压电式高频疲劳试验机的设计理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交变载荷作用下零部件的主要失效形式为疲劳破坏。目前,国内外预防疲劳破坏的主要有效手段是进行构件材料或者零部件的疲劳试验,测试其抗疲劳断裂性能,绘制S-N曲线,分析、计算其疲劳寿命。目前国内外已有的两大类疲劳试验机即电磁驱动型和电液伺服型,由于受系统阻抗与磁阻的限制,一般工作频率不大于200Hz,同时普遍存在振幅控制性差、共振稳定性不好、加载精度不高等问题,均不适用于对微小与硬脆材料零件、高频受力构件的疲劳检测。随着工业与科技的发展,工作在高频、小振幅受力工况下的微小、硬脆机械零部件的使用逐渐增多,这使得能够模仿小振幅、高速受载工况的、并具有较高检测效率的疲劳试验机的研发变得日益重要。
     本文结合国家自然科学基金项目《压电驱动式高频疲劳试验机构设计理论与性能试验研究》,采用压电振子作为驱动元件,利用系统共振的方法,研制了适用于工作在高频、小振幅受力工况下的微小与硬脆零部件的压电式高频疲劳试验机(以下简称“压电疲劳机”),并进行了相关的设计理论、动力学分析、仿真、和样机实测的研究,内容如下:
     1.基于弹性材料的板壳理论,建立了圆周固支条件下圆形双晶片压电振子的振动模型,求解了其一阶振动模态和所对应的固有频率;应用有限元软件对压电振子进行了模态分析;应用阻抗分析仪实测了压电振子的阻抗特性以获得其固有频率,比较了上述三个结果,验证了理论建模的合理性与求解的正确性。
     2.应用集中质量法建立了压电疲劳机的动力学模型,并根据牛顿第二定律,建立了其机械系统的运动微分方程组,求解了其稳态响应;确定了板弹簧的参数设计原则,即在满足机械强度要求的前提下,它应具有很好的弹性和较小的刚度;由算例得知,426Hz和829Hz这两个频率为振型转换频率,它们的数值由机架的各个零部件参数(尺寸参数、位置参数)所决定。当工作频率低于426Hz时,压电疲劳机以主振型工作,当工作频率与这两个数值相等时,机架将产生较大的振动,而弹性加载器-试样系统则不受力或者只能受到较小的作用力。所以在选择弹性加载器质量、板弹簧刚度和试件刚度时,应尽量使主振型的工作频率偏离振型转换频率远些。
     3.按一定的结构参数建立了压电疲劳机的实体模型与有限元模型,求解了各阶振动模态和所对应的固有频率,确定了第14阶振动模态为压电疲劳机工作的主振型,其所对应的工作频率为330.4Hz;通过改变压电疲劳机主要零部件的9个参数,研究了这些参数的变化对其主振型固有频率的影响、变化规律和原因,结果表明:压电振子金属基板厚度、板弹簧厚度、弹性加载器质量的增加以及金属基板直径的减小,都会引起主振型固频率显著地变大;设置输入165V、主振型工作频率为330.4Hz左右(330.0Hz至330.9Hz)的交变电压,对压电疲劳机进行了谐响应分析,验证了当其以主振型频率工作时,试件受载稳定,同时机架振幅不大。
     4.试制了多种参数的零部件,装配了3台样机,改变样机主要零部件的9个参数,分别测试样机在六个不同驱动电压下施加在试件上的最大动载荷,分析这些参数的变化对施加在试件上的最大动载荷的影响、变化规律和原因。由实测结果可知,施加在试件上的最大动载荷,随着弹性加载器的质量增加而变大;随着驱动电压的增大而变大。可以通过调节上述两个参数,以满足按照疲劳试验载荷水平表,使压电疲劳机向试件施加不同载荷的要求。
     5.以材料为HT100的试件为例,应用本文制成的样机对其进行循环特性为R=0.1的拉伸疲劳测试,工作频率为352.4Hz。绘制了HT100的S-N曲线,得到了其1.18×10~8循环周次的疲劳极限为23.049MPa;应用扫描电镜观察了疲劳断裂的HT100试件断口形貌,分析了裂纹源、裂纹扩展以及瞬断的微观情况。设计制成的样机满足对微小与硬脆构件进行疲劳试验所需的小幅和高频加载、共振稳定可靠、抗干扰能力强等要求。
     6.设计制造了一台由矩形单晶片压电振子驱动,可提供微小载荷、高频率、高精度,适用于小尺度材料进行疲劳检测的压电式微小载荷疲劳试验机,并以蜻蜓翅翼为试样,对其施加给定循环特性R=0.1的33组交变应力,加载精度为0.01N,工作频率为207.4Hz。通过对试验过程中拍摄的图片和录制的视频分析了蜻蜓翅翼由于疲劳破坏所引起的一系列裂口产生、扩展的机理,其疲劳破坏裂口会首先出现在蜻蜓翅翼前缘脉或者后缘脉的附近部位,并随着循环载荷次数的增加而扩展。翅膜对裂口扩展几乎没有抵抗力;而翅脉则可以明显减缓甚至阻止裂口的扩展。设计制成的样机满足对小尺度材料进行疲劳试验所需的载荷小、加载精度高、工作稳定的要求。
The main failure mode of the parts under alternating load is fatigue failure. Currently,the main effective mean to prevent fatigue failure of materials or parts is carrying out fatiguetest on the subject, getting subject’s anti-fatigue fracture property, and getting the S-N curveto calculate its fatigue life. Now, there are two kinds of fatigue testing machine: fatiguetesting machine driven by electromagnetic and fatigue testing machine driven byelectro-hydraulic servo. Due to the restriction of system’s impedance and reluctance, theoperating frequency of them is lower than200Hz generally. Meanwhile because of badamplitude controlling ability and resonance stabilization, low loading accuracy, the abovetwo fatigue testing machine are not suitable to do high frequency fatigue test on small andhard and brittle specimen. With the development of industry and technology, the applicationof small, hard and brittle mechanical parts in the condition of high frequency, smallamplitude stress gradually increases, which makes it more and more important to develop afatigue testing machine to test materials or parts with small amplitude, high frequency load.
     The paper is based on the National Natural Science Foundation Project named “Thestructure design and performance research of piezoelectric high frequency fatigue testingmachine”. By using piezoelectric vibrator as the driving source and the method of systemresonance, a piezoelectric high frequency fatigue testing machine to test materials or partswith small amplitude, high frequency load is developed. The corresponding research ondesign theory, dynamic analysis and simulation and prototype measurement is carried out,the main contents are as following:
     1. Based on shell theory of the elastic material, the vibration mode of the circularpiezoelectric bimorph vibrator is established, and the first order vibration modal and thecorresponding natural frequency is solved; Applying the finite element software to do themodal analysis of piezoelectric vibrator; Applying impedance analyzer to measure theimpedance characteristics of the piezoelectric vibrator in order to obtain its natural frequency,comparing the above three results to verify the reasonable theoretical model and the reasonable solving process.
     2. Applying the lumped-mass method, the4-dof dynamic model of the piezoelectrichigh frequency fatigue testing machine is established. According to Newton second law, thesystem’s differential equation group of mechanical motion is established in the paper, thesteady-state response is solved, and the designing principle of the plate spring’s parameter isdetermined: based on meeting the strength requirements, it should have good flexibility andsoftness; it is concluded that426Hz and829Hz are modal conversion frequencies. Whenoperating frequency is below426Hz, the fatigue testing machine works in the main vibrationmode; When the operating frequency is close to these two values, the rack of the fatiguetesting machine produces a greater vibration, and the force loading on the elastic loader andspecimens force is low.
     3. According to the structural parameters in Table4.3, the solid model of piezoelectrichigh frequency fatigue testing machine and the finite element model of prototype is built,and the vibration modals and the corresponding natural frequencies are solved. The14thvibration mode is determined as the main vibration for the fatigue testing machine whoseworking frequency is330.4Hz; By changing the parameters of the nine main components offatigue testing machine, the impaction of these different parameters on its main modalnatural frequency、vibration mode is researched. The result shows that when the thickness ofpiezoelectric vibrator’s metal substrate, plate spring and the mass of loader increase,thenatural frequency of main vibration mode changes significantly; When the input voltage is165V, the main vibration work frequency is330.4Hz (330.0Hz to330.9Hz), the harmonicresponse analysis on the machine is carried out. It is verified that when the fatigue testingmachine works in frequency of main vibration modal, the load on specimen is stable, andamplitude of the frame of fatigue testing machine is little.
     4. Components with different parameters are made in the paper, and four prototypes areassembled. By changing nine parameters of the main components of the prototype, themaximum dynamic load on the specimen when prototypes work in six different drivingvoltages is obtained with a series tests, and the influence of different parameters onmaximum dynamic load acting on the specimen is analyzed. The measured results show thatthe maximum dynamic load acting on the specimen becomes larger as the increasing of themass of the elastic loader and the driving voltage. By adjusting the mass of the elastic loaderand the driving voltage, the different requirements of load acting on specimen is meetcorroding the requirements of load table of fatigue testing.
     5. Using the prototype to carry out the tensile fatigue test for HT100under the cyclecharacteristic of R=0.1and the working frequency of352.4Hz. The S-N curve of HT100isdrawn, and the fatigue limit (23.049Mpa) is get under the cycle times of1.18×10~8. The microstructure of the fatigue fracture of HT100is observed by scanning electronicmicroscope, the crack source and momentary interruption, as well as the crack propagationare analyzed.
     6. A fatigue testing machine driven by the single rectangular crystal piezoelectric isdesigned and manufactured in this paper. The prototype could provide small, high frequencyand precision load, and carry out fatigue test for small scale materials. Using the prototype,33groups of alternating stress is loaded on dragonfly with the cyclic characteristics R=0.1,the loading precision of0.01N and the working frequency of207.4Hz. Based on thepictures and videos in the test, the appearance and expansion mechanism of dragonfly wingscleft caused by fatigue is analyzed in the paper. The fatigue cleft appears in the position ofpostal vein or front vein of dragonfly wings at first, and then it expands with the increasingof loading cycle times. Wing membrane almost can’t prevent the cleft extending, but the veincan significantly slow down or stop the extension of the cleft.
引文
[1] Frost N.E, Marsh K.J, Pook L.P. Metal fatigue[M]. Oxford, England:Clarendon Press,1974.
    [2] Hunter M..S, Fricke W.G. Metallographic aspects of fatigue behaviorAluminium[J]. Proc. ASTM,1954,54:717-736.
    [3] Bennett J. A. A study of the effect of fatigue stressing on X4130steel[J]. Proc.ASTM,1946,46:693-771.
    [4] Henry D.L. A theory of fatigue damage accumulation in steel[J]. Trans. ASME,1955,77:913-918.G
    [5] Dover W.D, Chaudhury G.K. Fatigue cracks growth in tubular welded Tjoints[J]. ICF5, Cannes,1981.
    [6] Hibberd R.D, Dever W.D. The analysis of random load fatigue crackpropagation, Fracture[J]. ICF4, Waterloo,1977.
    [7] S.Suresh著,王中光译.材料的疲劳[M].北京:国防工业出版社,1999.
    [8]魏文光.金属的力学性能测试[M].北京:科学出版社,1980.
    [9]美国汽车工程师学会钢铁技术委员会第四组疲劳设计委员会,孟少农译.疲劳设计手册[M].北京:人民交通出版社,1984.
    [10] Natio T, Ueda H, Kikuchi M. Fatigue behavior of carburized steel with internaloxides and nonmartensitic microstructure near the surface[J]. Metallurgicaltransactions,1984,15A:1431-1436.
    [11] Kanazawa K, Nishijima S. Fatigue fracure of low alloy steel at ultra-longcycle regime under elevated temperature conditions[J]. Journal Soo Mater Sci,1997,46(12):1396-1401.
    [12] Bathias C, Ni JG, Wu TY et al. Fatigue threshold of alloy at high frequency[J].ICM6,1991,4:463-468.
    [13] Bathias C. There is no infinite fatigue life in metallic materials[J]. FatigueFract Engng Mater Struct,1999,22:559-565.
    [14]神谷秀博,高津学,大矢宽二.日本陶瓷学会论文集[C].2008,109(5):456-463.
    [15]李跃光,姬战国.国内高频疲劳试验机的技术现状及其发展[J].实验技术与试验机,2006,1:1-4.
    [16] Ohring M. Reliability and failure of electronic materials and devices[M].Oxford: Academic Press,1988.
    [17] Nix W D. Mechanical Properties of Thin Films [J]. Metallurgical TransactionsA,1988,20A:1989-2217.
    [18]佟玲,张本华,杨玉芬.疲劳试验研究进展[J].实验室科学,2006,4:53-55.
    [19] Uwe Holzwarth, Petra Schaaff. Nondestructive monitoring of fatigue damageevolution in austenitic stainless steel by positron-lifetime measurements[J].Physical Review. B, Condensed Matter,2004,69(9):094-110.
    [20] Kohji Minoshima, Yoshihiro Maekawa, Kenjiro Komai. The influence ofvacuum on fracture and fatigue behavior in a single aramid fiber[J].International Journal of Fatigue,2000,22:757-765.
    [21] J.E.Butler, J.Keating. Preliminary data derived using a flexural cyclic loadingmachine to test plain and fibrous concrete[J]. Materials and Structures,1981,14(1):25-33.
    [22] Pavel M. Chaplya, Milan Mitrovic, Gregory P.Carman, etc.. Durabilityproperties of piezoelectric stack actuators under combined electromechanicalloading[J]. Journal of applied physics,2006,100:124111.
    [23] Hong Wang, Andrew A.Wereszczak, Hua-Tay Lin. Fatigue response of a PZTmultilayer actuator under high-field electric cycling with mechanicalpreload[J]. Journal of applied physics,2009,105:014112.
    [24] Soon-Bok Lee. Development of a deflection controlled multiaxial fatiguetesting machine[J]. KSME Journal,1990,4(2):103-108.
    [25] Chung-Youb Kim, Ji-Ho Song, Do-Young Lee. Development of a fatiguetesting system for thin films[J]. International Journal of Fatigue,2009,31:736-742.
    [26] M.Yonekawa, T.Ishii, M.Ohmi,etc.. Development of a remote-controlledfatigue test machine using a laser extensometer for investigation of irradiationeffect on fatigue properties [J]. Journal of Nuclear Materials,2002,307-311:1613-1618.
    [27] K Berchem1,M G Hocking.A simple plane bending fatigue and corrosionfatigue testing machine[J]. Measurement Science and Technology,2006,17:60-66.
    [28] A.Koenen,Ph.Virmoux,R.Gras,etc.. A machine for fretting fatigue andfretting wear testing in cryotechical and normal environment[J]. Wear,1996,197:192-196.
    [29] T.S.Sriram, M.E.Fine, Y.W.Chung. A flange-mounted UHV-compatible axialfatigue apparatus using a piezoelectric actuator[J]. Review of ScientificInstruments,1991,62(8):2008-2010.
    [30] Masion W P. Piezoelectric crystals and their application in ultrasonic[C]. NewYork: Van Nostrand,1950.
    [31] Wang Q Y, Berard J Y, Bathias C, et al.. Gigacycle fatigue of ferrous alloys[J].Fatigue and Fracture of Engineering Materials and Structures,1999,22:667-672.
    [32] High-cycle fatigue crack initiation and propagation behaviour of high-strengthspring steel wires[J]. Fatigue and Fracture of Engineering Materials andStructures,1999,22:673-677.
    [33] Stanzl-tschegg, S E. Fracture mechanisms and fracture mechanics at ultrasonicfrequencies[J]. Fatigue and Fracture of Engineering Materials and Structures,1999,22:567-579.
    [34] Zettl B, Mayer H, Stanzl-tschegg S E. Fatigue properties of Al-1Mg-0.6Sifoam at low and ultrasonic frequencies[J]. International Journal of Fatigue,2001,23:565-573.
    [35] Stanzl-tschegg S E, Mayer H R, Tschegg E K. High frequency method fortorsion fatigue testing[J]. Ultrasonics,1993,31:275-280.
    [36] Ishii K, Ebara R, et al.. Ultrasonic fatigue behavior of Ti-6Al-4V alloy[J]. JSoc Mat Sci Japan,1993,42:1218-1223.
    [37] Danninger H, Spoljaric D, Weiss B, et al.. High cycle fatigue behavior of Moalloyed sintered steel[J]. Zeitschrift Fuer Metallkunde,1998,89:135-141.
    [38] Gilbert J, Piehler H R. On the nature and crystallographic orientation ofsubsurface cracks in high cycle of Ti-6Al-4V. Metallurgical Transactons,1993,24A:669-680.
    [39] Umezawa O, Nagai K. Deformation structure and subsurface fatigue crackgeneration in austenitic steels at low temperature[J]. Metallurgical andMaterials Transactions,1998,29A:809-822.
    [40] Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel atultra-high-cycle region under elevated temperature condition[J]. Zairyo/Jounalof the Society of Materials Science,1997,46:1396-1401.
    [41] Murakami Y, Takada M, Toriyama T. Super-long life tension-compressionfatigue properties of quenched and tempered0.46%carbon steel[J].International Journal of Fatigue,1998,20:661-667.
    [42] Neppiras EA. Techniques and equipment for fatigue testing at very highfrequencies[M]. Proc. Astm59.ASTM, Philadelphia,1959.
    [43] Bathias C, Idrissi K, Wu T Y. I nfluence of mean stress on Ti6Al4V fatiguecrack growth at very high frequency[J]. Engineering Fracture Mechanics,1997,56:255-264.
    [44]王清远.超声加速疲劳实验研究[J].四川大学学报(工程科学版),2002,34(3):6-11.
    [45] Stanzzl-Tschegg S E. Ultrasonic Fatigue[A]. Fatigue of20and30kHz[J].Internation Journal of Fatigue,2003,25:1887-1898.
    [46]陈沙古,刘荣凤,欧阳巧琳等.16MnR钢超高周疲劳性能实验[J].西南科技大学学报,2009,24(1):29-32.
    [47]刘荣凤,陈沙古,王清远等.30CrMo的疲劳实验研究[J].科学技术与工程,2009,19(5):1230-1235.
    [48]蔡清福.超声波疲劳实验机[J].实验技术与实验机,1993,33(3):46-48.
    [49]王清远.超声加速疲劳实验研究[J].四川大学学报,2002,34(3):6-11.
    [50]阎桂玲,王弘,高庆等.超声疲劳实验方法及其应用[J].力学与实践,2004(26):25-29.
    [51]王弘,高庆等.超声疲劳试验方法在40Cr钢疲劳性能研究中的应用[J].机械工程材料,2003,27(12):29-31.
    [52]薛红前,陶华.超声疲劳试验方法在铸铝疲劳试验中的应用[J].机械强度,2004,26(2):203-206.
    [53]罗双双,王弘,戴振羽等.超声疲劳试验机控制系统的开发[J].实验室研究与探索,2005,24(1):23-25.
    [54]倪金刚.超声疲劳试验技术的应用[J].航空动力学报,1995,10(3):245-310.
    [55]王弘.超声疲劳实验技术与材料超高周疲劳性能的研究[J].学术动态,2003,2:35-36.
    [56]王弘,高庆等.超声疲劳试验中载荷频率对材料疲劳性能的影响[J].实验与研究,2005,41(9):433-435.
    [57]薛红前,陶华, C. Bathias.超声疲劳试样设计[J].航空学报,2004,25(4):425-428.
    [58]唐维维,王弘.超声弯曲疲劳实验方法及其应用[J].力学与实践,2008,30(6):43-46.
    [59]谢萍,赵波.基于非局部理论的超声作用下纳米复相陶瓷材料疲劳试验研究[J].机械科学与技术,2010,29(5):612-615.
    [60] S. Saito, K. Kikuchi, Y. Onishi, et al.. Development of piezoelectric ceramicsdriven fatigue testing machine for small specimens. Journal of nuclearmaterials[J],2002,307-311:1609-1612.
    [61] Kuo-Shen Chen, Bor-Zone Chen, and Chi-Chuan Huang, Design and controlof a piezoelectric driven fatigue testing system for electronic packagingapplications[J]. IEEE transactions on components and packaging technologies,2006,29(4):841-849.
    [62] W. N. Sharpe, Jr., Bin Yuan, and R. L. Edwards. A new technique formeasuring the mechanical properties of thin films[J]. Journal of microelectromechanical systems,1997,6(3):193-199.
    [63] Toshiyuki Tsuchiya, Osamu Tabata, Jiro Sakata. Specimen size effect ontensile strength of surface micromachined polycrystalline silicon thin films[J].Proceedings of IEEE tenth annual international workshop on microelectromechanical systems,1997:529-534.
    [64] Wan Suwito, Martin L. Dunn, and Shawn J. Cunninghamx. mechanicalbehavior of structures for microcelectro mechanical systems[J].1997International conference on solid-state sensors and actuators,1997:611-614.
    [65] E. Mazza, S. Abel, J. Dual. Experimental determination of mechanicalproperties of Ni and Ni-Fe microbars[J]. Microsystem Technologies,1996,2:197-202.
    [66] Haque M A, Saif MTA. Mechanical behavior of30-50nm thick aluminumfilms under uniaxial tension[J]. Scripta Materialia,2002,47(1):863-867.
    [67] Bagdahn,J.and W.N.Sharpe. Fatigue of polycrystalline silicon under long-termcyclic loading[J]. Sensors and actuators a-physical,2003,103(1-2):9-15.
    [68] Kawai, T. Prediction of strength and fatigue lifetime of MEMS structures witharbitrary shapes[J]. In solid-state sensors, actuators and microsystemsconference,2009.
    [69] Claude Bathias. Piezoelectric fatigue testing machines and devices[J].International journal of fatigue,2006,28:1438-1445.
    [70] Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Study on a high frequencyresonance fatigue apparatus using a piezoelectric vibrator[C].2012GlobalConference on Digital Design and Manufacturing Technology. KeyEngineering Materials,2012,546:76-80.
    [71]接勐,谢海峰,刘焱,李秀娟,杨志刚.适用于工程仿生的压电驱动高精度疲劳试验机构的研究[J].纳米技术与精密工程,2013,11(2):134-139.
    [72] Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Design and experiment offatigue testing apparatus driven by piezoelectric bimorph[C].2nd InternationalConference on Mechanical Engineering, Materials and Energy. AppliedMechanics and Materials,281:319-323.
    [73] Meng Jie, Haifeng Xie, Yan Liu, Zhigang Yang. Design of high frequencyfatigue testing machine driven by piezoelectric vibrator[C].2nd InternationalConference on Advanced Design and Manufacturing Engineering. AppliedMechanics and Materials,2012,220-223:543-548.
    [74]接勐,刘焱,谢海峰,杨志刚,杨鲁义.压电驱动共振式高频疲劳试验机构的设计与实验[J].光学精密工程,2012,20(9):2029-2034.
    [75] Yang, Zhi-Gang; Xie, Hai-Feng. Design and dynamic modeling ofpiezoelectric resonant air pump with magnetic spring[C]. Advanced MaterialsResearch,2012,531:630-633.
    [76]谢海峰,吴越,接勐,杨志刚,王兴元.磁力弹簧式压电共振型气泵的设计[J].光学精密工程,2012,20(7):1573-1579.
    [77] Xie Hai-Feng; Yang Zhi-Gang; Jie Meng. Design and test of piezoelectricresonant diaphragm air pump[C]. Applied Mechanics and Materials,2012,220-223:539-542.
    [78]谢海峰,接勐,康晓涛,杨志刚,王龙.压电共振型隔膜气泵设计[J].农业机械学报,2013,43(1):246-250.
    [79]刘焱,接勐,谢海峰,杨志刚.共振型气体泵用压电振子的疲劳寿命[J].光学精密工程,2013,21(4):325-337.
    [80]杨志刚,李军,张春洪等.具有柔性铰链的差式微位移放大机构的受力分析[J].压电与声光,2000,22(1):57-61.
    [81]杨志刚,马昊学,杨东平等.环行行波型超声波马达的设计与试验研究[J].中国电机工程学报,2000,22(2):81-84.
    [82]杨志刚,陈西平,程光明等.压电双晶片式管内移动机构的振动解析[J].压电与声光,2000,22(6):410-415.
    [83]杨志刚,刘建芳,程光明等.压电型步进旋转精密驱动器研究[J].压电与声光,2004,26(6):454-456,463.
    [84]杨志刚,孙晓锋,张德君等.双腔串联两阀与三阀压电泵的性能研究[J].光学精密工程,2007,15(2):219-223.
    [85]吴博达,常颖,杨志刚等.超声振动减摩性能的实验研究及理论分析[J].中国机械工程,2004,15(9):813-815.
    [86]曾平,曹永昌,程光明等.超声波轴承减摩机制分析[J].润滑与密封,2006,10:18-21.
    [87]常颖,吴博达,程光明等.超声波轴承用压电换能器模态分析及实验研究[J].哈尔滨工业大学学报,2006,38(5):752-754,789.
    [88]彭太江,常颖,杨志刚等.超声波减摩用压电换能器阻抗匹配的试验研究[J].压电与声光,2004, V26(N1):65-68.
    [89]程光明,华顺明,杨志刚等.双压电片振子精密载物工作台研究[J].压电与声光,2006,28(1):36-38,42.
    [90]程光明,温建明,杨志刚等.基于改变正压力的惯性压电压电机构[J].吉林大学学报(工学版),2007,37(3):548-552.
    [91]曾平,曹永昌,程光明等.超声波轴承减摩机制分析[J].润滑与密封,2006,10:18-21.
    [92]孙晓锋.双振子压电泵设计理论与结构优化技术研究[D].长春:吉林大学机械科学与工程学院,2009.
    [93]于保军.基于显微视觉的微操作系统及其伺服控制研究[D].长春:吉林大学机械科学与工程学院,2008.
    [94]李晓韬.压电自感应式惯性驱动器的理论及试验研究[D].长春:吉林大学机械科学与工程学院,2010.
    [95]闫世伟.胎压报警器用压电供电系统设计与实验研究[D].长春:吉林大学机械科学与工程学院,2010.
    [96]田丰君.基于夹心式压电换能器的超声波近场声悬浮支撑技术研究[D].长春:吉林大学机械科学与工程学院,2010.
    [97]刘建芳.压电步进精密驱动器理论及实验研究[D].长春:吉林大学机械科学与工程学院,2005.
    [98]刘国嵩.压电步进二维精密驱动器理论及实验研究[D].长春:吉林大学机械科学与工程学院,2006.
    [99]吴丽萍.扁锥腔无阀压电泵理论与实验研究[M].长春:吉林大学机械科学与工程学院,2008.
    [100] Sun J Y, Tong J, Zhang Z J. Proceedings of SPIE-The International Society forOptical Engineering[C]. Beijing:2008.
    [101]房岩,孙刚,丛茜等.仿生材料学研究进展[J].农业机械学报,2006,37(11):163-167.
    [102] Watanabe K, Izumi K. Biomimetic machines: Proceedings of the SICE A nnualConfercnce[C]. Sapporo:2004.
    [103] Song F, Xiao K W, Bai K, et al.. Microstructure and nanomechnical propertiesof the wing membrane of dragonfly[J]. Materials Science and Engineering A,2007,457:254-260.
    [104] Combes S A, Daniel T L. Flexural stiffness in insect wings Ⅰ.Scaling and theinfluence of wing venation[J]. The Journal of Experimental Biology,2003,206:2979-2987.
    [105] Combes S A, Daniel T L. Flexural stiffness in insect wings Ⅱ.Spatialdistribution and dynamic wing bending[J]. The Journal of ExperimentalBiology,2003,206:2989-2997.
    [106]弯艳玲.蜻蜓翅翼三维空间结构的动力学与疲劳寿命研究[D].长春:吉林大学生物与农业工程学院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700