饮用水处理过程中溴酸盐的生成特性及优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微污染饮用水处理中,臭氧氧化技术已越来越多地被选择应用到饮用水处理过程中。含溴水在臭氧氧化时会生成2B级致癌物溴酸盐,溴酸盐浓度的控制是确保水质安全的重要问题。目前,相关研究主要集中于应用各种外加方法去除水中的溴酸盐,忽略了常规水处理工艺环节的自身作用,未见溴酸盐在常规工艺中是否可以得到去除的相关研究。在现有水处理的工艺中解决溴酸盐的污染问题,是最切合实际,最易应用、最经济合理的方法。
     针对整套饮用水处理工艺流程,论文研究了水中溴酸盐的生成特性,常规处理对溴酸盐及其前驱物溴离子的控制,臭氧-活性炭工艺中的溴酸盐控制,紫外辐射处理对水中溴酸盐的控制,含溴饮用水处理工艺的构建与优化等内容。
     通过水中溴酸盐的生成特性的研究,明确了在水中常见的0~500μg/L的初始溴离子浓度范围内溴酸根和中间产物的数量关系,从而探明了0~4mg/L的臭氧投量下溴酸盐生成量较低的原因。臭氧剂量及水中初始溴离子浓度直接关系到水中溴酸盐生成量。水中氨氮存在形式对pH值和溴酸盐生成量有影响,与不含氨氮的水样相比,pH值接近的含氨氮的水样的溴酸盐的生成量相对较低。在同一氨氮含量下,提高pH值,溴酸盐的生成量有小幅升高,氨氮对溴酸盐的生成量的影响要大于pH值的影响。水样投加铵盐和投加氨水的实验表明,对于含有铵根离子的水样,由于其pH较低,所以对溴酸盐生成的抑制作用更大。
     通过对含溴水进行氯化实验,探明了饮用水氯化消毒处理对溴离子及溴酸盐的影响。含溴水样加氯后,溴酸盐的生成总量很小,加氯量5mg/L时,溴离子向溴酸根的转化率不足1.3%。次氯酸钠长时间与溴离子接触后,溴酸根的生成量只有小幅增加。在有机物浓度较高的水中,氯化不会导致溴酸盐产生。含溴原水氯化时,加氯量1mg/L和3mg/L都未检出溴酸盐,加氯量达到5mg/L时,原水中只是检出了非常少量的溴酸盐。在饮用水余氯浓度为0.11~0.26mg/L,TOC为1.4~1.8mg/L条件下,均未检出溴酸根,说明饮用水中较低浓度的余氯不会将溴离子氧化为溴酸根,不存在使溴酸盐超标的风险。
     通过以聚合氯化铝和三氯化铁作混凝剂的实验,明确了混凝沉淀对溴酸盐和溴离子有一定的控制作用,其效果受到混凝剂投量、pH、水样浊度、水温等条件的影响。三氯化铁比聚合氯化铝混凝沉淀对溴酸盐及溴离子的控制效果更好,70mg/L三氯化铁投量下,对原水中溴酸盐的平均去除率为58.5%。
     研制了具有除浊和控制溴酸盐双重功能的硅酸改性聚合亚铁混凝剂,通过红外光谱表征,证明改性聚合亚铁混凝剂的制备效果可靠。改性聚合亚铁混凝剂的除浊性能强于普通铁盐和亚铁盐,改性聚合亚铁混凝去除溴酸盐和溴离子的效果很好。硅铁比1:2的改性聚合亚铁控制溴酸盐的效果最佳,其投量为16.8mg/L时,溴酸盐的平均去除率为83.8%,说明改性聚合亚铁可作为控制水中溴酸盐的有效混凝剂。
     明确了过滤对溴酸盐和溴离子的控制作用有限,在水样初始浊度为40NTU, pH=6.86, T=23℃条件下,滤层深度1.2m时,溴酸盐去除率为14.4%。溴离子去除率为13.6%。滤层厚度对溴酸盐和溴离子浓度影响最大,其次是水样的浊度,而在50~200μg/L范围内,溴酸根和溴离子初始浓度的影响可以忽略。
     在中试的基础上,确定了优化臭氧-活性炭工艺参数控制溴酸盐的方法。一方面,通过控制臭氧氧化工艺参数限制溴酸盐的生成量不超标。另一方面,若溴酸盐生成量已经超标,通过控制活性炭运行参数使得出水溴酸盐的量不超标。水中初始溴离子浓度、臭氧投量和接触时间是控制溴酸盐生成量的关键因素。在臭氧处理单元,建立了控制溴酸盐生成量数学模型。在活性炭处理单元,炭柱接触时间和进水溴酸盐浓度是控制溴酸盐去除的关键因素,建立了控制溴酸盐去除率数学模型。考察了12个月连续运行的活性炭表面微生物的情况及生物量的变化。证明了生物活性炭对水中溴酸盐的去除效能强于活性炭,探明了生物活性炭对水中溴酸盐的作用机理,明确了微生物在活性炭表面的作用。
     通过紫外辐射含溴酸盐水样的研究,确定了短波紫外线UVC辐射可以作为去除饮用水中溴酸盐的有效手段,但辐射的剂量要求较大。长波紫外线UVA是紫外还原溴酸盐的一个干扰因素,应当减少其辐射剂量以确保水中溴酸盐的还原效果。
     本文揭示了溴酸盐及溴离子在水处理过程中的变化规律,构建了全流程协同溴控制酸盐的方法体系,探明了各个处理单元中控制溴酸盐风险的工艺参数。优化了针对溴酸盐控制的工艺运行条件,为溴酸盐控制技术在饮用水处理中的实际工程应用提供了理论与技术指导。
In the micro-polluted drinking water treatment, ozone oxidation technologyhas been increasingly applied to drinking water treatment process. Containingbromide water in the ozone oxidation can generate bromate, which belongs to2Blevel carcinogen,and the bromate concentration control is important to ensure thewater quality security. At present, the relevant studies were mainly on Applicationof various applied methods in the removal of bromate, which ignoring theconventional water treatment process itself. It has not been reported that thebromate in the conventional process could be removed in the recent related research.In the existing water treatment technology, to solve the pollution problem ofbromate is the most practical and easily applied and the most economical method.
     For the whole system of drinking water treatment, this paper investigatedwater bromate formation characteristics, conventional treatment on bromate andcontrolling its precursor bromide ion, controlling bromate in ozone-activatedcarbon process, ultraviolet radiation treatment on the control of bromate in water,construction and optimization of bromine containing drinking water treatmenttechnology.
     Through the research on the characteristics of bromate formation in water, weascertained the quantitative relation between BrO3-and intermediate within theconventional range of0~500μg/L initial concentration of bromide ions in water, soas to find out the reason for low bromate production with0~4mg/L ozone dosage.Ozone dosage and the initial concentration of bromide ion in water are directlyrelated to the formation of bromate in water quantity. Ammonia nitrogen forms haveinfluence on pH and formation amount of BrO3-. Compared with water sampleswhich contained no ammonia nitrogen, the formation amount of BrO3-was relativelylowe in pH value close to the ammonia water samples. In the same ammonianitrogen content, when improved pH value, the formation amount of BrO3-wasslightly elevated. It means that the influence of the ammonia nitrogen on theformation amount of BrO3-was more than pH value. The experiment of addingammonium salt and adding ammonia to water respectively showed that theinfluence of ammonium group on bromide ion converting to bromate ion in water is more than that of free ammonia due to its low pH.
     Based on the experiment with bromine chloride, we ascertained the effect ofchloridizing disinfection of drinking water on bromine and bromate. Water addingchlorine within360min, the formation amount of bromate was small. Whenchlorine dosage was5mg/L, the conversion rate of bromine ion to bromate wasless than1.3%. After long time for Sodium hypochlorite contacted with bromideions, the formation amount of BrO3-was slightly elevated. In the water with higherconcentration of organic matter, chlorination did not lead to bromate. Whenchloridizing bromine water, bromate were not detected with chlorine dosage of1mg/L and3mg/L. With chlorine dosage up to5mg/L, bromate was detected byvery small amount in raw water. When chlorine residual level was0.11~0.26mg/Land TOC was1.4~1.8mg/L, BrO3-were not detected in drinking water. Thatmeant the existence of low concentration of residual chlorine could not oxidize thebromide ions to bromate, let alone bromate exceed standard.
     By experiment of PAC and FeCl3as coagulant, the article made clear thatcoagulation and sedimentation have certain control effect on bromate and bromideions, and its effect by coagulant dosage, pH, turbidity, water temperature and otherconditions. The control effect of FeCl3on bromate and bromide ions was better thanthat of PAC coagulation sedimentation. With the dosage of FeCl3of70mg/L, theaverage removal rate of bromate was58.5%in the raw water.
     A silicic acid modified polymerized ferrous coagulant was developed, whichhad turbidity removal and control of bromate in the dual function. characterized byinfrared spectroscopy, we found that the modified polymerized ferrous coagulantpreparation effect was reliable. The operty of turbidity removal of modifiedpolymerized ferrous coagulant was stronger than common salt and ferrous salt. Theeffect of polymer modified ferric coagulation on removal of bromate and bromideions was very good. Modified polymerized ferrous with ferrosilicon ratio1:2hadbest effect on control of bromate.When the dosage of16.8mg/L, bromate averageremoval rate was83.8%, that meant modified polymerized iron could be used asefficient coagulant for the control of bromate in water.
     The Control Action of filtration on bromate and bromide ion was limited.When the initial turbidity water was40NTU, pH=6.86, T=23℃, filter depth1.2m,bromate removal rate was14.4%, bromide ion removal rate was13.6%. The filterlayer thickness had most important influence on bromate and bromide ions concentration. Next came the water turbidity, in the range of50~200g/L, the initialconcentration of bromate and bromide ion effect can be ignored.
     Based on the pilot experiment,we determined the method which controlledbromate by ozone-activated carbon process with the optimal parameter. On onehand, by controlling the ozone oxidation process parameter limits the bromateformation amount to not exceed the standard. On the other hand, if the bromateproduction had already exceed the standard, by controlling the operating parametersof the active carbon water bromate amount to not exceed the standard. The initialconcentration of bromide ion in water, ozone dosage and contact time were thecontrol of bromate production key elements. In the ozone processing unit,established the mathematical model of controlling bromate production. In theactivated carbon processing unit, an activated charcoal column contact time andwater bromate concentration were the key factors of controlling bromate removal,established control of bromate removal rate mathematical model. We Studied12months of continuous operation of the activated carbon surface microorganismsand biomass change,and proved that the biological activated carbon for waterbromate removal efficiency was better than activated carbon, It was ascertained thatthe mechanism of action of biological activated carbon on bromate in water, andthe effect of microorganisms on activated carbon surface.
     Ultraviolet radiation containing bromate in water was researched, thendetermined the shortwave ultraviolet UVC radiation can be used as effective meansin the removal of bromate in drinking water, but the radiation dose required larger.UVA was a disturbance factor for reducing bromate, so we should reduce theradiation dose to ensure water bromate reduction effect.
     This paper revealed the change law of bromate and bromide ions in watertreatment process, and built the control technology system of bromate, proved theparameters combination in bromate processing unit for safety. We optimizedprocess operating conditions for bromate control, provided theoretical and technicalguidance for bromate control technology in drinking water treatment in the actualproject application.
引文
[1]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,26(6):6-9.
    [2]王伟,蒋颂辉,朱惠刚,等.溴酸盐的遗传毒性[J].环境与健康杂志,2003,20(3):137-138.
    [3] Cheng Zhiqiang. Disscussion on treatment process of low temperature and lowpollutive surface water[J]. Power environment protection,2007,23(6):54.
    [4]刘勇建,牟世芬,林爱武,等.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究[J].环境科学,2004,25(2):51-52.
    [5] Xie Li, Shang Chi. A review on bromate occurrence and removal strategies inwater supply[J]. Water Science and Technology,2006,6(6):131-132.
    [6]田一梅,王煊,汪泳.区域水资源与水污染控制系统综合规划[J].水利学报,2007,38(1):32-38.
    [7]李淑敏,岳银铃.饮用水中痕量溴酸根的离子色谱测定法[J].环境与健康杂志.2006,23(1):66-67.
    [8] Zhu Puxia. Problems of Turbidity in the Water Supply[J]. Water PurificationTechnology.2004,5(23):22.
    [9] Wu Qingping. Formation, Detection and Control of Bromate in the OzoneDisinfection of Drinking Water[J]. China Water&Waste Water.2006,16(22):13.
    [10] Camel V, Bermond A. The use of ozone and associated oxidation processes indrinking water treatment [J]. Water Research,1998,32:3208-3222.
    [11] Myoga H. Study on By-Products of Ozonation during Ammonia Removalunder the Existence of Bromide: Fators Affecting Formation and Removal ofthe By-Products[J]. Ozone Science&Engineering.2000,21:20-28.
    [12] Yang M, Uesugi K. Study on by-products of ozonation during ammoniaremoval under the existence of bromide[J]. Ozone Science&Engineering.2000,22(1):23-29.
    [13]张金松,董文艺,张红亮,等.臭氧化-生物活性炭深度处理工艺安全性研究[J].给水排水,2003,29(9):1-4.
    [14] Clancy J L, Bukhary Z, Hargy T M, et al. Using UV to inactivateCryptosporidium[J]. J Am Water Works Assoc,2000,92(9):97-104.
    [15]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版,2003:15-20.
    [16]邓慧萍,严煦世.饮用水中臭氧化产物的评述[J].同济大学学报,1997,25(4):466-470.
    [17]马旌升,张斌.臭氧在粮食农药残留降解中的应用[J].粮油仓储科技通讯,2010(4):34-35.
    [18]魏宏斌,严煦世.氧化法去除水中有机物的研究与应用现状[J].中国给水排水,1996,12(5):19-22.
    [19]王晓昌.臭氧处理的副产物[J].给水排水,1998,70(4):727-734.
    [20]于柞斌,高明.简单曝气法去除水中三卤甲烷的研究[J].环境与健康杂志,1994,11(5):206-209.
    [21] Hua G, Reckhow D A, Kim J. Effect of bromide and iodide ions on theformation and speciation of disinfection byproducts during chlorination[J].Environmental Science&Technology,2006,40(9):3050-3056.
    [22] Belluati M, Danesi E, Petrucci G, et al. Chlorine dioxide disinfectiontechnology to avoid bromate formation in desalinated seawater in potablewaterworks[J]. Desalination,2007(203):312-318.
    [23]缪恒锋,陶文沂,张信华,等.铜绿微囊藻臭氧化以及藻毒素去除研究[J].安徽农业科学,2008,36(5):1730-1731.
    [24]蒋福春.臭氧-生物活性炭工艺的优化运行研究[D].哈尔滨:哈尔滨工业大学,2006:5.
    [25] Chan W K, Jouet J, Heng S, et al. Membrane contactor/separator for anadvanced ozone membrane reactor for treatment of recalcitrant organicpollutants in water[J]. Journal of Solid State Chemistry,2012,189(8):96-100.
    [26] Sunga M, Leeb S Z, Chanc H L. Kinetic modeling of ring byproducts duringozonation of pentachlorophenol in water[J]. Separation and PurificationTechnology,2012,84(9):125-131.
    [27]申石泉,叶恒朋,陆少鸣,等.给水深度处理中臭氧副产物的产生及控制[J].城市环境与城市生态,2003,16(6):187-189.
    [28]吴敦虎.吉林省土壤中腐殖酸和水溶液富里酸分布特征与大骨节病关系的研究[J].环境科学学报,1987,7:166-170.
    [29] Moslemi M, Davies S H, Masten S J. Bromate formation in a hybridozonation-ceramic membrane filtration system[J]. Water Research,2011,45(17):5529-5534.
    [30] Tyrovola K, Diamadopoulos E. Bromate formation during ozonation ofgroundwater in coastal areas in Greece[J]. Desalination,2005(176):201-209.
    [31] Moslemi M, Davies S H, Masten S J. Empirical modeling of bromateformationduring drinking water treatment using hybrid ozonation membrane filtration[J].Desalination,2012,292(16):113-118.
    [32] Tawabini B, Fayad N, Morsy M. The impact of groundwater quality on theremoval of MTBE using Advanced Oxidation Technology[J]. Water Scienceand Technology,2009,61(3):2161-2165.
    [33]陈飒,占永革.咸潮对氯消毒中三卤甲烷的影响[J].净水技术,2007,26(1):76-79.
    [34]裴义山,杨敏,郭召海.含溴水源水臭氧处理时溴酸盐的产生与控制[J].环境科学学报,2007,27(11):1767-1770.
    [35]王祖琴,李田.含溴水臭氧化过程中溴酸盐的形成与控制[J].净水技术.2001,20(2):7-10.
    [36]魏建荣.饮用水中消毒副产物研究进展[J].卫生研究,2004,33(1):115-118.
    [37] Siddiqui M S. Bromate ion formation: a critical review[J]. JAWWA,1995,87(10):58-65.
    [38]张奎山,刘继先,赵欣萍.深圳市饮用水溴酸盐风险调查研究[J].给水排水,2008,34:111-113.
    [39]谢曙光,张湛军,刘好笑,等.臭氧生物炭深度处理低温黄河水研究[J].中国给水排水,2004,20(7):21-24.
    [40]陈国光,童俊,朱慧峰,等.高溴离子原水深度处理溴酸盐的控制与对策[J].给水排水,2012,38(3):20-22.
    [41]卢宁,黄鑫,高乃云,等.青草沙水库原水中的溴离子和溴酸盐生成势[J].净水技术,2011,30(3):10-12.
    [42]梅红,丁国际,黄鑫,等.含溴黄浦江水消毒过程中溴代三卤甲烷和卤乙酸的生成特性[J].环境科学学报,2011,31(10):2162-2168.
    [43]刘波,黄志明,邵则准.二氧化氯消毒处理含溴离子水防止溴酸盐产生的研究[J].净水技术,2010,29(3):14-17.
    [44]卢宁,高乃云,黄鑫.黄浦江和长江原水臭氧化工艺中BrO3-的生成[J].湖南大学学报(自然科学版),2009,36(8):64-68.
    [45]黄鑫,梅红,丁国际,等.含溴黄浦江水臭氧化过程中溴酸根的生成[J].上海大学学报(自然科学版),2010,16(5):498-502.
    [46] Huang Xin, Gao Naiyun, Deng Yang. Bromate ions formation in darkchlorination and ultraviolet (UV)/chlorination processes for bromide-containing water[J]. Journal of Environmental Sciences,2008,20(2):246-251.
    [47]黄鑫,高乃云,丁国际,等.溴酸根在紫外和氯消毒联用工艺中的形成[J].土木建筑与环境工程,2010,32(6):132-136.
    [48] Kasai H, Nishimura S, Kurokawa Y. Oral administration of the renal carcinogen,potassium bromate, specifically produces8-hydroxydeoxyguanosine in rat targetorgan DNA[J]. Carcinogenesis,1987,8(12):1959-1961.
    [49] U.S.EPA. Toxicological review of bromate[R]. Washington, DC: U.S.Environmental Protection Ageney,2001.
    [50] Matsuyama Z, Katayama S, Nakamura S. A case of sodium bromateintoxication with cerebral lesion[J]. Rinsho shinkeigaku Clinical neurology,1993,33(5):535-541.
    [51] Kurokaw A Y, Maekaw A A, Takahashi M, et al. Toxicity and carcinogenicityof potassium bromate A new renal carcinogen[J]. Health Perspect,1990,87(1):309-335.
    [52] Murat S Y, Koni S T. Effects of sodium bromate on ionic concent rations andosmolalit ies of the coch lear fluids in guineapigs[J]. Hear Research,1989,39(3):241-250.
    [53] Matsumot O I, Morizono T, Paparella M M. Hearing loss following potassiumbromate: Two case reports[J]. Head Neck Surg,1980,88(5):625-629.
    [54] Chitrakar R, Makita Y, Sonoda A, et al. Adsorption of trace levels of bromatefrom aqueous solution by organo-montmorillonite[J]. Applied Clay Science,2011,51(3):375-379.
    [55] Zhang Tao, Chen Weipeng, Ma Jun, et al. Minimizing bromate formation withcerium dioxide during ozonation of bromide-containing water[J]. WaterResearch,2008,42,(14):3651-3658.
    [56] Krasner S W, Glaze W H, Weinberg H S, et al. Formation and control ofbromate during ozonation of waters containing bromide[J]. J Am Water WorksAssoc,1993,85(1):73-81.
    [57] Hofmann R, Andrews R C. Ammonical bromamines: a review of theirinfluence on bromate formation during ozonation[J]. Water Research,2001,35(3):599-604.
    [58] Gunten U V, Pinkernell U. Ozonation of bromide-containing drinking waters: adelicate balance between disinfection and bromate formation[J]. Water scienceand technology,2000,41(7):53-59.
    [59] Xu Chunhua, Shi Junjun, Zhou Weizhi, et al. Bromate removal from aqueoussolutions by nano crystalline akaganeite (β-FeOOH)-coated quartz sand(CACQS)[J]. Chemical Engineering Journal,2012,187(1):63-68.
    [60] Song R, Donohoe C, Minear R, et al. Empirical modeling of bromate formationduring ozonation of bromide-containing waters[J]. Water Research,1996,30(5):1161-1168.
    [61] Siddiqui M, Amy G L, Ozekan K, et al. Alternative strategies for removingbromate[J]. J Am Water Works Assoc,1994,86(10):81-96.
    [62] Bhatnagara A, Sillanpaab M. Sorption Studies of Bromate Removal from Waterby Nano-Al2O3[J]. Separation Science and Technology,2012,47(1):89-95.
    [63]安东,李伟光,崔福义.溴酸盐的生成及控制[J].水处理技术,2005,31(6):54-56.
    [64] Song R, Westerhoff P, Minear R, et al. Bromate minimization duringozonation[J]. J Am Water Works Assoc,1997,89(6):69-78.
    [65] Aljundi I H. Bromate formation during ozonation of drinking water: Aresponse surface methodology study[J]. Desalination,2011,277:24-28.
    [66] Normant S, Harma L L, Looyenga R W. The use of chloramines to preventtrihalomethane formation[J]. J Am Water Works Assoc,1980,72(3):176-179.
    [67] Zakariap, Bloomfield C, Shellie R A, et al. Determination of bromate in seawater using multi-dimensional matrix-elimination ion chromatography[J].Journal of Chromatography A,2011,1218(50):9080-9085.
    [68] Pinkernell U, Gunten U V. Bromate minimization during ozonation:mechanistic considerations[J]. Environmental Science and Technology,2001,35(12):2525-2531.
    [69] Chao P F. Role of Hydroxyl radicals and hypobromous acid reactions onbromate formation during ozonation[D]. USA: Arizona State University,2002.
    [70]吴清平,孟凡亚,张菊梅等.臭氧消毒中溴酸盐的形成、检测与控制[J].中国给水排水,2006,22(16):12-14.
    [71] Siddiqui M, Amy G, Zhai W, et al. Removal of bromate after ozonation duringdrinking water treatment[J]. Proceedings American Water Works AssociationAnnual Conference,1994,86(11):881-905.
    [72] Pei Yishan, Yang Ming, Guo Zhaoha. The production and control of bromate intreating bromide-bearing source water with ozone[J]. Acta Scientiae Circumstantiae.2007,11(27):1767-1771.
    [73] Hoigne J. Chemistry of aqueous ozone and transformation of pollutants byozonation and Advanced Oxidation Processes[J]. The Handbook ofEnvironmental Chemistry, Part C, Quality and Treatment of Drinking Water,1998,5(2):123-129.
    [74] Gunten U V. Bromate Formation during ozonation of Bromide-ContaniningWaters Interaction of Ozone and Hydroxyl Radical Reactions[J].Environmental Science and Technology.1994,28(7):1234-1239.
    [75] Bal M L, Griffini O, Santianni D, et al. Removal of bromate ion from waterusing granular activated carbon[J]. Water Research,1999,33(13):2959-2970.
    [76]孙国芬,乔铁军,刘晓飞,等.生物活性炭技术中生物量的变化和影响[J].水处理技术.2007,7(33):44-46.
    [77] Black D. Magrini B K. Reducing Cancer Risks by improving organic carbonremoval[J]. J. Am Water Works Assoc,1996,88(6):72-79.
    [78] Siddiqui M, Zhai Wenyi, Amy G, et al. Bromate ion removal by activatedcarbon[J]. Water Research,1996,30(7):1651-1660.
    [79] Huang Winnjung, Cheng Yungling. Effect of characteristics of activated carbonon removal of bromate[J]. Separation and Purification Technology,2008,59:101-107.
    [80] Lind C. Reducing total and dissolved organic carbon: comparing coagulants[J].Environment Technology,1996,6(3):54-59.
    [81] Asami M, Aizawa T, Morioka T, et al. Bromate removal during transition fromnew granular activated carbon (GAC) to biological activated carbon (BAC)[J].Water Research,1999,33(12):2797-2804.
    [82] Chen Zhizhen. Study on AOC Removal from Drinking Water byOzone/Biological Activated Carbon Process[J]. China Water&Waste Water,2008,3(24):73.
    [83] Du Xiuli, Zheng Jianjun, Yan Weiming, et al. PAC Addition on ImmersedUltrafiltration Membrane for the Treatment of Raw Water Containing Taste andOdor Compounds[J]. Advanced Materials Research,2012,446:2855-2859.
    [84]施东文,谢曙光.生物炭形成过程对溴酸盐和有机物的去除能力研究[J].中国给水排水,2006,22(19):5-7.
    [85] Kim Y J, Hyun K S. Characteristics of disinfection by-products reduction in theprocesses of drinking water treatment system using Nakdong river water[J].Desalination and Water Treatment,2012,43(1):159-166.
    [86] Ding Liang, Li Qin, Zhou Dandan, et al. Modification of glassy carbonelectrode with polyaniline/multi-walled carbon nanotubes composite:Application to electro-reduction of bromate[J]. Journal of ElectroanalyticalChemistry,2012,668(1):44-50.
    [87] Gerrity D, Gamage S, Holadya J C, et al. Pilot-scale evaluation of ozone andbiological activatedcarbon for trace organic contaminant mitigation anddisinfection[J]. Water Research,2011,45(5):2155-2165.
    [88] Kirisits M, Snoeyink V. Reduction of bromate in a BAC filter[J]. Journal ofAWWA.1999,91(8):74-84.
    [89] Liu Juan, Yu Jianwei, Li Dong, et al. Reduction of bromate in a biologicalactivated carbon filter under high bulk dissolved oxygen conditions andcharacterization of bromate-reducing isolates[J]. Biochemical EngineeringJournal,2012,65(15):44-50.
    [90] Thakura D B, Tiggelaarb R M, Webera Y, et al. Ruthenium catalyst on carbonnanofiber support layers for use in silicon-based structured microreactors. Part II:Catalytic reduction of bromate contaminants in aqueous phase[J]. AppliedCatalysis B: Environmental,2011,102(1):243-250.
    [91] Mahmudov R, Huang C P. Selective adsorption of oxyanions on activatedcarbon exemplified by Filtrasorb400(F400)[J]. Separation and PurificationTechnology,2011,77(3):294-300.
    [92] Dong Zijun,Dong Wenyi, Zhang Xiaomin, et al. Removal of Bromate byFerrous Sulfate Reduction in Drinking Water[C]. Hong Du3rd InternationalConference on Bioinformatics and Biomedical Engineering,2009:1-4.
    [93] Pramanick D, Palit S R. Ferrous-bromate redox as initiator of aqueous vinylpolymerization[J]. Colloid and Polymer Science,1969,229(1):24-28.
    [94] Listiarinia K, Tora J T, Suna D D, et al. Hybrid coagulation–nanofiltrationmembrane for removal of bromate and humic acid in water[J]. Journal ofMembrane Science,2010,365(1):154-159.
    [95]董文艺,董紫君,余小海,等.硫酸亚铁还原法去除饮用水中溴酸盐的研究[C].北京:2008:46-52.
    [96] Chitrakar R, Makita Y, Sonoda A, et al. Fe-Al layered double hydroxides inbromate reduction: Synthesis and reactivity[J]. Journal of Colloid and InterfaceScience,2011,354(2):798-803.
    [97] Xie Li, Shang Chi. The effects of operational parameters and common anionson the reactivity of zero-valent iron in bromate reduction[J]. Chemosphere,2007,66(9):1652-1659.
    [98] Fridman N, Lahav O. Formation and minimization of bromate ions within non-thermal-plasma advanced oxidation[J]. Desalination,2011,280:273-280.
    [99] Wang Qiliang, Snyder S, Kim J, et al. Aqueous Ethanol modified NanoscaleZerovalent Iron in Bromate Reduction: Synthesis, Characterization, andReactivity[J]. Environmental Science and Technology,2009,43(9):3292-3299.
    [100]蒋展鹏,寥孟钧.腐殖酸在活性炭上吸附平衡的研究[J].水处理技术,1988,14(5):306-313.
    [101] Xie Li, Shang Chi, Zhou Qi. Effect of Fe (III) on the bromate reduction byhumic substances in aqueous solution[J]. Journal of Environmental Sciences,2008,20(3):257-261.
    [102] Liu Tongzhou, Tsang D C, Irene M C. Chromium(VI) Reduction Kinetics byZero-Valent Iron in Moderately Hard Water with Humic Acid: IronDissolution and Humic Acid Adsorption[J]. Environmental Science andTechnology,2008,42(6):2092-2098.
    [103] Xie Li, Shang Chi. Role of Humic Acid and Quinone Model Compounds inBromate Reduction by Zerovalent Iron[J]. Environmental Science andTechnology,2005,39(4):1092-1100.
    [104]刘润生.纳米零价铁对臭氧氧化副产物溴酸盐的去除研究[D].杭州:浙江大学,2010:60-61.
    [105] Wert E, Neemann J, Rexing D, et al. Biofiltration for removal of BOM andresidual ammonia following control of bromate formation[J]. Water Research,2008,42,(1):372-378.
    [106] Hijnenw A M, Voogt R, Veenendaal H R, et al. Bromate Reduction byDenitrifying[J]. Bacteria,1995,61(1):239-244.
    [107] Kosaka K, Asami M, Takei K, et al. Analysis of Bromate in Drinking WaterUsing Liquid Chromatography-Tandem Mass Spectrometry without SamplePretreatment[J]. Analytical Sciences,2011,27(11):1091-1097.
    [108]李永秋,王占生.生物预处理对饮用水致突活性影响的研究[J].中国给水排水,1996,12(2):7-9.
    [109] Davidson A N, Sanford J C, Lai H Y. Characterization of bromate-reducingbacterial isolates and their potential for drinking water treatment[J]. WaterResearch,2011,45(18):6051-6062.
    [110] Wisniewski J A, Korbutowicz M K, Lakomska S. Donnan dialysis andelectrodialysis as viable options for removing bromates from natural water[J].Desalination,2011,281:257-262.
    [111] Haddada M E, Mamounic R, Ridaouid M, et al. Rapid simultaneous analysis ofoxyhalides and inorganic anions in aqueous media by ion exchangechromatography with indirect UV detection[J]. Journal of Saudi ChemicalSociety,2012,652(41):1-4.
    [112] Paschoal F M, Pepping G. Photoelectro catalytic removal of bromate usingTi/TiO2coated as a photocathode[J]. Environmental Science and Technology,2009,43(19):7496-7502.
    [113] Juan L A, Stefan B H, Torsten C S, et al. MTBE Oxidation by conventionalozonation and the combination of ozone/hydrogen peroxide: efficiency of theprocess and bromate formation[J]. Environmental Science and Technology,2001,34:4252-4259.
    [114] Kruithof J C, Kamp P C, Martijn B J. UV/H2O2treatment: a practical solutionfor organic contaminants control and primary disinfection[J]. Ozone: Scienceand Engineering,2007,29(4):273-280.
    [115] Korbutowicz M K, Wisniewski J, Lakomska S, et al. Application of UF, NFand ED in natural organic matter removal from ion-exchange spent regenerantbrine[J]. Desalination,2011,280:428-431.
    [116]张桐.二氧化钛光催化对水中溴酸盐降解机理的研究[D].北京:北京林业大学,2009:54-55.
    [117] Zhu Rongshu, Tian Fei, Dong WenYi, et al. Effects of Inorganic Anions onTiO2Photocatalytic Reduction of BrO3-[J]. Advanced Materials Research,2012,428(69):69-72.
    [118] Braunstein J F. Ultraviolet Disinfection of Filtered Activated Sludge Effuentfor Reuse. Application[J]. Water Environment Research,1998,68:152-160.
    [119] Bolton J R, Dussert B, Bukhari Z, et al. Inactivation of Cryptosporidiumparvum by mediumpressure ultraviolet light in finished drinking water.Proceedings[C]. Dallas: American Water Works Association AnnualConference,1998:389-403.
    [120] Tawabini B, Zunair A. Bromate control in phenol-contaminated water treatedby UV and ozone processes[J]. Desalination,2010,197:1-4.
    [121] Gunten U V, Meunier L, Silvio C. Implications of sequential use of UV andozone for drinking water quality[J]. Water Research,2006,40:1864-1876.
    [122] Scheideler J, Teunissen K L, Knol T, et al. Combination of O3/H2O2and UV formultiple barrier micropollutant treatment and bromate formation control-aneconomic attractive option[J]. Water Practice&Technology2011,32(3):175-181.
    [123] Liu Xiaowei, Chen Zhonglin, Zhou Nan, et al. Degradation and detoxificationof microcystin-LR in drinking water by sequential use of UV and ozone[J].Journal of Environmental Sciences,2010,22(12):1897-1902.
    [124]曹恩华. UVA的辐射效应及其分子机理[J].激光生物学,1994,3(4):529-534.
    [125] Peldszusa S, Andrewsb S A, Souzaa R, et al. Effect of medium-pressure UVirradiation on bromate concentrations in drinking water, a pilot-scale study[J].Water Research,2004,38:211-217.
    [126] Fotsing M, Barbeau B, Prevost M. Low-level bromate analysis in drinkingwater by ion chromatography with optimized suppressed conductivity cellcurrent followed by a post-column reaction and UV/Vis detection[J]. Journal ofEnvironmental Science and Health,2011,46(4):420-425.
    [127]何茹,鲁金凤,马军,等.臭氧催化氧化控制溴酸盐生成效能与机理[J].环境科学,2008,29(1):99-103.
    [128] Gunten U V. Disinfection and by-product formation in presence of bromide,iodide or chlorine[J]. Water Research,2003(37):1469-1487.
    [129]顾平,张凤娥.应用高锰酸钾降低水中三氯甲烷的研究[J].环境科学学报,1998,18(1):104-107.
    [130]张永吉,周玲玲,李伟英,等.高锰酸盐作为氧化剂来提高混凝对水中天然有机物的去除机制研究[J].环境科学,2009,30(3):761-764.
    [131] Chen Yue, Gao Huiyan. Research on ozone and potassium permanganate pre-oxidation of slight-polluted and low turbidity water at low temperature[J].Liao Ning Chemical Indust.2008,8(37):542-548.
    [132] Jin Yongwei, Xiong Zhenhu, Han Hongda, et al. Study on pilot treatment ofraw water by combined pre-oxidation process of ozone and potassiumpermanganate compound[J]. Journal of Tianjin Institute of Urban Construct.2005,1(11):54-57.
    [133]李商国,吴纯德,翁国杰,等.含溴离子水臭氧氧化过程中溴酸盐生成影响因素研究[J].水处理技术,2010,5:34-37.
    [134] Mills A, Belghazi A, Rodman D. Bromate removal from drinking water bysemiconductor photocatalysis[J]. Water Research,1996,30(9):1973.
    [135] Zhang Tao, Hou Pin, Qiang Zhimin, et al. Reducing bromate formation withH+-form high silica zeolites during ozonation of bromide-containing water:Effectiveness and mechanisms[J]. Chemosphere,2011,82(4):608-612.
    [136]崔蕴霞.铝盐絮凝剂及其环境效应[J].工业水处理,1998,16(5):23.
    [137]王广华,王晓昌,金鹏康. PAC为混凝剂时高岭土悬浊液的混凝条件及絮凝体形态学特征[J].给水排水,2007,33(11):143-145.
    [138] Hanson A T, Cleasby J L. The effect of temperature on turbulentflocculation[J]. fluid dynamics and chemistry.1990,82(11):56.
    [139] Bhatnagara A, Choia Y H, Yoona Y J, et al. Bromate removal from water bygranular ferric hydroxide (GFH)[J]. Journal of Hazardous Materials,2009,170:134-140.
    [140]江淑芙,袁有宪,解维域.硫酸根增聚经基氯化铝的絮凝研究[J].青岛化工学院学报,1988,9(4):9-14.
    [141]张文艺,郑明东,李琴,等.聚铁改性絮凝剂的合成与水处理试验[J].水文地质工程地质,2005,5:6-8.
    [142]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990,9(6):70-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700