考虑风速风向联合分布的超高层建筑风致振动研究1
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于矩形超高层建筑,若不考虑风速风向联合分布,一般认为建筑正面迎风时风致响应最大,且以此进行结构设计偏于安全。正是基于上述考虑,建筑正面迎风工况下的顺风向、横风向和扭转方向的风荷载和风振响应研究较多,而其他非正面迎风工况下的建筑风荷载和风致响应研究很少。但是对于其他复杂截面的超高层建筑,是否仍然符合这一情况,还需要进行详细的验证。事实上,偏于安全的设计等同于偏保守的设计,是以大量人力、财力和物力为代价的。对于造价昂贵的超高层建筑,这种代价是非常可观的。显然考虑风速风向联合分布下的全风向风振响应分析是更为合理,更为精细的分析设计方法,是解决上述矛盾的有效手段之一。而且日益完善的风速风向观测技术和逐步积累的观测资料,则为全风向风振分析提供了可靠的基础。
     本文以重庆农村商业银行大厦实际工程为例,通过风洞试验系统的研究了超高层建筑在典型风向角下的风荷载;然后基于概率论的乘法定理,推导了风速风向联合分布模型;再结合风速风向数据,建立了重庆地区风速风向的连续型联合概率密度模型,同时给出了基于重现期的考虑风速风向联合分布的各风向基本风速;最后结合风振响应和各风向基本风速,提出了可供设计参考的各响应基本风速风向因子。基于此,本文主要开展了以下几个方面的工作:
     ①通过超高层建筑的刚性模型风洞试验,研究了在典型风向角下角部凹角方形截面超高层建筑的表面风压幅值特性、频域特性以及相关性。与一般规则方形截面超高层建筑相比,在正面迎风时,此类截面超高层建筑的力系数平均值要小。
     ②在刚性模型风洞试验基础上,详细研究了此截面超高层建筑在典型风向角下的层风荷载幅值特征、频域特征以及空间相关性。分析了风力系数平均值、根方差、层风力系数谱和竖向相关性随风向角的变化情况,建立了超高层建筑在各典型风向角下的层风荷载幅值模型、风荷载谱模型和竖向相干函数模型。
     ③基于概率论的乘法定理,推导了风速风向联合分布模型。结合重庆地区30年日极值风速风向样本,建立了重庆地区风速风向的连续型联合概率密度模型。其中,对风速条件概率密度模型采用多种典型概率分布模型进行了对比分析,发现采用对数正态分布概率模型效果较好。对风向变量的处理采用了修正的风向概率直方图,采用3参数Weibull分布和均匀分布叠加的混合概率密度模型进行了拟合,经检验混合概率密度模型能满足概率相容原理。
     ④根据典型风向角的风荷载模型,用随机振动分析方法,在频域上求解了超高层建筑在典型风向角下的位移响应,并与时域计算结果进行对比,验证了荷载模型的准确性。超高层建筑在某些非0风向角的响应大于正面迎风工况下的响应,验证了此类截面超高层建筑按传统设计方法仅考虑正面迎风工况是不够的。最后讨论了建筑动力特性和风场参数变化对响应比的影响,其中建筑基阶周期的影响较大。
     ⑤根据风速风向联合分布模型计算了各风向100年一遇基本风速,结合超高层建筑典型风向角的响应比,分析了超高层建筑在不同朝向下各风向的响应风向系数,并取最大的响应风向系数反向推导了此朝向下建筑按正面迎风计算的等效基本风速,由此得出了各响应的基本风速风向因子。最后在风向因子中考虑了周围建筑的干扰效应,计算了超高层建筑在确定朝向下的基本风速综合风向因子。
For the super tall building, it is general realized that the wind-induced response of the building is the largest response when the maximum wind which is not considered with wind angle load on. The response is smaller when the building suffers the other wind direction wind, so it is generally analyzed only when the high-rise building faces the wind condition and the wind speed is the maximum wind which does not consider the role of wind direction. The design under this condition is considered safe. Because the weak axis direct of the building and the maximum wind speed direct may not coincide, and the frequency probability of the wind in this direct is not the greatest, to test the previous idea this article on the one hand, on the other hand in order to optimized design with more information of the wind speed and wind angle, this article research the response of a high-rise building in a different wind direction carefully by means of wind tunnel tests. Combined with the data of the extreme wind speed sample at Chongqing of 30 years, the wind direct factors of the basic wind speed for the different response are derived into account the wind direction and a comprehensive model of the wind factor is proposed considering the Interference factor of the surrounding buildings.
     In this paper, some works has been studied as follows:
     ①By means of the rigid model wind tunnel test of Super Tall buildings, the amplitude characteristics, frequency domain characteristics and correlation of the wind pressure of the Super Tall Building under the typical wind direction is analyzed in order to have a comprehensive understanding of wind pressure characteristics.
     ②based on the rigid model wind tunnel test of Super Tall buildings, the layer wind force coefficient amplitude characteristics, frequency characteristics and spatial correlation of Super Tall Building with typical wind direction is detailed studied. The change of the mean value, the root variance, the spectrum and the vertical correlation of the wind force coefficient with the height of the layer and the wind direction is discussed in detail and the mathematical model of the layer wind load of the super tall building is established.
     ③Based on the multiplication theorem of probability theory, the joint distribution of wind speed and direction model has been acquired. Basis on the sample data of extreme wind speed and direction of Chongqing for 30 years, the joint distribution of wind speed and direction model of the Chongqing region is studied and a joint probability density function model of the wind speed and direction is established. Varieties of typical probability distribution models for Conditional probability density model of the wind speed are compared and it can be found that the lognormal probability model is better. For the wind direction, a modified probability histogram is used and the mixed probability density model composed by 3 parameter Weibull distribution and uniform were used to fit. It can be found that the mixed probability model can meet the probability of compatibility principles.
     ④According to the established wind loads mathematical model, using random vibration analysis, the pulsating response of the Super Tall Building in typical wind direction is calculated in the frequency domain. Associate with the mean response, the total response is obtained. The Response Ratio in typical wind direction can be calculated through comparing the response of the super tall building in typical wind direction with the response when the weak axis direct of the building and the maximum wind speed direct coincide. The frequency-domain results are the same as the time-domain results, which in turn verified the validity of the above load model. The Response Ratio at some non-0 attack angle is greater than zero which demonstrates that considering this condition is necessary. Finally, the effect of the dynamic characteristics of the building and wind field parameters on the Response Ratio is discussed in detail, and the conclusion can be made that the effect of the building height is large and the other parameters effect can be ignored.
     ⑤According to the joint probability density function mode of wind speed and direction, the basic wind speed of each wind angle in 100 years is calculated. It is found that the maximum wind speed of each wind angle in 100 years and the basic wind speed without considering the wind angle is basically the same, which verify the effective of the sampling and the reasonable of the method. Then the basic wind speed ratio can be obtained. Associate with the Response Ratio, the Response Wind Angle Coefficient of the super tall building and the equivalent basic wind speed under the conservative directions can be calculated, and then the Direction Factors of the basic wind speed for the different response can be obtained. Finally, consider the impact of surrounding buildings, the Composite Direction Factors combine with the Interference Factor can be obtained, which can be used for the sophisticated analysis and design of the super tall building.
引文
埃米尔.希缪,罗伯特. H.斯坎伦,著.刘尚培,项海帆等译. 1992.风对结构的作用[D].同济大学出版社.
    陈隽,赵旭东. 2009.总体样本风速风向联合概率分析方法[J].防灾减灾工程学报. 29(1):63-70.
    陈胜, 2010.重庆天成大厦风洞试验研究[D].重庆:重庆大学硕士学位论文.
    陈素琴. 2000.建筑群中建筑物间的相互气动干扰的数值研究[D].上海:同济大学博士学位论文
    陈贤川,赵阳,董石麟. 2006基于虚拟激励法的空间网格结构风致抖振响应分析[J].计算力学学报, 23(6): 684-689.
    陈朝晖,管前乾. 2006.基于短期资料的重庆风速极值渐进分布分析[J].重庆大学学报. 29(12):88-92.
    范文亮,李正良,张培. 2011.风速风向的联合概率结构建模[J].土木工程学报(待刊)
    顾明,陈礼忠,项海帆. 1997.上海地区风速风向联合概率密度函数的研究[J].同济大学学报(自然科学版), 25(2), 166-170.
    黄东梅. 2009.超高层建筑风致效应和气动干扰效应的理论与试验研究[D].上海:同济大学博士学位论文.
    黄鹏. 2001.高层建筑风致干扰效应研究[D].上海:同济大学博士学位论文.
    黄鹏,顾明. 2003.高层建筑干扰气动阻尼的试验研究[J].同济大学学报, 31(6): 652-656.
    黄鹏,顾明. 2005.高层建筑风致扭转荷载的干扰效应研究[J].建筑结构学报, 26(4): 86-91.
    李方慧,倪振华,谢壮宁. 2005. POD方法在重建双坡屋盖风压场中的应用[J].工程力学, 22(增刊): 177-182.
    李宏男,王杨,伊廷华. 2009.极值风速概率方法研究进展[J].自然灾害学报. 18(2):15-26.
    梁枢果. 2002.矩形高层建筑横风向动力风荷载解析模型[J].空气动力学学报, 20(1): 32-39.
    梁枢果. 2003.矩形高层建筑扭转动力风荷载解析模型[J].地震工程与工程振动, 23(3): 74-80.
    林家浩,张亚辉. 2004.随机振动的虚拟激励法[M].北京:科学出版社.
    孟庆珍,杜健. 2001.成都地面风速年极值的4种分布函数拟合结果的比较[J].成都信息工程学院学报. 16(2): 97-104.
    金国骍,胡文忠. 1994.风速频率分布混合模型的研究[J].太阳能学报. 15(4):353-357.
    潘峰, 2008.大跨度屋盖结构随机风致振动响应精细化研究[D].杭州:浙江大学博士学位论文.
    庞文保等. 2009. P-Ⅲ型和极值Ⅰ型分布曲线在最大风速计算中的应用[J].气象科技. 37(2): 221-223.
    钱晓钫, 2010.超高层建筑风荷载数值模拟及试验研究[D].重庆:重庆大学硕士学位论文.
    全涌, 2002.高层建筑横风向风荷载及响应研究[D].上海:同济大学博士学位论文.
    日本建筑学会(AIJ). 2004.建筑物荷重指针·同解说(Recommendations for Loads on Buildings).
    孙毅, 2010.山地风场中高层建筑风致振动研究[D].重庆:重庆大学博士学位论文.
    唐意, 2006.高层建筑弯扭耦合风致振动及静力等效风荷载研究[D].上海:同济大学博士学位论文.
    唐意,顾明,全涌. 2007.高层建筑的扭转风荷载功率谱密度[J].同济大学学报(自然科学版), 35(4): 435-439.
    陶青秋. 2002.本征正交分解(POD)方法在建筑风荷载及其动态响应中的应用研究[D].汕头:汕头大学硕士学位论文.
    王凤元. 1998.用高频测力天平技术研究高层建筑的气动荷载与风效应[J].同济大学学报, 29(1): 122-126.
    武岳. 2006.大跨屋盖结构的风效应及抗风设计理论研究[D].上海:同济大学博士后报告.
    夏法宝. 2004.武汉国际证券大厦风洞试验研究[D].武汉:武汉大学硕士学位论文.
    肖天崟,梁波,田村幸雄. 2003.高层建筑扭转风向动力风荷载数学模型[J].华中科技大学学报(城市科学版), 20(3): 67-70.
    肖智勇. 2001.本征正交分解(POD)方法在高层建筑风荷载及其动态响应中的应用研究[D].汕头:汕头大学硕士学位论文.
    谢壮宁. 2003.典型群体超高层建筑风致干扰效应研究[D].上海:同济大学博士学位论文.
    徐大海. 1990.风向、风速、稳定度类别联合概率分布及混合层深度的诊断估计初探[J].环境科学. 11(1):11-17.
    杨咏昕,葛耀君,项海帆. 2002.风速风向联合分布的平均风统计分析[J].结构工程师. 3: 29-36, 46.
    叶丰, 2004.高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究[D].上海:同济大学博士学位论文.
    张建国,叶丰,顾明, 2006.典型高层建筑横风向气动力谱的构成分析[J].北京工业大学学报. 32(2):104-114.
    张建国. 2008.高层建筑抗风若干基础问题及数据库研究[D].上海:同济大学博士学位论文.
    张建胜、武岳、陈波、沈世钊. 2005. Ritz-POD法及其在大跨度屋盖结构风振分析中的应用[J].沈阳建筑大学学报(自然科学版). 2l(6): 601-605.
    张相庭. 1985.结构风压和风振计算[M].上海:同济大学出版社.
    中国建设部. 2006.中华人民共和国国家标准GB50009-2001:建筑结构荷载规范[M].北京:中国建筑工业出版社.
    周印, 1998.高层建筑静力等效风荷载和响应的理论与试验研究[D].上海:同济大学博士学位论文.
    Armitt J. 1968. Eigenvector analysis of pressure fluctuations on the west instrumented cooling tower[R].Internal Rep. RD/L/N 1l 4,68,Central Electricity Research Laboratories. U. K.
    Bienkiewicz B,Tamura Y Hann H J,Ueda H,Hibi K. 1995. Proper oahogonal decomposition and reconstruction of multichannel roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:369-381.
    Boggs, D. W, Hosoya, N., Cochran, L., 2000. Sources of Torsional Wind Loading on Tall Buildings: Lessons From the Wind Tunnel[J]. Advanced Technology in Structural Engineering(Proceedings of the 2000 Structure Congress & Exposition), Philadelphia.
    Boggs, D. W, 2003. Force Measurements on Tall Buildings: Notes for a panel discussion on Wind-Tunnel Balance Studies[J]. Eleventh International Conference on Wind Engineering, Lubbock, Texas, USA,
    Carassale L, Piccardo G, Solari G. 2001. Double-model transformation and wind engineering applications [J].Joumal of Engineering Mechanics, 127(5):432-439.
    Carassale L, Solari G. 2002. Wind modes for structural dynamics: continuous approach[J]. Probabilistic Engineering Mechanic, 17:157-165.
    Carassale Luigi. 2005. POD-based filters for the representation of random loads on structures[J]. Probabilistic Engineering Mechanics, 20:263-280.
    Carassale Luigi, Giovanni Solari. 2006. Monte Carlo simulation of wind velocity fields on complex structures[J].Journal of Wind Engineering and Industrial Aerodynamics, 94:323-339.
    Carta JA, Ramirez P, Bueno C. 2008. A joint probability density function of wind speed and direction for wind energy analysis[J]. Energy Conversion and Management. 49:1309-1320.
    Carta JA, Ramirez P, Velazquez S. 2009. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands[J]. Renewable and Sustainable Energy Reviews. 13(5):933-955.
    Carta JA, Ramirez P. 2007. Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago[J]. Energy Convers Manage. 48:281-291.
    Chen J, Zhang X. 2009. An empirical joint probability density function of wind speed and direction[C]. The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan.
    Chen X, Kareem A. 2000. On the application of stochastic decomposition in the analysis of wind effects [R].Proc., Int. Conf. on Advances in Struct. Dyn. (ASD), The Hong Kong Polytechnic University, Hong Kong,135-142.
    Cheng, C. M., Lu, P. C., Chen, R. H. 1992. Wind loads behaviors of tall buildings under the International on Wind on square cylinder in homogeneous turbulent flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 739-749.
    Cheung, J. C. K., Melbourne, W. H. 1992. Torsional moments of tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 1125-1126.
    Choi, H., Kanda, J. 1993. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 46-47, 507-516.
    Davenport. 1967. Gust loading factors[J]. Journal of the Structural Division, ASCE 93(ST3), 11-34.
    Davenport. 1993. The generalization and simplification of wind loads and implications for computational methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 46-47, 409-417.
    Davenport. 1995. How can we simplify and generalize wind loads?[J]. Journal of Wind Engineering and Industrial Aerodynamics, 54-55, 657-669.
    Di Paolo M, Gullo I. 2001. Digital generation of multivariate wind field processes[J].Probabilistic Engineering Mechanics, 16:1-10.
    Erdem E, Shi J. 2010. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data[J]. Wind Energy. DOI:10.1002/we.400.
    Fisher NI, Lewis T, Embleton BJJ. 1987. Statistical analysis of spherical data[M]. Cambridge University Press.
    Galambos J, Macri N. 1999. Classical extreme value model and prediction of extreme winds[J]. Journal of Structural Engineering. 125(7):792-794.
    Ge Y, Xiang H. 2002. Statistical study for mean wind velocity in Shanghai area[J]. Journal of Wind Engineering and Industrial Aerodynamics. 90:1585-1599.
    Hirotoshi Kikuchi, Yukio Tamura, Hiroshi Ueda, Kazuki Hibi. 1997. Dynamic wind pressures acting on a tall building model-proper orthogonal decomposition[J].Journal of Wind Engineering and Industrial Aerodynamics, 69-71:63l-646
    Holmes J D, Sankaran R, Kwok K C S, Syme M J. 1997. Eigenvector modes of fluctuating pressures on low-rise building models[J].Journal of Wind Engineering and Industrial Aerodynamics, 69-7l:697-707.
    Holmes J D, Moriarty WW. 1999. Application of the generalized Pareto distribution to extreme value analysis in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics. 83:1-10.
    Islam, M. S. 1988. Modal coupling and wind-induced vibration of tall buildings[D]. PhD thesis, The Johns Hopkins University, Baltimore.
    Islam, M. S., Ellingwood, B., Corotis, R. B. 1989. Dynamic response of tall buildings to stochastic wind load[J]. Journal of Structural Engineering, 116(11), 2982-3002.
    Islam, M. S., Ellingwood, B., Corotis, R. B. 1992. Wind-induced response of structurally asymmetric high-rise buildings[J]. Journal of Structural Engineering, 118, 207-222.
    Isyumov, N., Poole, M. 1983. Wind induced torque on square and rectangular building shapes. Journal of Wind Engineering and Industrial Aerodynamics[J]. 13, 83-96.
    Jiahao LIN, Dongke SUN. 1999. Application of pseudo excitation method to 3-D buffeting analysis of the Tsing Ma long-span suspension bridge[J].Journal of Dalian University of Technology, 39(2):172-179
    Johnson RA, Wehrly TE. 1978. Some angular-linear distributions and related regression models[J]. Journal of the American Statistical Association. 73(363):602-606.
    Jones RH. 1976. Fitting a circular distribution to a histogram[J]. Journal of Applied Meteorology. 15:94-98.
    Kanda, d. Itoi, T . 2002. Comparison of correlated Gumbel probability models for directional maximum wind speeds[J]. Journal of wind engineering and Aerodynamics. 90, 1631-1644.
    Kanda, J. Itoi, T, Choi, H. 2005. Load factors with wind directionality effects for wind resistant design[C]. Proceedings of the 6th Asia-pacific on wind Engineering 419-427.
    Kanda, J., H. Choi. 1992. Correlating Dynamic Wind Force Components on 3-D Cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 785-796.
    Kareem, A. 1981. Wind induced torsional loads on structures. Engineering Structures[J], 3, 85-86.
    Kareem, A. 1986. Synthesis of fluctuating along wind loads on buildings[J]. Journal of Engineering Mechanics, 112(1).
    Kareem, A. 1982a. Across-wind response of buildings[J]. Journal of the Structural Division, 108, 869-887.
    Kareem, A. 1982b. Fluctuating wind loads on buildings[J]. Journal of the Engineering Mechanics Division, 108, 1086-1102.
    Kareem, A. 1990. Measurements of pressure and force fields on building models in simulated atmospheric flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 36, 589-599.
    Kareem A. 1978. Wind excited motion of buildings[D].PhD dissertation, Dept. of Civil Engineering, Colorado State Univ. Fort Collins, Colo.
    Kareem A. 1999. Analysis and modeling of wind effects: Numerical techniques[R].Wind Engineering into the 21 st Century.
    Kareem A, Cermak J E. 1984. Pressure fluctuations on a square building model in boundary-layer flows[J].Journal of Wind Engineering and Industrial Aerodynamics,1984,16:l-1.
    Kasperski M, NIEMANN H J. 1992. The L.R.C. Method. A General Method of Estimating Unfalvorable Mnd Load Distributions for Linear and Nonlinear Structures[J].Journal of Wind Engineering and Industrial Aerodynamics, ,41-44:1753-1763
    Kawai, H. 1992. Vortex induced vibration of tall buildings[C]. Journal of Wind Engineering and Industrial Aerodynamics, 117-128.
    Koeppl GW. 1982. Putnamps power from the wind (2nd ed.) [M]. New York: Van Nostrand Reinhold.
    Kwok, K. C. S., Melbourne, W. H. 1981. Wind-Induced lock-In excitation of tall structures[J]. Journal of the Structural Division, 107(ST1), 57-72.
    Lam Put, R., 1971. Dynamic response of a tall building to random wind loads[C]. International Conference on Wind Effects oh Buildings and Structures Tokyo, Japan.
    Lee B E. l975. The effect of turbulence on the surface pressure field of a square prism[J]. Fluid Mech., 69:263-282.
    Liarg S., Liu, S., Li, Q. S., Zhang, L., Gu, M. 2002. Mathematical model of acrosswind dynamic loads on rectangular tall buildings[J]. Journal of wind Engineering aid Industrial Aerodynamics, 90, 1757-1770.
    Liarg S., Liu, S., Li, Q. S., Zhang, L., Gu, M. 2004. Torsional dynamic wind loads on rectangular tall buildings[J]. Engineering Structures, 26, 129-137
    Lin, N., Letchford, C., Tamura, Y., Liang, B., Nakamura, O. 2005. Characteristics of wind forces acting on tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 93, 217-242.
    Li Y Kareem A. 1989. On stochastic decomposition and its application in probabilistic dynamics[C].Proc.,5th Int. Cone on Structural Safety and Reliability (ICOSSAR89), A.H.-S.Ang, M.Shinozuka, and GI.Schueller, eds. ASCE, New York.
    Li Y Kareem A. 1991. Simulation of multivariate non-stationary random processes by FFT[J].Journal of Engineering Mechanics, l17(5):1037-1058.
    Li Y Kareem A. 1993. Simulation of multivariate random processes: Hybrid DFT and digital filtering approach[J].Journal of Engineering Mechanics. 1l9(5): 1078-1098.
    Li Y Kareem A. 1997. Simulation of multivariate non-stationary random processes: Hybrid DFT and digital tilting approach[J].Journal of Engineering Mechanics, ,123(12):1302-1310.
    Long D, Krzysztofowicz R. 1995. A family of bivariate densities constructed from marginals[J]. Journal of the American Statistical Association. 90(430):739-746.
    Lumley J L. 1970. Stochastic tools in turbulence[R],Academic, San Diego.
    Mardia KV. 1972. Statistics of directional data[M]. Academic Press.
    Mardia KV, Sutton TW. 1978. A model for cylindrical variables with applications[J]. Journal of the Royal Statistical Society. Series B. 40(2):229-233.
    Marukawa, H, Ohkuma, T., Momomiura, Y. 1992. Across-wind and torsional acceleration of prismatic high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 1139-1150
    Matsui. M. Y. 2005. Wind loads on tall buildings considering directionality[C]. Proceedings of the 6th Asia-Pacific Conference on Engineering 458-468.
    McNamara, R. J., Huang, C. D., Wind Torsional Effects on High Rise Buildings. Advanced Technology in Structural Engineering[C]. Proceedings of the 2000 Structure Congress & Exposition. Philadelphia, 2000.
    McWilliams B, Newmann MM, Sprevak D. 1979. The probability distribution of wind velocity and direction[J]. Wind Engineering. 3:269-273.
    Melbourne, W. H., Cheung, J. C. K. 1988. Designing for serviceable accelerations in tall buildings[C]. 4th Int. Conf. on Tall Building, Hong Kong & Shanghai, 148-155.
    Norberg, C. 1993. Flow around rectangular cylinders: pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 49, 187-196.
    Rigato A, et al. 2001. Database-assisted design, standardization, and wind direction effects[J]. Journal of Structural Engineering. 127(8):855-860.
    Rocha M M, Cabral S V S, Riera J D. 2000. A comparison of proper orthogonal decomposition and Monte Carlo simulation of wind pressure data[J].Journal of Wind Engineering and Industrial Aerodynamics, 84:329-344.
    Saunders, J. W., Melbourne, W. H. 1975. Tall rectangular building response to cross-wind excitation[C]. Pro. 4th Int. Conf. Wind Effect on Building & Structure, 369-379.
    Schucany W, Parr W, Boyer J. 1978. Correlation structure in Farlie¨CGumbel¨CMorgenstern distributions[M]. Biometrika. 65:650-653.
    Shinozuka M, Yun C-B, Seya H. 1990. Stochastic methods in wind engineering[J].Journal of Wind Engineering and Industrial Aerodynamics, ,36:829-843.
    Shinozuka M and Jan C M. 1996. Digital simulation of random processes and its applications[J]. Sound Vib. 25(10): 111-128.
    Simiu, E. 1973. Gust factors and along wind pressures correlations[J]. Journal of the Structural Division, 99(ST4), 773-783.
    Simiu, E. 1980. Revised procedure for estimating along Wind response[J]. Journal of the Structural Division, 106(ST1), 1-9.
    Simiu E, et al. 1985. Multivariate distributions of directional wind speeds[J]. Journal of Structural Engineering. 111(4):939-943.
    Simiu E, Heckert N A. 1996. Extreme wind distribution tails: a "Peaks Over Threshold" approach[J]. Journal of structural Engineering. 122(5):539-547.
    Solari, G. 1982. Along wind response estimation: closed form solution[J]. Journal of the Structural Division, 108(ST1), 225-243.
    Solari G, G Piccardo. 2001. Probabilistic 3-D turbulence modeling for gust buffeting of structures[J].Probabilistic Engineering Mechanics, 16:73-86
    Solari G, F Tubino. 2002. A turbulence model based on principal components[J].Probabilistic Engineering Mechanics, 17:327-335
    Solari G, Luigi Carassale, Feferica Tubino. 2005. POD Methods and Applications in Wind Engineering[R].The Sixth Asia-Pacific Conference on Wind Engineering(APCWE-VI)Seoul, Korea, ll,12-14
    Solari G.iovanni, Luigi Carassale. 2000. Modal transformation tools in structural dynamics and wind engineering[J].Wind and Structures, ,3(4):22l-24l.
    Stewart DA, 1978. Essen anger OM. Frequency distribution of wind speed near the surface[J]. Journal of Applied Meteorology. 17:1633-1642.
    Takle ES, Brown JM. 1978. Note on the use of Weibull statistics to characterize wind-speed data[J]. Journal of Applied Meteorology. 17:556-559.
    Tallin, A, EIIingWood, B. 1985. Wind induced lateral-torsional motion of buildings[J]. Journal of Structural Engineering[J]. 111(10), 2197-2213.
    Tamura Y Suganuma S, Kikuchi H, Hibi K. 1999. Proper orthogonal decomposition of random wind pressure field[J].J.Fluids Struct. 13:1069-1095.
    Thoroddsen, S. T., Peterka, J. A., Cermak, J. E. 1988. Correlation of the components wind-loading on tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 351-360.
    Tubino Federica, Giovanni Solari. 2006. Gust buffeting of long span bridges: Double Modal Transformation and effective turbulence[J].Engineering Structures, l-10
    Ulgen K, Hepbasli A. 2002. Determination of Weibull parameters for wind energy analysis of wind energy analysis of Izmir, Turkey[J]. International Journal of Energy Research,. 26:495-506.
    Vellozzi J, Cohen E. 1968. Gust response factors[J]. Journal of Engineering Mechanics Division,94(ST6):1295-1313
    Wang Mengfu, Zhou Xiyuan. 2005. Modified precise time step integration method of structural dynamic analysis[J].Earthquake Engineering and Engineering Vibration, ,4(2):287-293
    Weber RO. 1991. Estimator for the standard deviation of wind direction based on the moments of the Cartesian components[J]. Journal of Applied Meteorology.30:1341-1353.
    Wen YK. 1983. Wind direction and structural reliability[J]. Journal of Structural Engineering. 109(4):1028-1041.
    Xiao YQ, et al. 2006. Probability distributions of extreme wind speed and its occurrence interval[J]. Engineering Structures. 28:1173-1181.
    Y.L.Xu, w.S.Zhang, J.M.Ko, J.H.Lin. 1999. Pseudo-excitation method for vibration analysis of wind-excited structures [J].Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3):443-454
    Zhong Wanxie, Zhu Jianing, Xiang-Xiang Zhong. 1996. On a new time integration method for solving time dependent partial differential equations[J].Computer Methods in Applied Mechanics and Engineering, 130(1-2):163-178
    Zhou J, et al. 2010. Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites[J]. Energy Conversion and Management. 51(7):1449-1458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700