自立式输电塔线体系关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,能源需求不断加剧,电网建设的投入也越来越大。我国电网事故不断,尤其是2008年初的冰冻天气造成大量杆塔倒塌,严重影响经济运行和正常生活。自立式铁塔作为送电线路的重要组成部分,其经济性及安全性对整个线路有重要影响。对其进行必要的优化设计可以带来明显的经济效益,也可以增强线路的安全性。另外,我国资源分布严重不均,而且近三分之二的国土面积为山地,伴随电网的不断建设,越来越多的线路需要跨越山区。山区风受到微地形的影响,有其特殊的运动规律,而处于山地地形中的输电塔线体系在风荷载下的反应有其本身的特点。其次,山地线路中输电塔覆冰后的受力状态,以及线路脱冰后的反应也有着与平地线路不同的特殊性,需要深入分析。本文具体研究内容如下:
     第一,提出了对自立式铁塔先进行塔身整体结构的智能选型,然后再对铁塔各部分构件进行选型的铁塔优化设计方法。采用面向对象技术建造了塔身结构的选型实例库,然后基于实例推理技术和数据挖掘理论来对铁塔塔身结构进行知识挖掘,并将现行规范中关于铁塔结构构造方面的规定融入到知识库中,开发了基于实例推理和数据挖掘的塔身结构智能选型方案生成系统。按照上述方法对一500kV自立式铁塔进行了优化设计,并对其进行了真型试验,优化后铁塔自重下降了3%,极限承载能力提高了19%。对20基铁塔进行了优化设计,优化后重量平均降低了4.7%,优化后各杆件受力也更为均匀,承载能力最少增强12%。
     第二,阐述了山区风的特点,分析了山区平均风速剖面的特性,对山区脉动风的湍流特性进行了介绍,并对中美日三国荷载规范中关于山区风荷载的规定进行了对比分析。当山体坡度较小时,三国规范中的地形影响系数较为接近,随着坡度的增大,中国荷载规范与美日相比地形影响系数的规定更为保守。
     建立了山区输电塔线体系精细化有限元模型,对其动力特性进行分析,比较了山体高度、宽度对输电塔线体系动力特性的影响,还比较了其与平地线路的差异。随着高差和档距的增大,输电塔线体系相同阶次的自振频率减小。分析了山地地形上的输电塔线体系在风荷载下的动力响应,分别探讨了地面粗糙度、风速、山体高度、山体宽度和来流方向等因素对输电塔线动力响应的影响。随着地面粗糙度的增大,输电塔线体系的风振反应略有减小。随着风速的增加,塔顶位移、绝缘串偏移、导线位移、不平衡张力和支座反力力等均呈现增大趋势。相同风速下,一般是位于山顶的铁塔塔顶位移最大,而位于山腰的绝缘串偏移最大,规范规定的验算山区输电塔不平衡张力的取值偏小。分析表明,支座处竖向反力在风偏角为60°时达到最大值。
     第三,建立了山区输电塔线体系的覆冰和导线脱冰模型。对山区输电塔线体系在覆冰作用下的反应进行了分析,分析了山体不同位置处输电塔的覆冰承载能力。不均匀覆冰对输电塔的抗风承载能力有重要影响,考虑不均匀覆冰时,山区输电塔的抗风能力有明显下降。分析了山地线路不同脱冰情况下体系的动力反应,分别考虑了不同档脱冰、山体高度和不均匀脱冰等对体系动力反应的影响。脱冰档越靠近山脚,其档中的跳跃越大,引起的相邻档中点位移也越大。位于山腰处的铁塔,两侧导线中当较低档脱冰比较高档脱冰产生的纵向不平衡力更大。位于山顶处的铁塔,脱冰档越靠近山脚,对其产生的纵向不平衡张力越大。
With rapid economy development of China, demand of energy has been growing continuously, and more and more capital has been invested into power grid. However, accidents are caused frequently by weakness of power grid which should be attributed to insufficient cognition of working principle of transmission tower. Especially, a large number of towers collapsed because of freezing weather in early 2008. As a result, economic operation and routine life were severely affected. For self-supporting towers are important parts of transmission line system, their economy and security have vital impacts on whole system. Consequently, optimal design of tower can contribute significantly to both economic benefit and security of whole transmission line system. Furthermore, the distribution of resources in China is severly uneven. However, nearly two-third of the land in China is mountainous areas. Hence, more and more transmission lines have to cross mountainous area with continuous construction of power grid. Due to motion of wind in mountainous areas follows special law under impact of micro topography, response of transmission line system in mountainous areas has its own characteristics. Moreover, stress state of iced transmission line systems and their responses after ice shedding in mountainous areas are different from those in flat lands, which result in necessity to conduct deeply research. In this paper, four issues are studied:
     First of all, the optimal design method for self-supporting transmission tower is put forward, whose procedure is that the tower body form is selected intelligently firstly and then components’types of tower are chosen. The case base of towers is established with application of object-oriented technology. Then, the knowledge of tower body is mined out with case based reasoning technology and data mining. At the same time, the structural regulations of tower in the standard are merged into the knowledge base. So, the intelligent selection system of tower structural scheme based on case reasoning and data mining is explored. A 500kV self-supporting tower is optimized according to above method and a real model test is conducted. Comparison between optimal tower and original tower indicates that weight of optimal tower is decreased by 3% and its ultimate bearing capacity is increased by 19%. Statistical analysis results of 20 optimal towers indicates that the weight is average reduced by 4.7%, the components of the optimal tower are stressed more uniformly and bearing capacity of the tower is savely enhanced 12%.
     Secondly, the wind characteristics in mountainous areas are researched on. Mean velocity profile and turbulence characteristics of wind in mountainous areas are analyzed. And a comparison is made between the provisions about wind load in mountainous areas in load codes of China, the USA and Japan. The topography factors in the three codes are close to when the hill slope is relatively small. However, the topography factor in China load code is more conservative than USA and Japan as the hill slope increasing.
     The finite element model of transmission tower-line system(TLS) in mountainous areas is established and its dynamic characteristics are analyzed. Furthermore, the differences of TLS natural frequency with varying of the hill height and width are discussed. These studies verify that the TLS natural frequency at the same order decreases with the increase of hill height and width. The dynamic responses of TLS under wind load in mountainous areas with different roughness, wind velocity, hill hight, hill width and wind direction are presented. As the surface roughness increases, the wind induced vibration responses of TLS decreases slightly. The displacement at tower top, insulator offset, wire displacement, reaction force and unbalanced tension increase with the increase of wind velocity. The top displacement of tower on the hilltop is maximal. However, the offset of insulator which is suspended on the tower located on the hillside is maximal. The unbalanced tension to check the tower in mountainous areas in the code is relative small which is unsafe. The analysis shows that the vertical reaction force reaches the maximum when the wind direction is 60°.
     Finally, the ice coating and ice shedding model of TLS are established. The capacity of tower carrying ice load which situates on different positions of hill is analyzed. Non-uniform ice coating on wires has a great impact on the TLS capacity of wind resistance. The ability to resistant wind load of TLS decreases evidently when the thickness of ice coating on the wire is non-uniform. Moreover, the dynamic responses of TLS are discussed in different ice shedding situations, taking the different ice shedding span, hill height and non-uniform ice shedding into account. The larger the jumps of the ice shedding span and the adjacent spans are, the closer the ice shedding span is to hill foot. The unbalanced tension of tower locating on the hillside is larger when the ice shedding span is lower in both sides of the tower. The unbalanced tension of tower which locates on the hill summit is larger when the ice shedding span is close to hill foot.
引文
[1]张忠亭.架空输电线路设计原理[M].北京:中国电力出版社,2010:1-12.
    [2]中国电力企业联合会. 2010年全国电力工业统计年报[R].北京:中国电力企业联合会,2011:13-17.
    [3]黄志明. 21世纪中国输电线路发展前景展望[J].国际电力,2000,4(3):29-33.
    [4]项立人.应该加快我国特高压输电前期工作的研究[J].电网技术,1996,20(2):54-58.
    [5]孟遂民,孔伟.架空送电线路设计[M].北京:中国电力出版社,2007:1-20.
    [6]谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131.
    [7]李宏男,白海峰.高压输电塔线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,40(2):39-46.
    [8] Antanas Kudzys. Safety of Transmission Line Structures under Wind and Ice Storms[J]. Engineering Structures, 2006, 28(5): 682-689.
    [9] Mccarthy P, Melsness M. Severe Weather Elements associated with September 5, 1996 Hydro Tower Failures near Grosse Isle[R]. Manitoba, Canada: Manitoba Environmental Service Center, 1996: 1-21.
    [10]张勇.输电线路风灾防御的现状与对策[J].华东电力,2006,34(3):28-31.
    [11] Imai I. Studies on Ice Accretion[J]. Research on Snow and Ice, 1953, 3(1): 35-44.
    [12]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2002:2-6.
    [13]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219.
    [14]蒋兴良,马俊,王少华,等.输电线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30.
    [15]黄强,王家红,欧名勇. 2005年湖南电网冰灾事故分析及其应对措施[J].电网技术,2005,29(24):16-19.
    [16]杨靖波,李正,杨风利,等. 2008年电网冰灾覆冰及倒塔特征分析[J].电网与水力发电进展,2008,24(4):4-8.
    [17]李正,杨靖波,韩军科,等. 2008年输电线路冰灾倒塔原因分析[J].电网技术,2009,33(2):31-35.
    [18] Irvine H M. Studies in the Statics and Dynamics of Simple Cable Systems[R]. California Institute of Technology, Pasadena, California, 1974: 1-179.
    [19] Irvine H M, Griffin J H. On the Dynamic Response of a Suspended Cable[J]. Earthquake Engineering and Structural Dynamics, 1976, 4(4): 389-402.
    [20] Irvine H M, Sinclair G B. Suspended Elastic Cable under the Action of Concentrated Vertical Loads[J]. International Journal of Solids and Structures, 1976, 12(4): 309-317.
    [21] Long L W. Analysis of Seismic Effects on Transmission Structures[J]. Power Apparatus and Systems, 1974, PAS-93(1): 248-254.
    [22] Ozono S, Maeda J, Makino M. Characteristics of In-plane Free Vibration of Transmission Line Systems[J]. Engineering Structures, 1988, 10(10): 272-280.
    [23] Ozono S, Maeda J. In-plane Dynamic Interaction Between a Tower and Conductors at Lower Frequencies[J]. Engineering Structures, 1992, 14(4): 210-216.
    [24]王前信,陆鸣,李宏男.输电塔-电缆体系的合理抗震计算简图[J].地震工程与工程振动,1989,9(3):81-90.
    [25]李宏男,陆鸣,王前信.大跨越自立式高压输电塔-电缆体系的简化抗震计算[J].地震工程与工程振动,1990,10(2):81-90.
    [26]梁枢果,朱继华,王力争.大跨越输电塔-线体系动力特性分析[J].地震工程与工程振动,2003,23(6):63-69.
    [27] Kempner J L, Smith S. Cross-rope Transmission Tower-line Dynamic Analysis[J]. Journal of Strucure Engineering, 1984, 110(6): 1321-1335.
    [28]杨必峰,马人乐.输电塔线体系的索杆混合有限元法[J].同济大学学报,2004,32(3):296-301.
    [29] Yasui H, Marukawa H, Momomura Y, et al. Analytical Study on Wind-induced Vibration of Power Transmission Towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-4): 431-441.
    [30] Battista R C, Rodrigues R S, Pfeil M S. Dynamic Behavior and Stability of Transmission Towers under Wind Forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 1051-1067.
    [31] Prasad R N, Kalyanaraman V. Non-linear Behaviour of Lattice Panel of Angle Towers[J]. Journal of Constructional Steel Research, 2001, 57(12): 1337-1357.
    [32] Silva J, Vellasco P, Andrade S, et al. Structural Assessment of Current Steel Design Models for Transmission and Telecommunication Towers[J]. Journal of Constructional Steel Research, 2005, 61(8): 1108-1134.
    [33] Ballio G, Maberini F, Solari G. A 60 Year Old, 100m High Steel Tower: Limit States under Wind Actions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3): 2089-2100.
    [34] Momomura Y, Marukawa H, Okamura T, et al. Full-scale Measurements of Wind-induced Vibration of a Transmission Line System in a Mountainous Area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72(1-3): 241-252.
    [35] Okamura T, Ohkuma T, Hongo E, et al. Wind Response Analysis of a Transmission Tower in a Mountainous Area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1-2): 53-63.
    [36] Harikrishna P, Shanmugasundaram J, Gomathinayagam S, et al. Analytical and Experimental Studies on the Gust Response of a 52m Tall Steel Lattice Tower under Wind Loading[J]. Computers and Structures, 1999, 70(2): 149-160.
    [37] Harikrishna P, Annadurai A, Gomathinayagam S, et al. Full Scale Measurements of the Structural Response of a 50m Guyed Mast under Wind Loading[J]. Engineering Structures, 2003, 25(7): 859-867.
    [38] Paluch M J, Cappellari T T O, Riera J D. Experimental and Numerical Assessment of EPS Wind Action on Long Span Transmission Line Conductors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(7): 473-492.
    [39]刘群,杨进春,周粼波.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J].中国电力,1997,30(9):50-52.
    [40]刘群,杨进春,周粼波.架空输电线路塔架绝缘子串与导线风致作用模型研究[J].实验力学,1998,13(2):185-189.
    [41]胡宇滨,马人乐.江阴500kV输电塔动力性能测试[J].结构工程师,2002(3):62-66.
    [42]何敏娟,杨必峰.江阴500kV拉线式输电塔脉动实测[J].结构工程师,2003(4):74-79.
    [43]何敏娟,闫祥梅,张益国,等.两相邻输电塔的同步环境脉动实测试验研究[J].振动与冲击,2009,28(11):155-162.
    [44]闫祥梅,何敏娟,马人乐.高压输电塔同步环境脉动实测分析与对比[J].振动与冲击,2010,29(3):77-80.
    [45]白海峰.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学学位论文,2007:86-96.
    [46]李杰,阎启,谢强,等.台风“韦帕”风场实测及风致输电塔振动响应[J].建筑科学与工程学报,2009,26(2):1-8.
    [47] Hiroshi K. Wind Tunnel Test on 500kV Transmission Tower with Solid Web Brackets[J]. Journal of Wind Engineering, 1994, 58(1): 54-60.
    [48] Loredo-Souza A M, Davenport A G. A Novel Approach for Wind Tunnel Modeling of Transmission Lines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(11-12): 1017-1029.
    [49] Loredo-Souza A M, Davenport A G. The Effects of High Winds on Transmission Lines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 987-994.
    [50] Barbieri N, De Souza J, Oswaldo H, et al. Dynamical Analysis of Transmission Line Cables. Part 1-Linear Theory[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 659-669.
    [51] Barbieri N, De Souza J, Oswaldo H, et al. Dynamical Analysis of Transmission Line Cables. Part 2-Damping Estimation[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 671-681.
    [52] Barbieri N, De Souza J, Oswaldo H, et al. Dynamical Analysis of Transmission Line Cables. Part 3-Nonlinear Theory[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 992-1007.
    [53] Braun A L, Awruch A M. Aerodynamic and Aeroelastic Analysis of Bundled Cables by Numerical Simulation[J]. Journal of Sound and Vibration, 2005, 284(1-2): 51-73.
    [54]邓洪洲,朱松晔,陈晓明,等.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报,2003,31(2):132-137.
    [55]邓洪洲,朱松哗,苏速,等.大跨越输电塔线体系风振控制风洞试验[J].同济大学学报,2003,31(9):1009-1013.
    [56]楼文娟,孙炳楠,唐锦春.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,1996,9(3):318-322.
    [57]郭勇,孙炳楠,叶尹,等.大跨越输电塔线体系气弹模型风洞试验[J].浙江大学学报,2007,41(9):1482-1486.
    [58]张庆华,顾明,黄鹏.典型输电塔塔头风力特性试验研究[J].振动工程学报,2008,21(5):452-457.
    [59]梁枢果,邹良浩,韩银全,等.输电塔-线体系完全气弹模型风洞试验研究[J].土木工程学报,2010,43(5):70-77.
    [60]李正良,任坤,肖正直,等.特高压输电塔线体系气弹模型设计与风洞试验[J].空气动力学学报,2011,29(1):102-106.
    [61]肖正直,李正良,汪之松,等. 1000kV汉江大跨越塔线体系风洞实验与风振响应分析[J].中国电机工程学报,2009,29(34):84-89.
    [62] Savory E, Parke G A R, Zeinoddini M, et al. Modelling of Tornado and Microburst-induced Wind Loading and Failure of a Lattice Transmission Tower[J]. Engineering Structures, 2001, 23(4): 365-375.
    [63] Shehata A Y, Damatty A A El. Assessment of The Failure of An Electrical Transmission Line due to a Downburst Event[C]. Proceedings of the 2006 Electrical Transmission Conference, ASCE, 2006: 27-38.
    [64] Shehata A Y, Damatty A A El, Savory E. Finite Element Modeling of Transmission Line under Downburst Wind Loading[J]. Finite Elements in Analysis and Design, 2005, 42(1): 71-89.
    [65] Shehata A Y, Damatty A A El. Study of the Progressive Failure of an Electrical Transmission Line due to a Downburst Event[C]. Proceedings-33rd CSCE Annual Conference 2005: General Conference and International History Symposium, CSCE, 2005: GC-367-1-GC-367-10.
    [66] Milford R V, Goliger A M. Tornado Risk Model for Transmission Line Design[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72(1-3): 469-478.
    [67] Krishnasamy S G. Assessment of Weather induced Transmission Line Loads on a Probabilistic Basis[J]. IEEE transactions on power apparatus and systems, 1985, 104(9): 2510-2516.
    [68] Shehata A Y, Nassef A O, Damatty A A El. A Coupled Finite Element-optimization Technique to Determine Critical Microburst Parameters for Transmission Towers[J]. Finite Elements in Analysis and Design, 2008, 45(1): 1-12.
    [69] Hamada A, Damatty A A El, Hangan H, et al. Finite Element Modelling of Transmission Line Structures under Tornado Wind Loading[J]. International Journal of Wind and Structures, 2010, 13(5): 451-469.
    [70] Loredo-Souza A M, Davenport A G. The Influence of the Design Methodology in the Response of Transmission Towers to Wind Loading [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 995-1005.
    [71] Den Hartog J P. Transmission Line Vibration due to Sleet[J]. Trans. AIEE, 1932, 51(4):1074-1086.
    [72] Nigol O, Buchan P G. Conductor Galloping Part I-Den Hartog Mechanism[J]. IEEE Trans. on Power Apparatus and Systems, 1981, 100(2):699-707.
    [73] Nigol O, Buchan P G. Conductor Galloping Part II-Torsional Mechanism[J]. IEEE Trans. on Power Apparatus and Systems, 1981, 100(2):708-720.
    [74] Yu P, Shah A H, Popplewell N. Inertially Coupled Galloping of Iced Conductors[J]. Journal of Applied Mechanics, 1992, 59(1): 140-145.
    [75] Popplewell N, Yu P, Shah A H. Instability Trends of Inertially Coupled Galloping, Part I: Initiation[J]. Journal of Sound and Vibration, 1995, 183(4): 663-678.
    [76] Shah A H, Yu P, Popplewell N. Instability Trends of Inertially Coupled Galloping, Part I: Periodic Vibrations [J]. Journal of Sound and Vibration, 1995, 183(4): 679-691.
    [77] Desai Y M, Yu P, Shah A H, et al. Three-degree-of-freedom Model for Galloping Part I: Formulation[J]. Journal of Engineering Mechanics, 1993, 119(12): 2404-2425.
    [78] Yu P, Desai Y M, Popplewell N, et al. Three-degree-of-freedom Model for Galloping Part II: Solutions[J]. Journal of Engineering Mechanics, 1993, 119(12): 2426-2448.
    [79] McComber P, Paradis A. A Cable Galloping Model for Thin Ice Accretions[J]. Atmospheric Research, 1998, 46(1-2): 13-25.
    [80] Zhang Q, Popplewell N, Shah A H. Galloping of Bundle Conductor[J]. Journal of Sound and Vibration, 2000, 234(1):115-134.
    [81] Lilien J L, Havard D G. Galloping Data Base on Single and Bundle Conductors Prediction of Maximum Amplitudes[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 670-674.
    [82] Jamaleddine A, McClure G, Rousselet J, et al. Simulation of Ice-shedding on Electrical Transmission Line Using ADINA[J]. Computers and Structures, 1993, 47(4-5): 523-536.
    [83] Fekr M R, McClure G. Numerical Modelling of the Dynamic Response of Ice-shedding on Electrical Transmission Lines[J]. Atmospheric Research, 1998, 46(1): 1-11.
    [84] Meng X, Wang L, Hou L, et al. Dynamic Characteristic of Ice-shedding on UHV Overhead Transmission Lines[J]. Cold Regions Science and Technology, 2011, 66(1): 44-52.
    [85] Kalman T, Farzaneh M, McClure G. Numerical Analysis of the Dynamic Effects of Shock-load-induced Ice Shedding on Overhead Ground Wires[J]. Computers and Structures, 2007, 85(3): 375-384.
    [86] Kollar L E, Farzaneh M. Vibration of Bundled Conductors Following Ice Shedding[J]. IEEE Transaction on Power Delivery, 2008, 23(2): 1097-1104.
    [87] Cigada A, Diana G, Falco M, et al. Vortex Shedding and Wake-induced Vibrations in Single and Bundle Cables[J]. Journal of Wind Engineering andIndustrial Aerodynamics, 1997, 72(1): 253-263.
    [88]沈国辉,袁光辉,孙炳楠,楼文娟.覆冰脱落对输电塔线体系的动力冲击作用研究[J].工程力学,2010,27(5):210-217.
    [89]沈国辉,袁光辉,孙炳楠,等.考虑脱冰速度效应的输电线路脱冰模拟[J].重庆大学学报,2010,33(9):132-138.
    [90] Ghannoum E, Yaacoub S J. Optimization of Transmission Towers and Foundations Based on Their Minimum Cost[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 614-620.
    [91] Dominguez A, Stiharu I, Sedaghati R. Practical Design Optimization of Truss Structures using the Genetic Algorithms[J]. Research in Engineering Design, 2006, 17: 73-84.
    [92] Taniwaki K, Ohkubo S. Optimal Synthesis Method for Transmission Tower Truss Structures Subjected to Static and Seismic Loads[J]. Struct Multidisc Optim, 2004, 26: 441-454.
    [93] Mijailovic R, Kastratovic G. Cross-Section Optimization of Tower Crane Lattice Boom[J]. Meccanica, 2009, 44: 599-611.
    [94] Visweswara R G. Optimum Designs for Transmission Line Towers[J]. Computers and Structures, 1995, 57(1): 81-92.
    [95] Natarajan K, Santhakumar A R. Reliability-based Optimization of Transmission Line Towers[J]. Computers and Structures, 1995, 55(3): 387-403.
    [96] Shea K, Smith F C. Improving Full-Scale Transmission Tower Design through Topology and Shape Optimization[J]. Journal of Structural Engineering, 2006, 132(5): 781-790.
    [97] Mathakari S, Gardoni P, Agarwal P, et al. Reliability-Based Optimal Design of Electrical Transmission Towers Using Multi-Objective Genetic Algorithms[C]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22: 282-292.
    [98] Guo H Y, Li Z L. Structural topology optimization of high-voltage transmission tower with discrete variables[J]. Structural and Multidisciplinary Optimization, Springer, Published online, 2010.
    [99]郭惠勇,李正良,罗乐.基于离散变量的大跨越输电塔架构不同优化方法研究[J].工程力学,2009,26(12):181-188.
    [100]郭惠勇,李小晶,李正良.大跨越输电塔的结构优化分析[J].河海大学学报,2010,38(1):93-97.
    [101]王藏柱,董桂西.架空输电铁塔形状优化的研究[J].华北电力大学学报,2001,28(2):100-104.
    [102]傅抱璞.山地气候[M].北京:科学出版社,1983:150-171.
    [103]傅抱璞,虞静明,卢其尧.山地气候资源与开发利用[M].南京:南京大学出版社,1996:182-241.
    [104] Forchtgott J. Wave Streaming in the Lee of Mountain Ridges[J]. Bull. Met. Czech., 1949, 3(1):49-70.
    [105] Salmon J R, Teunissen H W, Mickle R E, et al. The Kettles Hill Project: Field Observations, Wind-Tunnel Simulations and Numerical Model Predictions for Flow over a Low Hill[J]. Boundary-Layer Meteorology, 1988, 43(4):309-343.
    [106] Walmsley J L, Taylor P A. Boundary-Layer Flow over Topography: Impacts of the Askervein Study[J]. Boundary-Layer Meteorology, 1996, 78(3-4):291-320.
    [107] Taylor P A, Teunissen H W. The Askervein Hill Project: Overview and Background Data[J]. Boundary-Layer Meteorology, 1987, 39(1-2):15-39.
    [108] Salmon J R, Bowen A J, Hoff A M, et al. The Askervein Hill Project: Vertical Profiles of Wind and Turbulence[J]. Boundary-Layer Meteorology, 1988, 43: 247-271.
    [109] Mickle R E, Cook N J, Hoff A M, et al. The Askervein Hill Project: Vertical Profiles of Wind and Turbulence[J]. Boundary-Layer Meteorology, 1988, 43: 143-169.
    [110] Mason P J. Diurnal Variations In Flow Over A Succession of Ridges and Valleys[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113(478):1117-1140.
    [111]傅抱璞,虞静明,李兆元.秦岭太白山夏季的小气候特点[J]. 1982,37(1):88-97.
    [112]揭晶.西部山区某钢桁拱桥桥址处的风特性研究[D].重庆:重庆大学,2010:20-86.
    [113]庞加斌.沿海和山区强风特性的观测分析与风洞模拟研究[D].上海,同济大学,2006:98-119.
    [114] Gong W M, Ibbetson A. A Wind Tunnel Study of Turbulent Flow over Model Hills[J]. Boundary-Layer Meteorology, 1989, 49: 113-148.
    [115] Gong W M. A Wind Tunnel Study of Turbulent Dispersion over Two- and Three-Dimensional Gentle Hills from Upwind Point Sources in Neutral Flow[J]. Boundary-Layer Meteorology, 1991, 54: 211-230.
    [116] Crooks G, Ramsay S. A Wind Tunnel Study of Mean and Fluctuating Concentrations in a Plume Dispersing over a Two-Dimensional Hill[J]. Boundary-Layer Meteorology, 1993, 66: 155-172.
    [117] Finardi S, Brusasca G, Morselli M G. Boundary-Layer Flow over AnalyticalTwo-Dimensional Hills- A Systematic Comparison of Different Models with Wind Tunnel Data[J]. Boundary-Layer Meteorology, 1993, 63: 259-291.
    [118] Ishihara T, Hibi K, Oikawa S. A Wind Tunnel Study of Turbulent Flow over a Three-Dimensional Steep Hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 169-186.
    [119] Takahashi T, Kato S, Murakami S, et al. Wind Tunnel Tests of Effects of Atmospheric Stability on Turbulent Flow over a Three-Dimensional Hill[J]. J. Wind Eng. Ind. Aerodyn. 2005, 93: 155-169.
    [120]王建明,贾丛贤,陈凯.山地附近风场结构的实验研究[J].实验流体力学,2008,22(4):42-47.
    [121]孙毅.山地风场中高层建筑风致振动研究[D].重庆:重庆大学,2010:31-60.
    [122] Thyer N H. A Theoretical Explanation of Mountain and Valley Winds by a Numerical Method[J]. Meteorology and Atmospheric Physics, 1966, 15(3-4): 318-348.
    [123] Taylor P A, Gent P R. A Model of Atmospheric Boundary-Layer Flow above an Isolated Two-Dimensional‘Hill’; an Example of Flow above‘Gentle Topography’[J]. Boundary-Layer Meteorology, 1974, 7: 349-362.
    [124] Walmsley J L, Taylor P A. Estimates of Wind Speed Perturbation in Boundary-Layer Flow over Isolated Low Hills—Solutions[J]. Boundary-Layer Meteorology, 1981, 20: 391-395.
    [125] Taylor P A, Walmsley J L. Estimates of Wind Speed Perturbation in Boundary-Layer Flow over Isolated Low Hills—A Challenge[J]. Boundary-Layer Meteorology, 1981, 20: 253-257.
    [126] Walmsley J L, Salmon J R, Taylor P A. On the application of a model of boundary-layer flow over low hills to real terrain[J]. Boundary-Layer Meteorology, 1982, 23: 17-46.
    [127] Horstrud H. Wind Flow over Low Arbitrary Hills[J]. Boundary-Layer Meteorology, 1982, 23: 115-124.
    [128] Wood N. The Onset of Separation in Neutral, Turbulent Flow over Hills[J]. Boundary-Layer Meteorology, 1995, 76: 137-164.
    [129] Wood N. Wind Flow Over Complex Terrain: A Historical Perspective and the Prospect for Large-Eddy Modelling[J]. Boundary-Layer Meteorology, 2000, 96: 11-32.
    [130] Allen T, Brown A R. Large-Eddy Simulation Of Turbulent Separated Flow Over Rough Hills[J]. Boundary-Layer Meteorology, 2002, 102: 177-198.
    [131] Frank H P. A Simple Spectral Model for the Modification of Turbulence inFlow over Gentle Hills[J]. Boundary-Layer Meteorology, 1996, 79: 345-373.
    [132] Takahashi T, Ohtsu T, Yassin M F, et al. Turbulence characteristics of wind over a hill with a rough surface[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 1697-1706.
    [133]李正良,孙毅,魏奇科,等.山地平均风加速效应数值模拟[J].工程力学,2010,27(7):32-37.
    [134]魏奇科,李正良,孙毅.山地风加速效应的计算模型[J].华南理工大学学报(自然科学版),2010,38(11):54-58.
    [135]王光远,吕大刚.结构智能选型-理论、方法与应用[M].北京:中国建筑工业出版社,2005:1-21.
    [136]王力.大跨空间结构智能选型[D].哈尔滨:哈尔滨工业大学,2001:60-82.
    [137]孙焕纯,柴山,王跃方,石连拴.离散变量结构优化设计[M].大连:大连理工大学出版社,2002:78-99.
    [138]洪小健,顾明.顺风向等效风荷载及响应[J].建筑结构,2004,34(7):39-43.
    [139] Jackson P S, Hunt J C R. Turbulent Wind Flow over a Low Hill[J]. Quarterly Journal of Royal Meteorological Society, 1975, 101(430): 929-955.
    [140] Taylor P A, Lee R J. Simple Guidelines for Estimating Wind Speed Variations due to Small Scale Topographic Features[J]. Climatol Bull, 1984, 18(2): 3-22.
    [141] Walmsley J L, Taylor P A, Salmon J R. Simple Guidelines for Estimating Wind Speed Variations due to Small-Scale Topographic Features: an Update[J]. Climatological Bulletin, 1989, 23(1): 3-14.
    [142] Weng W, Taylor P A and Walmsley J L. Guidelines for Airflow over Complex Terrain: Model Developments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86(2-3): 169-186.
    [143] Ayotte K W, Xu D, Taylor P A. The Impact of Turbulence Closure Schemes on Predictions of the Mixed Spectral Finite-difference Model for Flow over Topography[J]. Boundary-layer Meteorology, 1994, 68(1-2): 1-33.
    [144] Xu D, Ayotte K W, Taylor P A. Development of a Non-linear Mixed Spectral Finite Difference Model for Turbulent Boundary-layer Flow over Topography[J]. Boundary-Layer Meteorology, 1994, 70(4): 341-367.
    [145] Lemelin D R, Surry D, Davenport A G. Simple Approximations for Wind Speed-up over Hills[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1-3): 117-127.
    [146] Baker C J. The Determination of Topographical Exposure Factors for Railway Embankments[J]. Journal of Wind Engineering and Industrial Aerodynamics,1985, 21(1): 89-99.
    [147] Federal Aviation Administration. Siting Guidelines for Low Level Wind Shear Alert System Remote Facilities[S]. FAA Publication 6560.21. 1988: 35-37.
    [148] Lubitz W D, White B R. Wind-Tunnel and Field Investigation of the Effect of Local Wind Direction on Speed-up over Hills[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95: 639-661.
    [149] Solari G. Analytic Estimation of the Along Wind Response of Structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14: 467-477.
    [150]李波,杨庆山,黄韬颖.中、美、澳荷载规范关于脉动风特征的规定[J].建筑科学与工程学报,2008,25(3):22-25.
    [151]洪小健,顾明.顺风向等效风荷载及响应[J].建筑结构,2004,34(7):39-42.
    [152] AIJ Recommendations for Loads on Buildings[S]. Japan: Architectural Institute of Japan, 2004, Chapter6: 11-15.
    [153] European Standard. Eurocode 1: Basis of Design and Actions on Structures-Part 2-4: Actions on Structures Wind Actions[S]. European Committee for Standardization, 1995.
    [154] ASCE Standard, ASCE/SEI 7-10: Minimum Design Loads for Buildings and Other Structures[S]. Reston, Virginia, American Society of Civil Engineers, 2010: 251-254.
    [155] Kaimal JC, Wyngaard JC, Izumi Y, et al. Spectral Characteristics of Surface-layer Turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98: 563-589.
    [156] Founda D, Tombrou M, Lalas D P, et al. Some Measurements of Turbulence Characteristics over Complex Terrain[J]. Boundary-Layer Meteorology, 1997, 83: 221-245.
    [157]中华人民共和国标准.建筑结构荷载规范[S].北京:中国建筑工业出版社,2002:159-163.
    [158]赵滇生.输电塔架结构的理论分析与受力性能研究[D].杭州:浙江大学,2003:60-72.
    [159]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003:59-65.
    [160]国家电力公司华东电力设计院. 110~500kV架空送电线路设计技术规程[S].北京:中国电力出版社,1999:7-8.
    [161] Kareem A, Kijewski T. Time-Frequency Analysis of Wind Effects on Structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90: 1435-1452.
    [162] McClure G, Lapointe M. Modeling the Structural Dynamic Response of Overhead Transmission Lines[J]. Computers and Structures, 2003, 81(8-11): 825-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700