PRSV ihpRNA干扰载体的构建及转化番木瓜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番木瓜是重要的热带水果,含有丰富的营养成分,以富含木瓜蛋白酶而著称。番木瓜产业发展过程中遇到很多问题,其中番木瓜环斑病毒(Papaya ringspot virus, PRSV)病严重影响番木瓜生产。并且,这些问题依赖常规育种方法难以得到解决,必须依靠生物技术的方法。为研究番木瓜广谱抗病毒机制,培育适合我国南方地区栽培的番木瓜新品系,本研究利用RNAi介导的抗病机理,通过花粉管通道法将几个不同ihpRNA植物表达载体遗传转化番木瓜,为我国番木瓜生物技术研究提供理论及实践依据。具体研究结果如下:
     1、基于PRSV-HN株系CP基因序列及其保守序列,利用非对称重叠延伸PCR (Asymmetric Overlap Extension PCR),建立了快速构建植物ihpRNA结构的方法。该方法只需在一个PCR管中进行一步反应法即可获得ihpRNA结构,具有简单、快速、成本低等优点。利用本方法,成功构建了hpRNA-S1(9351-9705bp). hpRNA-S2(9406-9705bp)、 hpRNA-S3(9535-9705bp)、hpRNA-S4(9590-9705bp)、 hpRNA-S5(9655-9705bp)、 hpRNA-S6(9720-10073bp)、 hpRNA-S8(9940-10073bp)、hpRNA-S9(9974-10073bp)、hpRNA-S13(9590-10073bp)、 hpRNA-S14(9655-10073bp)10个PRSV-CP基因不同位置和不同大小靶片段的ihpRNA结构。
     2、利用两轮重叠延伸PCR (Overlap Extension PCR, OE-PCR)技术,建立了快速构建嵌合型植物ihpRNA结构的方法。该方法可以同时靶向多个基因或一个基因的多个位点,且构建过程简单、快速。基于PRSV-HN株系CP和VPg基因的保守序列,利用本方法,成功构建了1个嵌合型植物ihpRNA结构hpRNA-CV,该结构同时靶向PRSV上CP基因和VPg基因,有望增强RNA干扰效果,提高番木瓜对PRSV的持久抗性和广谱抗性。
     3、利用植物表达载体pB1121和pCambia3300,构建了hpRNA-S5、 hpRNA-S6、hpRNA-S8以及嵌合型的hpRNA-CV结构的植物表达载体,分别为pCambia-hpRNA-S5、pCambia-hpRNA-S6、pCambia-hpRNA-S8和pCambia-hpRNA-CV。
     4、通过花粉管通道法,将pCambia-hpRNA-S5、pCambia-hpRNA-S6、 pCambia-hpRNA-S8、pCambia-hpRNA-CV质粒DNA导入番木瓜,进行番木瓜遗传转化,转化后收获的转化番木瓜种子依次进行了除草剂(PPT)筛选、PCR检测、及RT-PCR验证试验,最终共获得了24株转基因阳性的番木瓜种子苗,其中:转pCambia-hpRNA-S5植株5株;转pCambia-hpRNA-S6植株6株;转pCambia-hpRNA-S8植株8株;转pCambia-hpRNA-CV植株5株。RT-PCR检测结果表明:筛选获得的转基因植株中目标片段获得了稳定表达。
     5、综合PRSV攻毒实验后供试番木瓜苗的生长发病情况和ELISA检测结果,初步认为共获得了10个抗性的转基因番木瓜株系。转pCambia-hpRNA-S5基因获得2个抗性株系;转pCambia-hpRNA-S8基因获得4个抗性株系;转pCambia-hpRNA-S6基因获得2个抗性株系;转pCambia-hpRNA-CV基因获得2个抗性株系。且初步证明转基因番木瓜抗病植株病毒积累量显著降低,病毒累积量与植株抗性性呈负相关性。
     6、Northern blot结果表明,当ihpRNA载体转化番木瓜后,能够较好地沉默病毒PRSV-CP基因,使转基因植株具有明显的抗PRSV病毒活性。Northern blot产生的杂交信号,随着抗病性的减弱,PRSV-CP基因RNA的积累增多,杂交信号逐渐增强。抗病植株内PRSV-CP基因RNA的积累量明显低于感病株系,即转基因植株内PRSV-CP基因RNA的积累量与植株抗病性呈负相关性。
Papaya (Carica papaya L.) is an important fruit in tropical and subtropical regions, which is famous for containing rich nutrients and papaya protease. Many factors affect the development of papaya industry, and Papaya ringspot virus (PRSV), is a major disease. PRSV causes significant yield losses in papaya. These problems are much harder to solve rely on conventional breeding methods, and it must depend on the method of biological technology. In order to study the broad-spectrum antiviral mechanism in papaya and develop transgenic papaya with durable PRSV resistance in south China, we used hpRNA anti-virus technique and genetic transformed the four different ihpRNA expression vectors into papaya plants throught pollen tube channel transformation technology, to provided a basis of theory and practice for papaya biotechnology research in China.
     The main results were as follows:
     1Based on the conservative sequence of CP gene of PRSV-HN strain, we developed a novel method to construct intron-containing hairpin RNA (ihpRNA) rapidly and efficiently throught asymmetric Overlap Extension PCR systerm. This method is a simple, rapid and economic (without any expensive reagent) technique for ihpRNA structure constructing. It is a one-step PCR in one tube without any intermediate purification. Based on the conservative CP gene (coat protein) sequence from hainan PRSV (PRSV-HN), we successfully generated10ihpRNA structure which target on difference sites of PRSV-CP gene, for respectively:hpRNA-Sl (9351-9705bp), hpRNA-S2(9406-9705bp), hpRNA-S3(9535-9705bp), hpRNA-S4(9590-9705bp), hpRNA-S5(9655-9705bp), hpRNA-S6(9720-10073bp), hpRNA-S8(9940-10073bp), hpRNA-S9(9974-10073bp), hpRNA-S13(9590-10073bp), hpRNA-S14(9655-10073bp).
     2Based on two rounds of Gene Splicing by Overlap Extension PCR (OE-PCR) technology, we developed a method to obtain mosaic ihpRNA structure. Its advantage is that it can target at several genes or multiple parts of one gene. Based on CP gene and VPg gene of PRSV-HN, we built one mosaic ihpRNA structure, named as hpRNA-CV. It targets on the two difference site of PRSV, which is promising to obtain broad-spectrum resistance and enhance the resistance to PRSV in papaya.
     3Using the pBI121and pCambia3300as background, we obtained four plant expression vector: pCambia-hpRNA-S5, pCambia-hpRNA-S8, pCambia-hpRNA-S6and pCambia-hpRNA-CV, which based on the structure of hpRNA-S5, hpRNA-S8, hpRNA-S6and hpRNA-CV.
     4The plant expression vectors with the ihpRNA structure were transformed into papaya plants (Sui zhong hong) through the pollen tube channel technology. The plasmid DNA was used as material in pollen tube channel technology platform. Through herbicide selection、 PCR detection, we got24plants of transfermation papaya, they are5plants of pCambia-hpRNA-S5,8plants of pCambia-hpRNA-S8,6plants of pCambia-hpRNA-S6and5plants of pCambia-hpRNA-CV. RT-PCR test results showed that the interest genes were stable expressed in transgenic plants.
     5Throught resistance test of PRSV virus poison attack and ELISA test, we got10resistance transgenic papaya plants. In detail:there are2transgenic plants of pCambia-hpRNA-S5,4transgenic plants of pCambia-hpRNA-S8,2transgenic plants of pCambia-hpRNA-S6,2transgenic plants of pCambia-hpRNA-CV. The tests show that the cumulant of virus decreased significantly than the control plants. That is to say that the cumulant of virus and plant resistance to PRSV have a negative correlation.
     6Northern blot results revealed that PRSV-CP gene was silenced in ihpRNA transgenic papaya plants, which enable the transgenic plants have obvious resistance to PRSV. The signals of Northern blot hybridization increased following the disease-resistant's weaken of transgenic plants. The RNA accumulation of PRSV-CP gene in PRSV-resistant plants is significantly lower than the sensitive plants. That is to say the RNA accumulation of PRSV-CP gene in the transgenic plant showed a negative correlation with virus resistance.
引文
1.周鹏,沈文涛(2011)番木瓜生物技术.北京:中国农业出版社.
    2. Pendzhiev AM (2002) Proteolytic Enzymes of Papaya: Medicinal Applications. Pharmaceutical Chemistry Journal 36:315-317.
    3. Jain RK, Sharma J, Sivakumar AS, et al. (2004) Variability in the coat protein gene of Papaya ringspot virus isolates from multiple locations in India. Archives of Virology 149: 2435-2442.
    4. Maoka T, Kawano S, Usugi T (1995) Occurrence of the P strain of papaya ringspot virus in Japan. Ann Phytopathol Soc Japan 61:91-94.
    5.魏军亚,刘德兵,周鹏(2006)番木瓜环斑病毒及其抗病策略.中国热带农业4:43-44.
    6.翁树章(2002)番木瓜丰产栽培病虫害防治简易加工.北京:中国农业出版社:10.
    7. Rosa M.de la, Lastra R (1983) Purification and partial characterization of papaya ringspot virus. Phytopathologische Zeitschrift 106:329-336.
    8. Yeh S.D, Gonsalves. DG (1984) Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086-1091.
    9.卢雅薇,沈文涛,唐清杰,等(2007)番木瓜环斑病毒海南分离物全基因组结构分析.广东农业科学9:54-58.
    10.蔡英卿,赖忠雄(2003)番木瓜生物技术研究进展.江西农业大学学报25:429-434.
    11. Bateson MF, Henderson J, Chaleeprom W, et al. (1994) Papaya ringspot potyvirus:isolate variability and the origin of PRSV type P (Australia). Journal of General Virology 75 (Pt 12):3547-3553.
    12.蔡英卿(2000)番木瓜环斑病毒病研究进展.泉州师范学院学报(自然科学版) 18:52-55.
    13.蔡建和,范怀忠(1994)华南番木瓜病毒病及环斑病毒株系调查鉴定.华南农业大学学报4:13-17.
    14. Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins:a wealth of functions. Virus Research 74:157-175.
    15.郭兴启,范国强,尚念科(2000)植物抗病毒基因工程育种策略及其发展.生命科学研究4:112-117.
    16.庞俊兰(2002)植物抗病毒基因工程研究进展.海淀走读大学学报57:65-69.
    17. Abel PP, Nelson RS, De B, et al. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738-743.
    18. Yeh SD, Jan FJ, Chiang CH, et al. (1992) Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. Journal of General Virology 73 (Pt 10): 2531-2541.
    19. Nagel J, Hiebert E (1985) Complementary DNA cloning and expression of the papaya ringspot potyvirus sequences encoding capsid protein and a nuclear inclusion-like protein in Escherichia coli. Virology 143:435-441.
    20. Quemada H, L'Hostis B, Gonsalves D, et al. (1990) The nucleotide sequences of the 3'-terminal regions of papaya ringspot virus strains W and P. Journal of General Virology 71 (Pt 1):203-210.
    21.刘俊君,彭雪贤,莽克强(1991)番木瓜环斑病毒分离物(SM)外壳蛋白基因克隆及序列分析.微生物学通报18:350-351.
    22.龚洁敏,郑学勤 (1993)番木瓜环斑病毒外壳蛋白基因的cDNA克隆及全序列测定比较.植物学报35:416-421.
    23.叶长明,叶寅 (1991)番木瓜环斑病毒外壳蛋白基因的构建.植物病理学报21:161-164.
    24.肖火根,范怀忠(1994)番木瓜环斑病毒株系的生物学和血清学研究.华南农业大学学报15:50-54.
    25. von der Haar T, Gross JD, Wagner G, et al. (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nature Structural and Molecular Biology 11: 503-511.
    26. Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to Barley yellow dwarf virus. Molecular Plant Pathology 1:347-356.
    27. Borgstrom B, Johansen IE (2001) Mutations in pea seedborne mosaic virus genome-linked protein VPg after pathotype-specific virulence in Pisum sativum. Molecular Plant Microbe Interactions 14:707-714.
    28.饶雪琴,李华平(2004)转基因番木瓜研究进展.中国生物工程杂志6:38-42.
    29.张余洋,欧阳波,叶志彪(2004)无抗性标记基因转基因植物研究进展.农业生物技术学报12:589-596.
    30. Sheen TF, Wang HL. Wang DN (1998) Control of papaya ringspot virus by cross protection and cultivation techniques. Journal of the Japanese Society for Horticultural Science 67: 1232-1235
    31.赵文翰(2004)番木瓜的病虫害及其防治.中国南方果树33:50-51.
    32.龚标勋(2003)番木瓜环斑病及其防治技术.植物医生16:13-14.
    33.蔡巨才 (1998)EM应用与网室番木瓜之栽培.中国园艺44:93-101.
    34.张荣萍,陈理,周鹏(2007)番木瓜环斑病毒病综合防治.热带农业科学27:42-45.
    35. Conover RA, Litz RE, Malo SE (1986) Cariflora'-a papaya ringspot virus-tolerant papaya for South Florida and the Caribbean. Hort Science 21:1072.
    36. Lin CC, Su HJ, Wang DN (1989) The control of papaya ringspot virus in Taiwan ROC. Technical Bulletin-ASPAC 114:1-13.
    37.周鹏,沈文涛,言普,等(2010)我国番木瓜产业发展的关键问题及对策.热带生物学报1:257-260.
    38.周鹏,郑学勤(1996)PRSV-CP转基因番木瓜表达与抗病能力关系的研究.热带作物学报17:77-83.
    39. Fermin G, Inglessis V, Garboza C, et al. (2004) Engineered resistance against papaya ringspot virus in Venezuelan transgenic papayas. Plant Disease 88:516-522.
    40. Sanford JC, Klein TM, Wolf ED, et al. (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology 5:27-37.
    41. Klein TM, Wolf ED, Wu R., et al. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70-73.
    42.徐立华,阴卫军,周柱华,等(2008)基因枪法获得玉米转基因植株的研究.玉米科学16:22-25.
    43. Vasil V, Castillo AM, Fromm ME, et al. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology 10:667-674.
    44.许新萍,卫剑文,范云六,等(1999)基因枪法转化籼稻胚性愈伤组织获得可育的转基因植株.遗传学报26:219-227.
    45. McCabe DE, Swain WF, Martinell BJ, et al. (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Nature Biotechnology 6:923-926.
    46. Finer JJ, Vain P, Jones MW, et al. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports 11:323-328.
    47. Dai SH, Zheng P, Marmey P, et al. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding 7:25-33.
    48.林栖凤(2004)植物分子育种.科学出版社:33-36.
    49. Zhao ZY, Cai T, Tagliani L, et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Molecular Biology 44:789-798.
    50. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Reports 22:1-15.
    51.王艳,曾幼玲,贺宾,等(2006)农杆菌介导NHX基因转化甘蓝型油菜的研究.作物学报32:278-282.
    52.党尉,卫志明(2007)根癌农杆菌介导的高效大豆遗传转化体系的建立.分子细胞生 物学报40:185-195.
    53.李永华,尚玉萍,杨芳绒,等(2007)小麦甜菜碱醛脱氢酶基因在烟草中的转化及表达.河南农业大学学报41:12-14.
    54.刘巧泉,张景六,王宗阳,等(1998)根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报24:259-271.
    55. Maria E. Kononov BB, Stanton B. Gelvin (1997) Integration of T-DNA binary vector 'backbone'sequences into the tobacco genome: evidence for multiple complex patterns of integration. The Plant Journal 11:945-957.
    56. A.E Müller YK, R Grüneberg, I Niedenhof, et al. (1999) Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. Journal of Molecular Biology 291:29-46.
    57. Farhah F. Assaad KLT, Ethan R. Signer (1993) Epigenetic repeat-induced gene silencing (RIGS) inArabidopsis. Plant Molecular Biology 22:1067-1085.
    58.周光宇,翁坚,龚蓁蓁,等(1988)农业分子育种授粉后外源DNA导入植物的技术.中国农业科学21:1-6.
    59.周光宇(1978)从生物化学的角度探讨远缘杂交的理论,中国农业科学2:16-20.
    60.张永生(2005)玉米遗传图谱构建和花粉管通道法转化玉米的研究.山东大学博士毕业论文.
    61.周光宇,龚蓁蓁,王自芬(1979)远缘杂交的分子基础-DNA片段杂交假设的一个论证.遗传学报6:405-413.
    62.邓德旺,郭三堆,杨志民(1999)棉花花粉管通道法转基因的分子细胞学机理研究.云南大学学报(自然科学版)21:124-125.
    63. Hess. D (1980) Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors Zeitschrift für. Plant Physiology 98:321-327.
    64. Zhou GY, Weng J, Zeng YS, et al. (1983) Introduction of exogenous DNA into cotton embryos. Methods in Enzymology 101:433-481.
    65.谢道昕,范云六,倪万潮,等(1991)苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学(B辑)4:367-373.
    66. Clough SJ, Bent AF (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16:735-743.
    67. Luo ZX, Wu R (1988) A simple method for the transformation of rice via the pollen-tube pathway. Pant Molecular Biology Reporter 6:165-174.
    68.何迎春,高必达(2001)花粉管通道法转化水稻研究进展.福建稻麦科技19:33-37.
    69. Chong KT, KH. (1995) Function analysis of ver 203 gene through antisense transgenic winter wheat plants. Plant Physiology 108:475-478.
    70.周延请,王娜,苑保军,等(2004)大豆遗传转化研究进展.武汉植物学研究22:163-170.
    71.陈火英,张建华,庄天明,等(2004)利用花粉管通道技术培育番茄耐盐新种质.西北植物学报24:12-16.
    72. Ohta Y (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proceedings of the National Academy of Sciences U.S.A.83:715-719.
    73.陈天子(2009)基于组织培养和授粉后浸蘸花柱的两种棉花遗传转化体系的建立.南京农业大学博士毕业论文.
    74. Tennant PF, Fitch MM, Manshardt R (1997) Resistant against papaya ringspot virus isolates in coat protein trangenic papaya is affected by transgene dosage and plant development. Phytopathology 87:96.
    75.周鹏,黎小瑛,沈文涛 (2005)番木瓜优质组培苗生产体系的建立.热带作物学报26:43-46.
    76. Vazquez RC, Del`vas M, Hopp HE (2002) RNA-mediated virus resistance. Current Opinion in Biotechnology 13:167-172.
    77. Hamilton AJ, Brown S, Han YH, et al. (1998) A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant Journal 15:737-746.
    78. Plasterk RH (2002) RNA silencing:the genome's immune system. Science 296:1263-1265.
    79. Tavernarakis N, Wang SL, Dorovkov M, et al. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics 24: 180-183.
    80. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger:short RNAs that silence gene expression. Nature Reviews Molecular Cell Biology 4:457-467.
    81. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences U.S.A.97:4985-4990.
    82. Fire A, Xu S, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811.
    83. Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611-620.
    84. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950-952.
    85. Kusaba M (2004) RNA interference in crop plants. Current Opinion in Biotechnology 15: 139-143.
    86. Waterhouse PM, Graham MW, Wang, MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences U.S.A.95:13959-13964.
    87. Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289-295.
    88. Zhao MM, An DR, Huang GH, et al. (2005) A viral protein suppresses siRNA-directed interference in tobacco mosaic virus infection. Acta Biochimica Biophysica Sinica (Shanghai) 37:248-253.
    89. Eamens AL, Waterhouse PM (2011) Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Methods Molecular Biology 701: 179-197.
    90. Himmelbach A, Zierold U, Hensel G, et al. (2007) A set of modular binary vectors for transformation of cereals. Plant Physiology 145:1192-1200.
    91.周波,孙梅,阎淑滑,等(2008)隐花色素CRY2基因片段克隆及RNAi植物表达载体的构建.分子植物育种6:1182-1186.
    92.徐品三,白建芳,刘纪文,等(2011)Gateway技术快速构建百合双价抗病毒RNAi表达载体.中国农学通报27:144-147.
    93.徐化学,熊建华,傅彬英(2007)应用Gateway技术构建水稻OsDADl基因的RNA干涉载体.分子植物育种5:133-136.
    94.王磊,迟晓娟,张闯,等(2010)银中杨DREB2A基因RNA干扰载体构建及转化农杆菌的研究.吉林农业大学学报32:254-257,270.
    95.毕惠惠,王根平,王成社,等(2013)单子叶植物RNA干扰和过表达Gateway载体的构建.植物遗传资源学报01:115-123.
    96. Xiao YH, Yin MH, Hou L, et al. (2006) Direct amplification of intron-containing hairpin RNA construct from genomic DNA. Biotechniques 41:548,550,552.
    97. Lu YW, Shen WT, Zhou P, et al. (2008) Complete genomic sequence of a Papaya ringspot virus isolate from Hainan Island, China. Archives of Virology 153:991-993.
    98. Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to Barley yellow dwarf virus. Molecular Plant Pathology 1:347-356.
    99. Tenllado F, D-RJ (2001) Double-stranded RNA-mediated interference with plant virus infection. Journal of Virology 75:12288-12297.
    100. Hilson P, Allemeersch J, Altmann T, et al. (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics:transcript profiling and reverse genetics applications. Genome Research 14:2176-2189.
    101. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap Extension. Nature Protocols 2:924-932.
    102. Horton RM, Hunt HD, Ho SN, et al. (1989) Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension. Gene,77:61-68.
    103.李晓,王学德(2004)根癌农杆菌转化棉花花粉的研究.棉花学报16:323-327.
    104. Abdul-Baki AA, Saunders JA, Matthews BF, et al. (1990) DNA uptake during electroporation of germinating pollen grains. Plant Science 70:181-190.
    105.蔡群芳 (2006)利用RNA介导技术培育番木瓜光谱抗环斑病毒品种(系)的初步研究.华南热带农业大学硕士学位论文.
    106.付邵红,牛应泽,杨洪全,等(2004)表面活性剂silwet-77对floral-dip转化甘蓝型油菜效果的影响.分子植物育种2:661-666.
    107.王关林,方宏筠(2002)植物基因工程(第二版).北京:科学出版社:623-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700