A. Ergin,“Analytical evaluation of transient magnetic fieldsdue to RWG current bases,” IEEE Trans. Antennas Propag.,2007,55(12):3565–3575.
    [17]S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,1982,30(3):409–418.
    [18]L. Scuderi,“On the computation of nearly singular integrals in3D BEMcollocation,” Int. J. Numer. Meth. Eng.2008,74(2):1733–1770.
    [19]J. S. Asvestas, S. P. Yankovich, and O. E. Allen,“Calculation of the impedancematrix inner integral to prescribed precision,” IEEE Trans. Antennas Propag.,2010,58(2):479–487.
    [20]M. G. Duffy,“Quadrature over a pyramid or cube of integrands with asingularity at a vertex,” SIAM, J. Numer. Anal.,1982,19(6):1260–1262.
    [1] S. M. Rao, and D. R. Wilton,“Transient scattering by conducting surfaces ofarbitrary shape,” IEEE Trans. Antennas Propag.,1991,39(1):56–61.
    [2] G. Manara, A. Monorchio, and R. Reggiannini,“A space-time discretizationcriterion for a stable time-marching solution of the electric field integralequation,” IEEE Trans. Antennas Propag.,1997,45(3):527–532.
    [3] M. J. Bluck, and S. P. Walker,“Time-domain BIE analysis of large threedimensional electromagnetic scattering problems,” IEEE Trans. AntennasPropag.,1997,45(5):894–901.
    [4] D. S. Weile, G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen,“Anovel scheme for the solution of the time-domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propag.,2004,52(1):283–295.
    [5] Y. S. Chung, T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. M. Jang, andK. J. Kim,“Solution of time domain electric field integral equation using theLaguerre polynomials,” IEEE Trans. Antennas Propag.,2004,52(9):2319–2328.
    [6] Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma,“Solving timedomain electric field integral equation without the time variable,” IEEE Trans.Antennas Propag.,2006,54(1):258–262.
    [7] X. Wang, R.A. Wildman, D.S. Weile, and P. Monk,“A finite difference delaymodeling approach to the discretization of the time domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propag.,2008,56(8):2442–2452.
    [8] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. AL-Bundak,and C. M. Butler,“Potential integrals for uniform and linear source distributionson polygonal and polyhedral domains,” IEEE Trans. Antennas Propag.,1984,32(3):276–281.
    [9] R. D. Graglia,“On the numerical integration of the linear shape functions timesthe3-D Green’s function or its gradient on a plane triangle,” IEEE Trans.Antennas Propag.,1993,41(10):1448–1455.
    [10]T. F. Eibert, and V. Hansen,“On the calculation of potential integrals for linearsource distributions on triangular domains,” IEEE Trans. Antennas Propag.,1995,43(12):1499–1502.
    [11]P. Arcioni, M. Bressan, and L. Perregrini,“On the evaluation of the doublesurface integrals arising in the application of the boundary integral method to3-D problems,” IEEE Trans. Microw. Theory Tech.,1997,45(3):436–439.
    [12]P. Yl-Oijala, and M. Taskinen,“Calculation of CFIE impedance matrixelements with RWG and n×RWG functions,” IEEE Trans. Antennas Propag.,2003,51(8):1837–1846.
    [13]M. G. Duffy,“Quadrature over a pyramid or cube of integrands with asingularity at a vertex,” SIAM, J. Numer. Anal.,1982,19(6):1260–1262.
    [14]L. Rossi, and P. J. Cullen,“On the fully numerical evaluation of the linear-shapefunction times the3-D Greens function on a plane triangle,” IEEE Trans.Microw. Theory Tech.,1999,47(4):398–402.
    [15]M. A. Khayat, and D. R. Wilton,“Numerical evaluation of singular andnear-singular potential integrals,” IEEE Trans. Antennas Propag.,2005,53(10):3180–3190.
    [16]Ismatullah, and T. F. Eibert,“Adaptive singularity cancellation for efficienttreatment of near-singular and near-hypersingular integrals in surface integralequation formulations,” IEEE Trans. Antennas Propag.,2008,56(1):274–278.
    [17]R. D. Graglia, and G. Lombardi,“Machine precision evaluation of singular andnearly singular potential integrals by use of Gauss quadrature formulas forrational functions,” IEEE Trans. Antennas Propag.,2008,56(4):981–998.
    [18]A. C. Yücel, and A. A. Ergin,“Exact evaluation of retarded-time potentialintegrals for the RWG bases,” IEEE Trans. Antennas Propag.,2006,54(5):1496–1502.
    [19]H. A. ülkü, and A. A. Ergin,“Analytical evaluation of transient magnetic fieldsdue to RWG current bases,” IEEE Trans. Antennas Propag.,2007,55(12):3565–3575.
    [20]B. Shanker, M. Lu, and E. Michielssen,“Time domain integral equation analysisof scattering from composite bodies via exact evaluation of radiation fields,”IEEE Trans. Antennas Propag.,2009,57(5):1506–1520.
    [21]Y. Shi, M. Xia, R. Chen, E. Michielssen, and M. Lu,"Stable electric field TDIEsolvers via quasi-exact evaluation of MOT matrix elements," IEEE Trans.Antennas Propag.,2011,59(2):574-585.
    [22]S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,1982,30(3):409–418.
    [23]S. Chakraborty, and V. Jandhyala,“Accurate computation of vector potentials inlossy media,” Microw. Opt. Technol. Lett.,2003,36(5):359–363.
    [24]S. Chakraborty, and V. Jandhyala,“Evaluation of Green’s function integrals inconducting media,” IEEE Trans. Antennas Propag.,2004,52(12):3357–3363.
    [25]J. Pingenot, S. Chakraborty, and V. Jandhyala,“Polar integration for exactspace-time quadrature in time-domain integral equations,” IEEE Trans.Antennas Propag.,2006,54(10):3037–3042.
    [26]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Radial Integration Scheme for HandlingWeakly Singular and Near-Singular Potential Integrals,” IEEE AntennasWireless Propag. Lett.,2011,10:792–795.
    [27]A. G. Polimeridis, and J. R. Mosig,“Evaluation of weakly singular integrals viageneralized Cartesian product rules based on the double exponential formula,”IEEE Trans. Antennas Propag.,2010,58(6):1980–1988.
    [28]L. Scuderi,“On the computation of nearly singular integrals in3D BEMcollocation,” Int. J. Numer. Meth. Eng.,2008,74(2):1733–1770.
    [29]K. Hayami,“Variable transformations for nearly singular integrals in theboundary element method,” Publ. Res. Inst. Math. Sci.,2005,41(4):821–842.
    [30]S. Caorsi, D. Moreno, and F. Sidoti,“Theoretical and numerical treatment ofsurface integrals involving the free-space Green’s functions,” IEEE Trans.Antennas Propag.,1993,41(9):1296–1301.
    [31]G. Monegato, and L. Scuderi,“Numerical integration of functions with boundarysingularities,” J. Comput. Appl. Math.,1999,112(1-2):201–214.
    [32]B. H. Jung, Y. S. Chung, and T. K. Sarkar,“Time-domain EFIE, MFIE, andCFIE formulations using Laguerre polynomials as temporal basis functions forthe analysis of transient scattering from arbitrarily shaped conductingstructures,” Progress Electromagn. Res.,2003,39:1–45.
    [1] K. Aygün, B. Shanker, A. A. Ergin, and E. Michielssen,“A two-level plane wavetime-domain algorithm for fast analysis of EMC/EMI problems,” IEEE Trans.Electromagn. Compat.,2002,44(1):152–164.
    [2] C. Yang and V. Jandhyala,“Combined circuit electromagnetic simulation usingmultiregion time domain integral equation scheme,” IEEE Trans. Electromagn.Compat.,2006,48(1):2–9.
    [3] H. Bagci, A. E. Yilmaz, J. M. Jin, and E. Michielssen,“Fast and rigorousanalysis of EMC/EMI phenomena on electrically large and complexcable-loaded structures,” IEEE Trans. Electromagn. Compat.,2007,49(2):361–381.
    [4] X. Wang, R.A. Wildman, D.S. Weile, and P. Monk,“A finite difference delaymodeling approach to the discretization of the time domain integral equations ofelectromagnetics,” IEEE Trans. Antennas Propagat.,2008,56(8):2442–2452.
    [5] H. Bagci, A. C. Yucel, J. S. Hesthaven, and E. Michielssen,"A FastStroud-based collocation method for statistically characterizing EMI/EMCphenomena on complex platforms," IEEE Trans. Electromagn. Compat.,2009,51(2):301-311.
    [6] F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen,“Time domainCalderón identities and their application to the integral equation analysis ofscattering by PEC objects part II: stability,” IEEE Trans. Antennas Propagat.,2009,57(8):2365–2375.
    [7] Y. S. Chung, T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. M. Jang, andK. J. Kim,“Solution of time domain electric field integral equation using theLaguerre polynomials,” IEEE Trans. Antennas Propagat.,2004,52(9):2319–2328.
    [8] Z. Ji, T. K. Sarkar, B. H. Jung, Y. S. Chung, M. Salazar-Palma and M. Yuan,“Astable solution of time domain electric field integral equation for thin-wireantennas using the Laguerre polynomials,” IEEE Trans. Antennas Propagat.,2004,52(10):2641–2649.
    [9] Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma,“Solving timedomain electric field integral equation without the time variable,” IEEE Trans.Antennas Propagat.,2006,54(1):258–262.
    [10]B. H. Jung, Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan,“A comparisonof marching-on in time method with marching-on in degree method for theTDIE solver,” Progress Electromagn. Res.,2007,70:281–296.
    [11]Y. S. Chung, Y. Lee, J. So, J. Kim, C. Y. Cheon, B. Lee, and T. K. Sarkar,“Astable solution of time domain electric field integral equation using weightedLaguerre polynomials,” Microwave Opt. Technol. Lett.,2007,49(11):2789–2793.
    [12]B. Shanker, A. A. Ergin, M. Lu, and E. Michielssen,“Fast analysis of transientelectromagnetic scattering phenomena using the multilevel plane wave timedomain algorithm,” IEEE Trans. Antennas Propagat.,2003,51(3):628–641.
    [13]A. E. Y lmaz, J. M. Jin, and E. Michielssen,“Time domain adaptive integralmethod for surface integral equations,” IEEE Trans. Antennas Propagat.,2004,52(10):2692–2708.
    [14]A. E. Y lmaz, D. S. Weile, B. Shanker, J. M. Jin, and E. Michielssen,“Fastanalysis of transient scattering in lossy media,” IEEE Antennas Wireless Propag.Lett.,2002,1:14–17.
    [15]A. E. Y lmaz, D. S. Weile, J. M. Jin, and E. Michielssen,“A hierarchical FFTalgorithm (HIL-FFT) for the fast analysis of transient electromagnetic scatteringphenomena,” IEEE Trans. Antennas Propagat.,2002,50(7):971-982.
    [16]E. Y. Sun and W. V. T. Rusch,“Time-domain physical-optics,” IEEE Trans.Antennas Propagat.,1994,42(1):9–15.
    [17]U. Jakobus and F. M. Landstorfer,“Improved PO-MM hybrid formulation forscattering from three-dimensional perfectly conducting bodies of arbitraryshape,” IEEE Trans. Antennas Propagat.,1995,43(2):162-169.
    [18]R. E. Hodges and Y. Rahmat-Samii,“An iterative current-based hybrid methodfor complex structures,” IEEE Trans. Antennas Propagat.,1997,43, pp.265–276.
    [19]F. Obelleiro, J. M. Taboada, J. L. Rodríguez, J. O. Rubi os, and A. M. Arias,“Hybrid moment-method physical-optics formulation for modeling theelectromagnetic behavior of on-board antennas,” Microwave Opt. Technol. Lett.,2000,27(2):88–93.
    [20]M. Djordjevi and B. M. Notaro,“Higher order hybrid method ofmoments-physical optics modeling technique for radiation and scattering fromlarge perfectly conducting surfaces,” IEEE Trans. Antennas Propagat.,2005,53(2):800–813.
    [21]M. Chen, Y. Zhang, X. W. Zhao and C. H. Liang,“Analysis of antenna aroundNURBS surface with hybrid MoM-PO technique,” IEEE Trans. AntennasPropagat.,2007,55(2):407–413.
    [22]S. P. Walker and M. J. Vartiainen,“Hybridization of curvilinear time-domainintegral equation and time-domain optical methods for electromagneticscattering analysis,” IEEE Trans. Antennas Propagat.,1998,46(3):318–324.
    [23]G. Kobidze, B. Shanker, and E. Michielssen,“Hybrid PO-PWTD schemefor analyzing of scattering from electrically large PEC objects,” IEEE Antennasand Propagation Society Int. Symp.,2003,3:547–555.
    [24]R. F. Harrington,“Field computation by moment methods,” in IEEE Series onElectromagnetic Waves. New York: IEEE,1993.
    [25]G. P. Junker, A. A. Kishk, and A. W. Glisson,“A novel delta gap source modelfor center fed cylindrical dipoles,” IEEE Trans. Antennas Propagat.,1995,43(5):537-540.
    [26]S. M. Rao, D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antennas Propagat.,1982,30(3):409–418.
    [27]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“An adaptive marching-on-in-ordermethod with FFT-based blocking scheme,” IEEE Antennas Wireless Propag.Lett.,2010,9:436–439.
    [28]A. S. Glassner,“An Introduction to Ray Tracing,” Academic Press,1989.
    [29]J. M. Rius, M. Ferrando, and L. Jofre,“High-frequency RCS of complex radartargets in real-time,” IEEE Trans. Antennas Propagat.,1993,41(9):1308-1319.
    [30]J. Asvestas,“The physical-optics integral and computer graphics,” IEEE Trans.Antennas Propagat.,1995,42(12):1459-1460.
    [31]E. Hairer, C. H. Lubich, and M. Schlichte,“Fast numerical solution of nonlinearVolterra convolution equations,” SIAM J. Sci. Stat. Comput.,1985,6(3):532–541.
    [32]T. W. Veruttipong,“Time domain version of the uniform GTD,” IEEE Trans.Antennas Propagat.,1990,38(11):1757–1764.
    [33]A. Alt nta and P. Russer,“Time-domain equivalent edge currents for transientscattering,” IEEE Trans. Antennas Propagat.,2001,49(4):602–606.
    [34]M. F. Xue and W. Y. Yin,“Wideband pulse responses of fractal monopoleantennas under the impact of an EMP,” IEEE Trans. Electromagn. Compat.,2010,52(1):98–107.
    [35]W. A. Radasky, C. E. Baum, and M. W. Wik,“Introduction to the special issueon high-power electromagnetics (HPEM) and intentional electromagneticinterference (IEMI),” IEEE Trans. Electromagn. Compat.,2004,46(3):314-321.
    [36]W. Luo, W. Y. Yin, M. D. Zhu, and J. Y. Zhao,“Hybrid TDIE-TDPO method forstudying on transient responses of some wire and surface structures illuminatedby an electromagnetic pulse,” Progress In Electromagnetics Research,2011,116:203-219.
    [37]M. D. Zhu, X. L. Zhou, and W. Y. Yin,“Investigation on electromagneticresponses of double objects illuminated by a high-power EMP using hybridTDIE-TDPO method,” in Proc. IEEE. Int. Symp. Electronmagn. Compat.,2010,pp.547-555.
    [38]Q. F. Liu, W. Y. Yin, J. F. Mao, and Z. Z. Chen,“Accurate characterization ofshielding effectiveness of metallic enclosures with thin wires and thin slots,”IEEE Trans. Electromagn. Compat.,2009,51(2):293-300.
    [39]G. H. Zhang, M. Xia, and X. M. Jiang,"Transient analysis of wire structuresusing time domain integral equation method with exact matrix elements,"Progress In Electromagnetics Research,2009,92:281-298.
    [40]W. Luo, W. Y. Yin, M. D. Zhu, and J. F. Mao,“Investigation on electromagneticresponses of some complex wire-surface composite objects using hybridTDIE-TDPO based MOT method,” IEEE Electronmagn. Compat. Symp., Aug.2011, pp.579-584.
    [41]H. Zhu, Z.-H. Wu, X. Y. Zhang, and B.-J. Hu,"Time-domain integral equationsolver for radiation from dipole antenna loaded with general bi-isotropicobjects," Progress In Electromagnetics Research B,2011,35:349-367.
    [42]Y. Guan, S.-X. Gong, S. Zhang, B. Lu, and T. Hong,"A novel time-domainphysical optics for computation of electromagnetic scattering of homogeneousdielectric objects," Progress In Electromagnetics Research M,2010,14:123-134.
    [43]J. Li, B. Wei, Q. He, L.-X. Guo, and D.-B. Ge,"Time-domain iterative physicaloptics method for analysis of EM scattering from the target half buried in roughsurface: PEC case," Progress In Electromagnetics Research,2011,121:391-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700