钛合金Ti-6A1-4V的疲劳行为及疲劳设计曲线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽轮机末级钛合金长叶片技术是新型大容量、高效率汽轮机组开发的关键,然而由于复杂应力、湿蒸汽和腐蚀环境等问题,其疲劳寿命与可靠性是长叶片设计面临的难题。本文围绕超超临界汽轮机末级Ti-6A1-4V长叶片的疲劳设计问题,系统研究了应力比、湿蒸汽和盐溶液区环境、显微组织和表面加工性能对其疲劳强度和断裂机理的影响,建立了叶片疲劳寿命设计的Goodman曲线。主要研究内容和结论如下:
     (1)基于升降法,进行了5个应力比下(R=-1、-0.6、-0.3、0.1和0.6)钛合金Ti-6A1-4V在室温空气环境下的疲劳极限的测试(对应于107循环次数),得到了末级叶片疲劳寿命设计的Goodman曲线。研究了不同加工方法(车削加工和轴向表面抛光及消应力热处理)对Goodman曲线的影响。结果表明,随着应力比的提高,残余压应力对Goodman曲线的影响逐步减小并消失;与消除残余应力后试样疲劳破坏主要起源于表面相比,表面残余压应力使得低应力比下疲劳源于内部;Ti-6A1-4V疲劳裂纹的萌生是自由表面滑移和内部双相组织非均匀循环塑性损伤累积两种机制相互竞争的结果。
     (2)研制了低氧饱和蒸汽、氯化钠溶液环境与高频疲劳试验机相结合的环境疲劳试验系统。系统开展了末级钛合金Ti-6A1-4V叶片在模拟服役环境下(低氧饱和蒸汽、氯离子环境)对应于107循环次数的疲劳强度实验,获得其在模拟服役环境下的Goodman曲线。研究发现,模拟服役环境下Ti-6A1-4V的Goodman曲线低于室温空气环境下的结果;当应力比为R=0.1时,服役环境导致的疲劳极限降低最显著,低氧饱和湿蒸汽环境下下降约12.3%,而80℃、3.5%氯化钠溶液环境下导致疲劳极限降低约9.6%;与空气环境下的疲劳不同,环境疲劳导致的疲劳裂纹均源于表面,且未见点蚀坑损伤。
     (3)随动硬化和各向同性硬化Chaboche模型与晶体有限元相结合,分析了钛合金Ti-6A1-4V中α相与p相的细观循环响应。结果表明,α相晶粒比β相更易产生较大的塑性应变,二者变形不协调导致的界面应变集中是疲劳裂纹萌生的根源;α相的体积分数越低,局部塑性变形不协调降低,使得钛合金Ti-6A1-4V的抗循环塑性变形能力增加;β相的晶粒尺寸减小,可有效延迟疲劳裂纹萌生。
     (4)相比于消应力后的试样,车削加工导致表面存在显著的残余压应力,进而导致钛合金Ti-6A1-4V的Goodman曲线显著提高,且影响随着应力比的增加而逐渐减小。XRD残余应力测量与循环塑性有限元模拟表明,Ti-6A1-4V车削残余应力的大小和分布以及随循环次数松弛程度与施加的载荷水平、应力比有关。当应力比R=-1时,疲劳循环导致表面残余压应力松弛且保持稳定,其产生的表面裂纹闭合是疲劳强度提高的主要机制;当R=-0.6~0.1时,未见疲劳循环导致表面残余应力松弛,由于表面层的平均应力减小使得疲劳破坏主要为内部缺陷和局部应力集中控制。
     (5)把概率统计方法引入钛合金叶片Goodman曲线的构建,建立了基于可靠度的模拟环境下(空气室温环境、100℃低氧饱和蒸汽环境)以及加工残余应力影响的钛合金叶片疲劳设计Goodman曲线;进一步,建立了钛合金叶片用双参数Haigh修正疲劳等寿命曲线,相比于Goodman图及Gerber拟合方法,所提出的等寿命曲线与实验数据更吻合。
Development of long last-stage blades is the one of the core technologies for modern steam turbines with large capacity and high efficiency. However, fatigue life and reliability are the critical problems for long blades design due to complicated stress state, wet steam and aggressive environment. The scope of this dissertation focuses on fatigue design issues of Ti-6A1-4V alloy blades, which has been used for long last stage in an ultra super critical steam turbine. The effects of stress ratio, steam and sodium-chloride (NaCl) aqueous environments, material microstructure and surface properties on the fatigue strength and fracture mechanisms of Ti-6A1-4V alloy have been studied. A Goodman diagram for fatigue design of the blade is presented. The main contents and conclusions are as follows:
     (1) Axial force-controlled fatigue tests were conducted at stress ratios of-1,-0.6,-0.3,0.1, and0.6on Ti-6A1-4V specimens in air at room temperature. The staircase method was employed to obtain accurate values of fatigue limit at each stress ratios and the Goodman diagrams corresponding to101cycles. The effect of mechanical processing method on Goodman diagrams was investigated, with particular emphasis on the hard turning plus polishing with and without vacuum stress relieve anneal carried out after polishing. Results indicate that beneficial effect of residual compressive stress decreases and vanishes finally with increasing of stress ratio. Compared to fatigue crack originating from surface for annealed specimens, the fatigue crack initiation sites are located in the interior of the specimen due to the effect of residual stress when low stress ratios are present. The mechanism of fatigue crack initiation of Ti-6A1-4V owes to the competition of slipping at free specimen surface and cyclic plasticity damage accumulation inside the specimen.
     (2) An environment assisting fatigue testing system was developed for investigating the fatigue properties in saturated steam with low oxygen concentration and sodium-chloride (NaCl) aqueous. In order to investigate the influence of simulated environments on Goodman diagrams, fatigue experiments were performed in saturated steam with low oxygen concentration at100℃and NaCl aqueous at80℃. For0.1stress ratio loading conditions, steam environment demonstrated the most serious effect on the endurance limit, and the reduction of fatigue strength was12.3%. The environment of NaCl aqueous also produced a9.6%drop in fatigue strength. For all corrosion environments, cracks originated from surface and no corrosion pits were observed.
     (3) By combining crystal finite element method with Chaboche model which is simultaneously contained kinematic hardening and isotropic hardening rules, the mechanical properties of α/β grains undergoing cyclic loadings were analysed. The simulation results indicate that the plastic strain accumulated more in a grains than that in β grains. The incompatible deformation induces stress concentration at α-β interfaces, thereby promoting fatigue crack initiation at these sites. As the volume fraction of a grains decreases, the area containing incompatible deformation shifts down, so as to increase cyclic deformation resistance of Ti-6A1-4V. The probability of fatigue crack initiation falls off rapidly asβ grain size decreases.
     (4) Compared to annealed specimens, the surface compressive residual stresses induced by the turning could improve the fatigue performance defined by Goodman diagram of Ti-6A1-4V. The improvement in fatigue strengths seems to decrease with stress ratio increasing. Based on X-ray measurement and finite element simulation, it is manifested that the relaxation of residual stresses at surface and in depth is associated with number of cycles, stress amplitude and stress ratio investigated. At R=-1, the residual stresses were relaxed after several cycles and then maintained stable. The improvement on fatigue strength at this stress ratio is attributed to surface crack closure induced by compressive residual stress. For R=-0.6-0.1, however, the relaxation of residual stress is very limited. The fatigue failure thus occurs as a result of internal defect and local stress concentration due to the decrease of the mean stresses by the larger compressive stress.
     (5) Considering the effects of environments (in air at room temperature, saturated steam low oxygen concentration at100℃and NaCl aqueous at80℃) and machining residual stresses, Goodman diagram for Ti-6A1-4V is developed for fatigue design of turbine blades by using statistics method. Haigh parameter was proposed to modify fatigue curves for titanium blades design. A comparison of different methods shows that the proposed isochronous curve approach agrees better with experimental results than Goodman and Gerber models.
引文
[1]http://www.sgcc.com.cn/xwzx/gsyw/2013/07/295115.shtml
    [2]http://paper.people.com.cn/zgnyb/html/2010-06/28/content_554752.htm
    [3]冯斌,周显丁,范小平.909mm末级叶片设计研究.东方汽轮机.2006年,2:1-6
    [4]EPRI. Survey of steam turbine blade failures.1985
    [5]上海汽轮机厂设计科.美国西屋公司汽轮机技术文集.上海汽轮机厂.上海,1982年
    [6]罗国珍,张太贤,张树启,兰涛.美国电力所(EPRI)对钛合金汽轮机大叶片的研究-美国钛加工考察报告之二.稀有金属材料与工程.1990,4:67-72
    [7]Christoph L, Manfred P. Titanium and titanium alloys. Wiley-VCH,2003
    [8]Braitwaite F. On the fatigue and consequent fracture of metals. Proceedings of the Invention of Civil Engineers.1854,463(13):65-75
    [9]Goodman J. Mechanics applied to engineering. Longmans Green.1899
    [10]Basquin O H. The exponential law of endurance tests. Proceedings of American for Testing and Materials.1910,25(10):625-630
    [11]Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics.1957,24(5):361-364
    [12]Paris P C. The Growth of cracks due to variations in loads. Ph.D. Thesis. Bethlchem: Lehigh University.1960
    [13]Forman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering.1967,89(3):459-464
    [14]Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. ASTM STP 462,19701-14
    [15]Thompson N W, Louat N J. The origin of fatigue in copper. Philosophical Magazine. 1956,13(1):113-126
    [16]Zappfe C A, Worden C O. Fractographic registrations of fatigue. Transactions of the American Society for Metals.1951,43(8):958-969
    [17]Forsyth P J E, Ryder D A. Fatigue fracture. Aircraft Engineering.1960,32 (3):96-99
    [18]Ritchie R O. Near-threshold fatigue crack propagation in steels. International Metals Reviews.1979,24(5-6):205-230
    [19]Nicholas T, Zuiker J R. On the use of the Goodman diagram for high cycle fatigue design. International Journal of Fracture.1996,80:219-235
    [20]Morrissey R, Nicholas T. Staircase testing of a titanium alloy in the gigacycle regime. International Journal of Fatigue.2006,28:1557-1582
    [21]Dixon W J, Mood A M. A method for obtaining and analyzing sensitivity data. J. Am. Stat.Assoc.1948,43:109-126.
    [22]Pollak R, Palazotto A, Nicholas T. A simulation-based investigation of the staircase method for fatigue strength testing. Mechanics of Materials.2006,38:1170-1181
    [23]Leyens C, Peters M. Titanium and titanium alloys. Wiley-VCH Verlag Gmbh & Co.KgaA.2003
    [24]王金友,葛志明,周彦邦.航空用钛合金.上海科学技术出版社.1985
    [25]刘宣勇.生物医用钛材料及其表面改性.化学工业出版社.2009
    [26]Jaffee R I, Lutjering G. Titanium Science and Technology. Germay,1984
    [27]Peters M, Lutjering G. Report CS2933. Electric power research institute.1983
    [28]Trojahn W. Diploma thesis. Ruhr university Bochum.1980
    [29]Wagner L, Lutjering G, Jaffee R I. In microstructure/Property relationships in titanium aluminides and alloys. TMS-AIME.1991
    [30]Benedetti M, Fontanari V. The effect of bi-modal and lamellar microstructure of Ti-6A1-4V on the behavior of fatigue cracks emanating from edge-notches. Fatigue & Fracture of Eng Materials & Structures.2004,27(3):1073-1089
    [31]Peters M, Gysler A, Lutjering G. Influence of texture on fatigue properties of Ti-6A1-4V. Metall. Mater. Trans. A.1984,5(8):1597-1605
    [32]Morrissey R J, McDowell D L, Nicholas T. Frequency and stress ratio effects in high cycle fatigue of Ti-6A1-4V. International Journal of Fatigue.1999,21:679-685
    [33]Nicholas T, Maxwell D C, Evolution and effects of damage in Ti-6A1-4V under high cycle fatigue. Progress in Mechanical Behaviour of Materials Proceedings of ICM-8. Edited by F. Ellyin, J.W. Provan.1999,3:1161-1166
    [34]Sigmund K, Bjorn S, Bard W. Surface roughness characterization for fatigue life predictions using finite element analysis. International Journal of Fatigue.2008,30: 2200-2209
    [35]Wagner L, Luetjering G. Influence of shot peening on the fatigue behavior of titanium alloys. Shot Peening A.1982,453-458
    [36]Tokaji K. High cycle fatigue behavior of Ti-6A1-4V alloy at elevated temperatures. Scripta materialia.2006,54:2143-2148
    [37]曹小建,王清远,陈国平,窦秋芳,宋之敏,王弘.生理盐水浸泡对Ti-6A1-4V超高周疲劳性能的影响.西南科技大学学报.2007,22(2):5-8
    [38]Thomas J P, Rust T M,郑宏达译.钛合金叶片材料的研究.西屋公司研究报告
    [39]王思玉.钛合金叶片及其前景.上海汽轮机.1994,04:45-51
    [40]Nakamura T, Kaneko M, Kazami S, Noguchi T. The effect of high vacuum environment on tensile fatigue properties of Ti-6A1-4V alloy. Journal of the Society of Materials Science.2000,49:1148-1154
    [41]鲁连涛,张卫华.金属材料超高周疲劳研究综述.机械强度.2005,27(3):388-394
    [42]Miller K J, O'Donnell W J. The fatigue limit and its elimination. Fatigue& Fracture of Engineering Materials & Structures.2002,22(8-9):567-579
    [43]http://www.nims.go.jp/eng/
    [44]丁遂栋,朱明霞.钛合金缺口试样非对称循环疲劳极限的估算.机械强度.2002, 24(2):308-309
    [45]Mapelli C, Manes A, Giglio M, Mombelli D, Giudici L, Baldizzone C, Gruttadauria A. Survey about effects of shot peening conditions on fatigue performances of Ti-6A1-4V mechanical specimens featured by different cross-section geometries. Materials Science and Technology.2012,28(5):543-548
    [46]Oguma H, Nakamura T. The effect of stress on very high cycle fatigue properties of Ti-6A1-4V. Key Engineering Materials.2004,261-263:1227-1232
    [47]Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. Effect of stress ratio on fatigue properties for Ti-6A1-4V alloy. Telsu-to-Hagane.2007,93(4):45-52
    [48]Brown C W, Smith G C, The effect of rest periods on the fatigue strength of Ti-6A1-4V. FEMS.1984,7 (2):155-164
    [49]Nushida S, Urashima C, Suzuki H G, Fatigue strength and crack initiation of Ti-6A1-4V. Fatigue'90.1990,197-202
    [50]Ruppen J A, Eylon D, MacEvfly A J, Subsurface fatigue crack initiation of annealed Ti-6Al-4V.Metall. Trans. A.1980,11:1072-1075
    [51]Neal D F, Blenkinsop P A, Internal fatigue origins in a-β titanium alloys, Acta Metall. 1976,24:59-63
    [52]Gilbert J L, Piehler H R. Grain egression:a new mechanism of fatigue crack initiation in Ti-6Al-4V. Metall. Trans. A.1989,20:1715-1725
    [53]Eylon D, Hail J A. Fatigue behavior of Beta-processed titanium alloy IMI 685. Metall. Trans. A.1977,8:981-990
    [54]Ruppen J A, Hoffmann C L, Radhakrishnan V M, McEvily A J. The effect of environment and temperature on the fatigue behavior of titanium alloys. Fatigue Env. and Temperature Effects.1980,265-300
    [55]Umezawa O, Nagai K, Ishikawa K. Internal crack initiation in high cycle fatigue of Ti-6A1-4V alloys at cryogenic temperatures. Fatigue'90.1990,267-272
    [56]Ruppen J, Bhowal P, Eylon D, McEvily A J, On the process of subsurface fatigue crack initiation in Ti-6Al-4V. Fatigue Mechanisms Proceedings. ASTM STP.1979,675-679
    [57]Wagner L, Lutjering G. Influence of surface treatments on fatigue strength of Ti-6A1-4V. Gefuge und Bruch.1988,233-245
    [58]Wu G Q, Shi C L, Sha W, Sha A X, Jiang H R. Effect of microstructure on the fatigue properties of Ti-6A1-4V titanium alloys. J Mater Des.2013,46:668-674
    [59]Mishra S,Debroy T. Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4Vwelds. J Acta Mater.2004,52:1183-92
    [60]Song J H, Hong K J, Ha T K, Jeong H. The effect of hot rolling condition on the anisotropy of mechanical properties in Ti-6A1-4V alloy. Mater Sci Eng A-Struct.2007, 449:144-156
    [61]Srinivasu G, Rao R N, Nandy T K, Gupta D K. Finite element modelling of a particle size on the stress strain curve of near beta Ti alloy. Materials & Design.2013,46:8-15
    [62]Dick T, Cailletaud G. Fretting modelling with a crystal plasticity model of Ti6A14V. Comp Mater. Sci.2006,38:113-125
    [63]Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6A1-4V. International Journal of Plasticity.2007,23(4): 1328-1348
    [64]Mayeur J R, McDowell D L. A three-dimensional crystal plasticity model for duplex Ti-6A1-4V. International Journal of Plasticity.2007,23(7):1457-1485
    [65]Mayeur J R, McDowell DL. Crystal plasticity simulations of fretting of Ti-6A1-4V in partial slip regime considering effects of texture. Computational Materials Science. 2008,41:356-365
    [66]Katani S, Madadi F, Atapour M, Ziaei S. Micromechanical modelling of damage behaviour of Ti-6A1-4V. Materials & Design.2013,49(0):1016-1021
    [67]Benedetti M, Fontanari V. The effect of bi-modal and lamellar microstructures of Ti-6A1-4V on the behavior of fatigue cracks emanating from edge-notches. Fatigue Fract Engng Mater Struct.2004,27:1073-1089
    [68]Armstrong P J, Frederick C O. A mathematical representation of the multiaxial Bauschinger effect, CEGB report rd/b/n731, Berkely Nuclear Laboratories, Berkely. UK,1966.
    [69]Chaboche J L, Nouailhas D. Constitutive modeling of ratcheting effect:Part I, Experimental facts and properties of classical models. ASME J. Eng. Mater.Tech.1989, 111 (4):384-392.
    [70]Chaboche J L. On some modification of kinematic hardening to improve the description of ratchetting effect. Int. J. Plast.1991,7:661-678
    [71]Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery: Part Ⅰ:Formulation and basic features for ratcheting behavior. Int. J. Plast.1993,9: 375-390
    [72]Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery: Part Ⅱ:Application to experiments of ratcheting behavior. Int. J. Plast.1993,9:391-403
    [73]Abdel-Karim M, Ohno N. Kinematic hardening model suitable for ratcheting with steady-state. Int. J. Plast.2000,16:225-240
    [74]康国政.循环稳定材料的棘轮行为:Ⅱ.隐式应力积分算法和有限元实现.工程力学.2005,22:204-209
    [75]Kang G Z. A Visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mech. Mater.2004,36:299-312
    [76]Benedetti M, Fontanari V. The effect of bi-modal and lamellar microstructure of Ti-6A1-4V on the behavior of fatigue cracks emanating from edge-notches. Fatigue and Fracture of Engineering Materials and Structures.2004,27(11):1073-1089
    [77]Mohd A L, Ding J. A study on the interaction between fretting wear and cyclic plasticity for Ti-6A1-4V. Wear.2009,267 (5):270-282
    [78]Ohata M, Suzuki M, Minami F.3D-Simulation of ductile failure in two-phase structural steel with heterogeneous microstructure. Engineering Fracture Mechanics.2010,77(2): 277-284
    [79]Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Material Science and Engingeering.1998,243 A:32-45
    [80]Kanazawa K, Miller K J, Brown M W. Low cycle fatigue under out-of-phase loading conditions. Engineering Muter.1977,99(12):222-228
    [81]Taira S, Inoue T, Yoshida T. Low cycle fatigue under multiaxial stresses (in the case of combined cyclic tension compression and cyclic torsion) at room temperature. Test. Muter.1969,16(2):50-55
    [82]Brown M W, Miller K J. High temperature low cycle biaxial fatigue of two steels. Fatigue Engng Muter. Struct.1979,25(1):217-229
    [83]Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatigue lifetimes. International Journal of Fatigue.2001,23(Supplement 1):375-383
    [84]McClunga R C. Literature survey on the stability and significance of residual stresses during fatigue. Fatigue & Fracture of Engineering Materials & Structures.2007,30(3): 173-205
    [85]Ezugwu E O, Wang Z M. Titanium alloys and their machinability-a review. Journal of Materials Processing Technology.1997,68:262-274
    [86]Che-Harona C H, Jawaidb A. The effect of machining on surface integrity of titanium alloy Ti-6A1-4V. Journal of Materials Processing Technology.2005,166(2):188-192
    [87]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究.博士论文.山东大学,导师:李建峰,2009
    [88]Matsumoto Y, Hashimoto F, Lahoti G. Surface integrity generated by precision hard turning. CIRP Annals-Manufacturing Technology.1999,48(1):59-62
    [89]张亦良,黄惠茹,李想.车削加工残余应力分布规律的实验研究.北京工业大学学报.2006,32(7):582-586.
    [90]米古茂,朱荆璞,邵会孟译.残余应力的产生和对策.北京:机械工业出版社.1983
    [91]Jacobus J K, DeVor R E, Kapoor S G. Machining-induced residual stress: experimentation and modeling. Journal of Manufacturing Science and Engineering. 2000,122:20-31
    [92]Chen L, El-Wardany T I, Harris W C. Modelling the effects of flank wear land and chip formation on residual stresses. CIRP Annals-Manufacturing Technology,2004,53(1): 95-98
    [93]Liang S Y, Su J C. Residual stress modeling in orthogonal machining. CIRP Annals Manufacturing Technology.2007,56(1):65-68
    [94]Sasahara H. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture.2005,45(2):131-136
    [95]Sharman A R C, Hughes J I, Ridgway K. An analysis of the residual stresses generated in Inconel 718TM when turning. Journal of Materials Processing Technology.2006, 173(3):359-367
    [96]Caruso S, Umbrello D, Outeiro J C, Filice L, Micari F. An experimental investigation of residual stresses in hard machining of AISI 52100 steel. Procedia Engineering.2011, 19(0):67-72
    [97]Ratchev S M, Afazov S M, Becker A A, Liu S. Mathematical modelling and integration of micro-scale residual stresses into axisymmetric FE models of Ti-6A1-4V alloy in turning. CIRP Journal of Manufacturing Science and Technology.2011,4(1):80-89
    [98]Abboud E, Shi B, Attia H, Thomson V, Mebrahtu Y. Finite Element-based modeling of machining-induced residual stresses in Ti-6A1-4V under finish turning conditions. Procedia CIRP.2013,8(0):63-68
    [99]Ozel T, Ulutan D. Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Annals-Manufacturing Technology.2012,61(1):547-550
    [100]Velasquez J D P, Tidu A, Bolle B, Chevrier P, Fundenberger J J. Sub-surface and surface analysis of high speed machined Ti-6A1-4V alloy. Materials Science and Engineering:A.2010,527(10-11):2572-2578
    [101]Rasouli Y S, Lu J. Prediction of relaxation of residual stress induced by shot peening in aluminum alloys. In:Proceedings of the SEM Annual Conference on Theoretical, Experimental, and Computational Mechanics.1999,880-883
    [102]Cao W, Castex L. Modelling of the shot peening residual stress relaxation in steel structure under cyclic loading. In:International Conference on Residual Stresses, Nancy, France (Edited by G. Beck, S. Denis and A. Simon).1988,631-637
    [103]Meguid S, Shagal G, Stranart J, Liew K, Ong L. Relaxation of peening residual stresses due to cyclic thermo-mechanical overload. J. Engng. Mater. Technol.2005,127: 170-178
    [104]Batista A C, Dias A M, Lebrun J L, LeFlour J C, Inglebert G. Contact fatigue of automotive gears:evolution and effects of residual stresses introduced by surface treatments. Fatigue Fract. Engng. Mater. Struct.2000,23:217-228
    [105]Zhuang W Z, Halford G R. Investigation of residual stress relaxation under cyclic load. Int. J. Fatigue.2001,23:31-37
    [106]Nalla R K, Altenberger I, Noster U, Liu G Y, Scholtes B, Ritchie R O, On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6A1-4V at ambient and elevated temperatures. Materials Science and Engineering A.2003,355:216-230
    [107]Pant B K, Sundar R, Kumar H, Kaul R, Pavan A H V, Ranganathan K, Bindra I S, Oak S M, Kukreja L M, Prakash R, Kamaraj M. Studies towards development of laser peening technology for martensitic stainless steel and titanium alloys for steam turbine applications. Materials Science and Engineering:A. http://dx.doi.org/10.1016/j.msea.2013.08.074
    [108]Starker P, Wohlfahrt H, Macherauch E. Subsurface crack initiation during fatigue as a result of residual stresses. Fatigue of Engineering Materials and Structures.1979, 319-327
    [109]钟群鹏,赵子华.断口学.高等教育出版社.北京,2006
    [110]Laird C. The influence of metallurgical structure on the mechanism of fatigue crack propagation. ASTM STP.1966,415:131-180
    [111]Neumann P. Coarse slip model of fatigue. Acta. Metallurgica.1969,17(1):219-225
    [112]Perkins K M, Bache M R. Corrosion fatigue of 12%Cr low pressure turbine blade steel in simulated service environments. International Journal of Fatigue.2005,27: 1499-1508
    [113]Ebara R. The present situation and future problems in ultrasonic fatigue testing Mainly reviewed on environmental effects and materials'screening. International Journal of Fatigue.2006,28(11):1465-1470
    [114]Fleck C, Eiflerb D, Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys. International Journal of Fatigue.2010,32(6): 929-935
    [115]Lutjering G, Williams J C, Titanium. Springer Berlin Heidelberg. New York, USA,2007
    [116]黄嘉琥,应道宴等.钛制化工设备.化学工业出版社.2002
    [117]Zimmermann M, Stocker C, Christ H J. On the effects of particle strengthening and temperature on the VHCF behavior at high frequency. International Journal of Fatigue. 2011,33(1):42-38
    [118]Przybyla C, Prasannavenkatesan R, Salajegheh N, McDowell D L. Microstruecture-sensitive modeling of high cycle fatigue. International Journal of Fatigue.2010,32(3): 512-525
    [119]Tokaji K. High cycle fatigue behaviour of Ti-6A1-4V alloy at elevated temperatures. Scripta Materialia.2006,54(12):2143-2148
    [120]Mollins R, Hochstetter G, Chassaigne J C, Andrieu E. Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature. Acta Met.1997,47:663-674
    [121]Gourges A F, Andrieu E. High-temperature, oxidation-assisted intergranular cracking resistance of a solid-solution-strengthened nickel base alloy. Materials Science and Engineering:A.2003,351:39-55
    [122]Sarrazin-baudoux C, Loubat F, Potiron S. On the role of water vapor and oxygen on the fatigue crack propagation behavior at 550℃ of a Ti6242 alloy. Metallurgical and Materials Transactions A.2006,37A:1201-1209
    [123]Zeller A, Dettenwanger F, Schutze M. Influence of water vapour on the creep and fatigue properties of TiAl. Intermetallics.2002,10:33-57
    [124]Wallce T A. The effect of oxidation exposure on the mechanical properties of Timetal-1100,1995
    [125]Zhao Y Q, Zhou L, Deng J. The role of interface in the burning of titanium alloys. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing.1999,267
    [126]Xiong J J, Zhe W, GAO ZT. Generalized fatigue constant life curve and two-dimensional probability distribution of fatigue limit. Applied Mathematics and Mechanics.2002,23(10):1055-1060
    [127]曾本银,朱定金,朱勇.等效载荷的Haigh修正方法.直升机技术.2008,153(1):6-8
    [128]张秋鸿,李宇峰,管继伟.半转速核电汽轮机末级1800mm叶片的开发.中国动力工程学会透平专业委员会2012年学术研讨会论文集.132-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700