水泥基压电传感器的制备、性能及其在土木工程领域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基压电复合材料是近几年发展起来的一种新型功能材料,它具有压电性能好、机电耦合性能突出、与混凝土材料力学、声学性能相匹配等特点,在土木工程结构健康监测中具有潜在的应用前景。针对土木工程结构的特点,本文分别以压电陶瓷、水泥基及水泥/聚合物基(水泥、环氧树脂及固化剂的混合物)压电复合材料作为传感元件制备压电传感器,并在以下几个方面进行了实验研究和理论分析工作:
     以PZT压电陶瓷为功能组分,普通硅酸盐水泥及水泥/聚合物作为基体材料,采用切割-浇注法制备2-2型、1-3型水泥基和水泥/聚合物基压电复合材料,并对其性能进行测试与分析。研究结果表明:与压电陶瓷相比,压电复合材料的压电电压常数及厚度机电耦合系数均明显增大,且声阻抗率及机械品质因数也显著的降低,从而能够用于制备高接收灵敏度、宽频及与混凝土材料声阻抗相匹配的压电传感器。
     分别以压电陶瓷及压电复合材料为传感元件,水泥/聚合物作为封装材料制备水泥基压电传感器,并对其性能进行测试及分析。研究结果表明:采用该封装材料制备出的压电传感器具有机械强度高、耐久性能好、动态输出能力强,可靠性高等优异性能。其中,以压电复合材料为元件制备的压电传感器兼有声阻抗低、宽频等特性,能够适用于水泥的水化反应进程监测及土木工程结构的动态监测;以压电陶瓷为元件制备的压电传感器则更适用于基于机电阻抗技术的土木工程结构监测,对耦合于结构的压电传感器机电阻抗变化进行分析,能够获得结构的机械阻抗变化信息,从而实现对结构的无损检测;此外,以压电陶瓷为元件制备的压电交通传感器兼有线性度高、输出响应良好、可重复性好、抗压强度高等优点,能够满足其用于道路交通状况监测的要求。
     以埋入式压电陶瓷及压电复合材料传感器作为发射-接收单元,分别基于压电传感器的超声波传播法及机电阻抗技术对水泥的水化反应进程进行监测。研究结果表明:压电复合材料传感器所接收的超声波信号普遍具有首次波比大、首波明显、主频单一等特点,尤其是以水泥/聚合物为基体材料制备的压电复合材料传感器的接收性能最佳;由压电传感器的接收波波形及频谱随水泥水化反应进程的变化规律可知,水泥水化反应开始后的8 h内,接收波的波形曲线微弱、接收波的幅值较小、主频谱变化较大,在接近水泥的终凝时刻,波形及主频率均发生了明显的变化;当水化进行到约8 h之后,水化反应仍较为剧烈、接收波的首波起始点明显前移,首波幅值也显著增大,但主频谱的变化则较为稳定;当水化进行到约24 h之后,接收波参数随着水化反应的进行逐渐趋于稳定。根据压电传感器接收的超声波参数(主频率、主频幅值、波速、首波波幅等)随水泥水化反应进程的变化特点,可将水泥水化反应开始后的24 h分为三个阶段,即诱导期(约0 h-5 h)、加速期(约5 h-10 h)、衰减期(约10 h-24 h),其中在加速期阶段,超声波参数会出现明显的转变点,该点基本为水泥的终凝时间点。根据埋入水泥浆体中压电传感器的机电阻抗随水泥水化反应进程的变化特点,能够获得与超声波传播法相一致的水泥水化反应规律,从实验的角度进一步证明了基于压电传感器的机电阻抗技术监测水泥水化反应是完全可行的。
     分别采用外贴式及埋入式压电传感器,基于机电阻抗技术对小型的混凝土结构进行温度、荷载及裂缝损伤研究。研究结果表明:温度变化对外贴及埋入式PZT压电传感器的机电阻抗均具有明显的影响,能够引起压电传感器的谐振频率漂移及谐振峰值的相应变化,基于压电传感器的这一特性,我们可以通过测量其机电阻抗参数的变化来实现对温度的监测;荷载作用对埋入式PZT压电传感器的机电阻抗也具有明显的影响,无论结构受到来自哪个方向的载荷作用,其机械阻抗的变化都可以通过PZT压电传感器的机电阻抗谱图反映出来,尤其是当结构由于受到强烈的载荷作用而发生损伤时,PZT压电传感器的机电阻抗会发生显著的突变;外贴式及埋入式PZT压电传感器的机电阻抗均能良好的反映出砂浆试块产生裂缝损伤的情况,尤其是对试块的初始裂缝损伤更加敏感;采用数学统计的方法对PZT压电传感器的机电阻抗谱图进行处理,建立了一种损伤量化指数,通过该指数能够更加直观、有效的获得耦合于结构的PZT压电传感器机电阻抗随各种因素的变化规律,从而间接获得结构的损伤及发展状况。
     将制备的压电交通传感器埋于实际路面,建立一套包括水泥基压电智能传感器、小型电荷放大器、多通道数据采集仪和监测软件的压电传感器系统。利用该系统对行人流量、车辆速度及载重进行测试,研究结果表明:通过统计压电传感器的输出脉冲响应个数能够获知通过该传感路段的行人数量及人员密集程度,从而为相关部门提供有效的统计数据;采集车辆通过传感路段时压电传感器所产生的脉冲响应时间间隔,通过简单的数学计算能够精确的获得车辆通过该传感路段时的即时速度,从而实现超速判断,为交通部门提供可靠的数据;依据车辆通过传感路段时梁式压电传感器的输出脉冲电压峰值及或输出脉冲峰包围的面积,通过线性拟合计算能够准确的获得车辆通过该传感路段时的动态载重信息,当路面平整且车辆以匀速通过梁式压电传感器时,理论计算的车辆载重误差均小于5%,能够有效的对行驶中的车辆进行动态称重,从而实现超载预警;此外,由于水泥基压电复合材料传感器与混凝土结构之间具有良好的相容特性,因此利用水泥基传感器也可以对桥梁结构的局部振动状态进行在线监测。
Cement based piezoelectric composite is a kind of newly developed piezoelectric material with superior piezoelectric properties, high electromechanical coupling coefficient and good compatibility with concrete materials in mechanical and acoustic etc aspects, which has potential application prospect in health monitoring of civil engineering structure. According to the characteristics of civil engineering structure, piezoelectric ceramic, cement based and cement/polymer based (mixtures of cement, epoxy and solidified agent) piezoelectric composites were used as sensing elements to fabricate cement based piezoelectric sensors, respectively. In this research, the fabricated piezoelectric sensors were used to conduct the experiment tests and theoretical analysis as follows.
     PZT piezoelectric ceramic was used as functional component, Portland cement and cement/polymer were used as matrix materials to fabricate 2-2 type and 1-3 type cement based, cement/polymer based piezoelectric composite using cutting-and-filling technique. The researches indicate that comparing with piezoelectric ceramic, the piezoelectric voltage constant g33 and the thickness electromechanical coupling coefficient Kt of the piezoelectric composites increase greatly, while the acoustic impedance Z and mechanical quality factor Qm decrease obviously. Therefore, it can be concluded that the piezoelectric sensors with superior receving sensitivity, broad band and good acoustic impedance compatibility with concrete can be tailored to meet the requirements of civil engineering.
     Piezoelectric ceramic and piezoelectric composite were used as sensing elements, cement/polymer was used as packaging materials to fabricate kinds of piezoelectric sensors, respectively. The researches indicate that the piezoelectric sensors that fabricated using cement/polymer as packing materials have the common properties such as high mechanical strength, good durability, strong dynamic output ability and high reliability. Furthermore, the piezoelectric sensors using piezoelectric composites as sensing elements also have the properties of low acoustic impedance and broad band, which can be used effectively to monitor the cement hydration reaction process and dynamic vibrations of civil structures. The piezoelectric sensors using piezoelectric ceramic as sensing elements are more suitable for civil engineering structure monitoring based on electromechanical impedance technique. The mechanical impedance variation of the structures can be reflected by the electromechanical impedance variation of piezoelectric sensors that coupled with the structures. Therefore, the structure damage state can be detected using this method. Besides, the piezoelectric traffic sensors using piezoelectric ceramic as sensing elements also have the good linearity, good output response and repeatability, and high strength etc, which make it more suitable for traffic monitoring.
     The embedded piezoelectric ceramic and piezoelectric composite were used as emitter and receiver to monitor the cement hydration reaction process. Two kinds of different methods, that is, ultrasonic wave transmitting method and electromechanical impedance technique, were adopted in the research, respectively. The researchs indicate that the ultrasonic waves received by the piezoelectric composite sensors have the characteristics of large head/secondary wave ratio, obvious head wave and single dominant frequency etc. Among all the piezoelectric sensors, the piezoelectric composite sensors using cement/polymer as matrix materials have the best receiving ability. The cement hydration reaction variation in different stages can be obtained by analyzing the wave shape and frequency spectra of the receiving waves. In the initial 8 h of hydration reaction, the wave shape curves of the receiving wave are very weak and the amplitudes are not obvious, while the dominant frequency is clear. At approximately the final setting time, both the wave shape curve and dominant frequency show the obvious mutation phenomenon. After 8 h of hydration reaction, the starting point of head wave moves forward obviously and the amplitudes of the head wave also increase significantly, while the dominant frequency is independent of the hydration reaction time. After cement hydration reaction for 24 h, the wave shapes and parameters of the receiving wave tend gradually to be steady with increasing the hydration time.
     According to the variation of ultrasonic wave parameters received by the piezoelectric sensors, such as dominant frequency, amplitude of dominant frequency, wave speed and amplitude of head wave, the cement hydration reaction in 24 h can be defined to three periods, that is, induction period (about 0 h-5 h), acceleration period (about 5 h-10 h) and attenuation period (about 10 h-24 h). In the acceleration period, there will be an obvious transition point in the chart of wave parameters, which basically corresponds to the final setting time of cement.
     Besides, the cement hydration reaction process can also be reflected by the electromechanical impedance spectra of piezoelectric sensors embedded in the cement paste, and the similar variation regularity can also be obtained. Therefore, it is feasible to monitor the cement hydration reaction based on the electromechanical impedance technique of piezoelectric sensors.
     Based on electromechanical impedance technology, nondestructive detection on the little concrete structures was performed. The influences of temperature variation, loading and crack damage on electromechanical impedance spectra of affixed and embedded piezoelectric sensors were studied. The results indicate that temperature variation has great influence on the electromechanical impedance of the PZT piezoelectric sensor that coupled with structures, which can result in the drift of resonant frequency and the variation of resonant peak value. Therefore, the PZT piezoelectric sensors can be used as a kind of temperature sensor to monitor the environmental temperature variation. External loading also has great influence on the electromechanical impedance of the embedded PZT piezoelectric sensors. The variation of structural mechanical impedance can be reflected by the electromechanical impedance spectra of PZT piezoelectric sensors when the mechanical loading is applied to the structure. Especially when the structure generates damage due to the strong loading effect, the electromechanical impedance spectra of PZT piezoelectric sensors will appear obvious mutation.
     The structure damage induced by cracks, especially for the structural initial damage, can also be well reflected by both the affixed and embedded PZT piezoelectric sensors. The electromechanical impedance spectra were analyzed employing the mathematics statistical method. The variation regularity of electromechanical impedance of PZT piezoelectric sensors with kinds of influencing factors can be visualized and effectively observed by a kind of damage quantitative index. Therefore, the the apperance and development of the structure damage can be obtained using this method.
     The fabricated piezoelectric traffic sensors were embedded in the road. A set of piezoelectric sensor system, including cement based piezoelectric sensor, small charge amplifier, multichannel data collecting device and monitoring software was established to monitor the people flow, vehicle speed and loading. The results indicate that the amounts of people who passed through the sensing section as well as the population density can be calculated by the pulse response amounts of the piezoelectric sensors. The instantaneous vehicle speed can also be accurately calculated by the sensors distance and the time interval between two pulse responses, so the over-speed phenomena can be identified using this method. Besides, the dynamic loading information of vehicles can be calculatedd in terms of the output pulse voltage peak value or areas enclosed by the output pulse peaks, respectively. When the road was level and the vehicles passed through it at uniform speed, the vehicle loading error calculated by the linear fitting formulation is less than 5%. Therefore, the wight in motion of the vehicles can be realized and the overweight phenomenon can also be controlled effectively using this kind of traffic sensors. Besides, the cement based piezoelectric composite sensor can also be used to monitor the critical regions of bridges due to its superior compatibility with concrete structures.
引文
[1]P. K. Mehta. Concrete in the service of modern world[C]. ISBN 041921450X, 1996.
    [2]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国 科学基金,2005,1:8-12.
    [3]李宏男.结构健康监测[M].大连:大连理工大学出版社,2004.
    [4]H. T. Banks, R. C. Smith, Y. Wang. Smart material structures:modeling, estimation, and control[M]. New York:John Wiley& Sons Inc,1996:52-74.
    [5]H. Jonacha. Adaptronics and smart structures[M]. Berlin:Springer,1999:106-123.
    [6]M. L. Wang, G. Heo, D. Satpathi. A health monitoring system for large structural systems[J]. Smart. Mater. Struct.,1998,7(5):606-616.
    [7]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社,1982.
    [8]许谕寰.铁电与压电材料[M].北京:科学出版社,1978.
    [9]张沛霖,张仲渊.压电测量[M].北京:国防工业出版社,1983.
    [10]N. Jayasunders, B. V. Smith. Dielectric constant for binary piezoelectric 0-3 composites[J]. J. Appl. Phys.,1993,73(5):2462-2466.
    [11]H. Banno, K. Ogura. Dielectric and piezoelectric properties of a flexible composite consisting of polymer and mixed ceramic powder of PZT and PbTiO3[J]. Ferroelectrics,1989,95:171-174.
    [12]D. K. Das-gupta, M. J. Abdullah. Dielectric and pyroelectric properties of polymer/ceramic composites [J]. J. Mater. Sci. Lett.,1988,7:167-170.
    [13]水永安,薛强.2-2结构压电复合材料的机电耦合系数研究[J].中国科学(E辑),1996,26(4):304-310.
    [14]严继康,张建成,陈洁,等.串联2-2复合材料的介电性和压电性[J].压电与声光,1998,20(6):428-431.
    [15]严继康,甘国友,孙加林,等.串联2-2型复合材料的进一步研究[J].压电与声光,2000,22(4):262-265.
    [16]甘国友,严继康,孙加林,等.串联2-2复合材料的介电击穿研究[J].压电与声光,2001,23(3):209-212.
    [17]H. P. Svakaus, K. A. Klicer, R. E. Nemnham. PZT-Epoxy piezoelectric transducers:a simplified fabrication procedure[J]. Mat. Res. Bull.,1981, 16(6):677-680.
    [18]W. A. Smith, B. A. Auld. Modeling 1-3 composite piezoelectrics:thickness-mode oscillations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1991,38(1):40-47.
    [19]D. Robertson, G. Hayward, A. Gachagan. Lamb wave suppression in periodic 1-3 piezoelectric composite transducers[J]. IEEE Ultrasonics Symposium, 2002:1181-1184.
    [20]G. Clyde. R. D. Oakley. Designing consideration for 1-3 composites used in transducers for medical ultrasonic imaging[J]. IEEE,1991:233-236.
    [21]Z. J. Li, D. Zhang, K. R. Wu. Cement-based 0-3 piezoelectric composites[J]. J. Am. Cera. Soc.,2002,85(2):305-313.
    [22]张东,吴科如,李宗津.0-3型水泥基压电机敏复合材料的制备和性能[J].硅酸盐学报,2002,30(2):161-166.
    [23]张东,吴科如,李宗津.水泥基压电机敏复合材料的可行性分析和研究[J].建筑材料学报,2002,5(2):141-146.
    [24]张东,吴科如,李宗津.2-2型水泥基压电机敏复合材料的研制[J].压电与声光,2002,24(3):217-220.
    [25]Z. J. Li, D. Zhang, K. R. Wu. Cement matrix 2-2 piezoelectric composite-part Ⅰ. Sensor effect[J]. Mater. Struct.,2001,34(242):506-512.
    [26]D. Zhang, Z. J. Li, K. R. Wu.2-2 Piezoelectric cement matrix composite:Part Ⅱ. Actuator effect[J]. Cem. Conc. Res.,2002,32:825-830.
    [27]B. Q. Dong, Z. J. Li. Cement-based piezoelectric ceramic smart composites[J]. Comp. Sci. Techno.,2005,65:1363-1371.
    [28]K. H. Lam, H. L. W. Chan. Piezoelectric Cement-based 1-3 Composites[J]. Appl. Phys. A.,2005,81:1451-1454.
    [29]A. Chaipanich. Dielectric and piezoelectric properties of PZT-cement composites[J]. Curr. Appl. Phys.,2007,7:537-539.
    [30]A. Chaipanich. Dielectric and piezoelectric properties of PZT-silica fume cement composites[J]. Curr. Appl. Phys.,2007,7:532-536.
    [31]A. Chaipanich, G. Rujijanagul, T. Tunkasiri. Properties of Sr- and Sb-doped PZT-Portland cement composites[J]. Appl. Phys. A.,2009,94:329-337.
    [32]黄世峰,常钧,程新,等.0-3型PZT/硫铝酸盐水泥压电复合材料的制备及其 极化工艺研究[J].压电与声光,2004,26(3):203-205.
    [33]黄世峰,常钧,程新,等.压电陶瓷/硫铝酸盐水泥复合材料的压电性及介电性[J].硅酸盐学报,2004,32(9):1082-1087.
    [34]黄世峰,常钧,程新,等.0-3型压电陶瓷-硫铝酸盐水泥复合材料的压电性能[J].复合材料学报,2004,21(3):73-78.
    [35]黄世峰,胡雅莉,常钧,等.成型压力对水泥基压电复合材料压电及介电性能的影响[J].硅酸盐学报,2006,34(4):500-503.
    [36]胡雅丽.水泥基压电复合材料的性能及应用研究[D].济南:济南大学,2006.
    [37]李雪.微量组分改性0-3型水泥基压电复合材料性能研究[D].济南:济南大学,2008.
    [38]D. Y. Xu, X. Cheng, S. F. Huang, M. H. Jiang. Electromechanical properties of 2-2 cement based piezoelectric composite[J], Curr. Appl. Phys.,2009, 9(4):816-819.
    [39]S. F. Huang, D. Y. Xu, X. Cheng, M. H. Jiang. Dielectric and piezoelectric properties of 2-2 cement based piezoelectric composite[J]. J. Comp. Mater.,2008, 42(3):2437-2443.
    [40]S. F. Huang, D. Y. Xu, J. Chang, Z. M. Ye, X. Cheng. Influence of water-cement ratio on the properties of 2-2 cement based piezoelectric composite[J]. Mater. Lett.,2007,61:5217-5219.
    [41]徐东宇.2-2型水泥基压电复合材料的制备、性能及应用研究[D].济南:济南大学,2007.
    [42]程新,黄世峰,胡雅莉,王守德.环境湿度对1-3型水泥基压电复合材料性能的影响[J].硅酸盐学报,2006,34(5):626-629.
    [43]黄世峰,叶正茂,王守德,徐东宇,常钧,程新.1-3型水泥基压电复合材料的制备及性能[J].复合材料学报,2007,24(1):122-126.
    [44]X. Cheng, D. Y. Xu, L. C. Lu, S. F. Huang, M. H. Jiang. Performance investigation of 1-3 piezoelectric ceramic-cement composite[J]. Mater. Chem. Phys.,2010,121:63-69.
    [45]黄世峰,常钧,秦磊,杨晓明,李宗津,程新.1-3型水泥基压电复合材料传 感器的性能[J].复合材料学报,2008,25(1):112-118.
    [46]雷海林.水泥水化过程的计算机模拟算法分析[D].大连:大连理工大学,2005.
    [47]董必钦,马红岩.水泥胶凝材料水化进程及力学特性研究[J].混凝土,2008,(5):23-25.
    [48]王培铭,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,8(6):646-652.
    [49]E. Antczak, D. Defer, M. Elaoami, A. Chauchois, B. Duthoit. Monitoring and thermal characterisation of cement matrix materials using non-destructive testing[J]. NDT&E Inter.,2007, (40):428-438.
    [50]K. O. Kjellsen, R. J. Detwiler, O. E. Gjorv. Backscattered electron imaging of cement pastes hydrated at different temperatures[J]. Cem. Conc. Res.,1990, 20(2):308-311.
    [51]宋文娟,杨正宏,史美伦.研究水泥基材料性质的时间电流法[J].建筑材料学报,2008,11(1):76-97.
    [52]张莹,史美伦.水泥基材料水化过程的交流阻抗研究[J].建筑材料学报,2000,3(2):109-112.
    [53]史美伦,陈志源.硬化水泥浆体孔结构的交流阻抗研究[J].建筑材料学报,1998,1(1):30-35.
    [54]史美伦.混凝土阻抗谱的解析表示[J].建筑材料学报,1999,2(1):91-22.
    [55]乔军志.水泥浆凝结硬化时内部结构与超声频谱的变化[J].湖南大学学报(自然科学版),1999,26(3):80-83.
    [56]缪仑,单波,黄政宇.新拌水泥浆体超声传播特性的试验研究[J].湖南大学学报(自然科学版),2000,27(6):77-81.
    [57]陈烨,简文彬,林生凉,胡忠志.水泥土的超声波特性研究[J].福州大学学报,2006,1(36):124-127.
    [58]吕洁.声学无损检测法用于研究水泥基材料的早期水化[J].中国西部科技,2008,7(22):33-35.
    [59]吴浩,姚燕,王玲.数字图像处理技术在水泥混凝土研究中的应用[J].混凝 土与水泥制品,2007,(4):8-13.
    [60]潘昊.智能方法在水泥性能分析中的应用研究[D].武汉:武汉理工大学,2006.
    [61]Th. Voigt, Ch. U. Grosse, Z. Sun 1, S. P. Shah, H.-W. Reinhardt. Comparison of ultrasonic wave transmission and reflection measurements with P- and S-waves on early age mortar and concrete[J]. Mater. Struct.,2005,38:729-738.
    [62]W. J. McCarter. A parametric study of the impedance characteristics of cement-aggregate systems during early hydration[J]. Cem. Concr. Res.,1994,24 (6):1097-1110.
    [63]P. Gu, Z. Z. Xu, P. Xie, J. J. Beaudoin. Application of AC impedance technique in studies of porous cementatious materials Ⅰ:Influence of solid phase on pore solution on high frequency resistance[J]. Cem. Concr. Res.,1993,23 (3):531-540.
    [64]Z. Z. Xu, P. Gu, P. Xie, J. J. Beaudoin. Application of A. C. impedance techniques in studies of porous cementitious materials Ⅱ:Relationships between ACIS behavior and the porous microstructure[J]. Cem. Concr. Res., 1993,23(4):853-862.
    [65]Z. Z. Xu, P. Gu, P. Xie, J. J. Beaudoin. Application of A.C. impedance technique in studies of porous cementitious materials Ⅲ:ACIS behaviour of very low porosity cementitious systems[J]. Cem. Concr. Res.,1993,23 (5):1097-1110.
    [66]F. P. Sun, C. Chaudhry, C. Liang. Truss structure integrity identification using PZT sensor actuator[J]. J. Intell. Mater. Syst. Struct.,1995,6:34-139.
    [67]C. Liang, F. P. Sun, C. A. Rogers. Electro-mechanical impedance modeling of active material systems[J]. J. Intell. Mater. Syst. Struct.,1994,21:232-252.
    [68]C. Liang, F. P. Sun, C. A. Rogers. Coupled electromechanical analysis of adaptive material system-determination of the actuator power consumption and system energy transfer[J]. J. Intell. Mater. Syst. Struct.,1994,5:12-20.
    [69]赵晓燕.基于压电陶瓷的结构健康监测与损伤诊断[D].大连:大连理工大学,2008.
    [70]王丹生.基于反共振频率和压电阻抗的结构损伤检测[D].武汉:华中科技大学,2006.
    [71]孙明清,李卓球,候作富.压电材料在土木工程结构健康检测中的应用[J].混凝土,2003,(3):222-224.
    [72]Y. S. Roh, F. K. Chang. Built in diagnostics for identifyingan anomaly in plates using wave scattering [D]. California:Stanford University,1999.
    [73]C. S. Wang, F. K. Chang. Built in diagnostics for impact damage identification of composite structures[C]. Proc.3rd Int. Workshop on Structural Health Monitoring. Stanford, USA,1999:612-621.
    [74]C. S. Wang, F. Wu, F. K. Chang. Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete[J]. Smart Mater. Struc.,2001, 10(3):548-522.
    [75]G. Kawiecki. Feasibility of applying distributed piezotransducers to structural damage detection[J]. J. Intel. Mater. Sys. Struc.,1998,9(3):1889-197.
    [76]G. Song, H. Gu, Y.L. Mo, et al. Concrete structural health monitoring using embedded piezoceramic transducers[J]. Smart Mater. Struct.,2007, 16(4):959-968.
    [77]文玉梅,李平,刘双临,李文军.压电机敏混凝土原理[J].压电与声光,2002,24(3):196-198.
    [78]周文委.结构混凝土压电机敏监测技术的基础研究[D].重庆:重庆大学,2003.
    [79]郭浩.压电机敏模块性能分析[D].重庆:重庆大学,2006.
    [80]陈雨,文玉梅,李平.埋入混凝土中压电陶瓷应力及温度特性研究[J].应用力学学报,2006,23(4):658-661.
    [81]曲华,宁建国,李学慧.利用瑞利波频谱分析法无损检测混凝土结构[J].混凝土,2006,2:76-79.
    [82]T. T. Wu, J. H. Sun, J. H. Tong. On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar[J]. NDT&E Inter.,2000,33:401-407.
    [83]T. T. Wu, J. S. Fang. A new method for measuring in situ concrete elastic constants using horizontally polarized conical transducers[J]. J. Acoust. Soc. Am., 1997,101(1):330-336.
    [84]T. T. Wu, J. S. Fang, G.Y. Liu, M. K. Kuo. Determination of elastic constants of a concrete specimen using transient elastic waves[J]. J. Acoust. Soc. Am.,1995, 98:2142-2148.
    [85]T. T. Wu, J. S. Fang, P. L. Liu. Detection of the depth of a surface breaking crack using transient elastic waves[J]. J. Acoust. Soc. Am.,1995,97:1678-1686.
    [86]孙明清.压电陶瓷片/混凝土复合机敏结构中的表面波法[J].建筑材料学报,2004,7(2):145-149.
    [87]S. S. Kessler. Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems[D]. Massachusetts: Massachusetts institute of technology,2002.
    [88]V. Giurgiutiu. Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring[C]. SPIE's 10th Annual International Symposium on Smart Structures and Materials and 8th Annual International Symposium on NDE for Health Monitoring and Diagnostics, San Diego, CA.2002,1-12.
    [89]F. K. Chang. Structural health monitoring:a summary report[C]. Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, 1999,8-10.
    [90]V. Giurgiutiu, J. Bao, W. Zhao. Active sensor wave propagation health monitoring of beam and plate structures[C]. Proceedings of the 8th International SPIE Symposium on Smart Structures and Materials, Newport Beach, CA,2001.
    [91]刘江韦,刘镇清.关于用Lamb波的反射对层状复合材料进行无损检测的研究[J].无损探伤,1998,1:34-35.
    [92]潘冬冬,何永勇,陈大融.基于声-超声技术的Lamb波特性实验研究[J].机械强度,2008,30(5):723-728.
    [93]孙明清,W. J. Staszewski, R. N. Swamy.混凝土中的Lamb波传播[J].武汉理工大学学报,2004,26(1):31-34.
    [94]R. S. C. Monkhouse, P. W. Wilcox, M. J. S. Lowe, R. P. Dalton, P. Cawley. The rapid monitoring of structures using interdigital lamb wave transducers [J]. Smart Mater. Struct.,2000,9:304-309.
    [95]R. S. C. Monkhouse, P. D. Wilcox, P. Cawley. Flexible interdigital PVDF transducers for the generation of lamb waves in structures[J]. Ultrasonics,1997, 35:489-498.
    [96]S. H. D. Valdez, C. Soutis. A structural health monitoring system for laminated composites[C]. Proceedings of the 18th Biennial Conference on Mechanical Vibration and Noise,2001.
    [97]S. H. D. Valdez, C. Soutis. Health monitoring of composites using lamb waves generated by piezoelectric devices[J]. Plast. Rubb. Comp.,2000,29:475-481.
    [98]H. Kim, Y. W. Mai. Delamination detection in smart composite beams using Lamb waves[J]. Smart Mater. Struct.,2004,13(3):544-551.
    [99]M. J. Yang, P. Z. Qiao. Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensor/actuators[J]. Smart Mater. Struct.,2005,14(6):108-110.
    [100]Y. C. Jung, T. Kundu, M. Ehsani. A new nondestructive inspection technique for reinforced concrete beams[J]. ACI Mater. Jour.,2002,99(3):292-299.
    [101]C. S. Wang, F. Wu, F. K. Chang. Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete[J]. Smart Mater. Struct., 2001,10(3):548-552.
    [102]K. Luangvilai, W. Punurai, L. J. Jacobs. Guided lamb wave propagation in composite plate/concrete component[J]. ASCE J. Eng. Mecha.,2002, 128(12):1337-1341.
    [103]C. Liang, F. P. Sun, C. A. Rogers. An impedance method for dynamic analysis of active material system[J]. IEEE Transactions of the ASME,1994, 116:120-128.
    [104]C. Liang, F. P. Sun, C. A. Rogers. Electro-mechanical impedance modeling of active material systems[J]. J. Intell. Mater. Syst. Struct.,1994,21:232-252.
    [105]C. Liang, F. P. Sun, C. A. Rogers. Coupled electromechanical analysis of adaptive material system-determination of the actuator power consumption and system energy transfer[J]. J. Intell. Mater. Syst. Struct.,1994,5:12-20.
    [106]F. P. Sun, C. Chaudhry, C. Liang. Truss structure integrity identification using PZT sensor actuator[J]. J. Intell. Mater. Syst. Struct.,1995,6:134-139.
    [107]V. Raju. Implementing Impedance-Based Health Monitoring[D]. America: Virginia Polytechnic Institute and State University,1997.
    [108]K. Kabeya. Structural Health Monitoring Using Multiple Piezoelectric Sensors and Actuators[D]. America:Virginia Polytechnic Institute and State University, 1998.
    [109]B. L. Grisso. Considerations of the impedance method, wave propagation, and wireless systems for structural health monitoring[D]. America:Virginia Polytechnic Institute and State University,2004.
    [110]B. L. Grisso. Advancing Autonomous structural health monitoring[D]. America: Virginia Polytechnic Institute and State University,2007.
    [111]G. Park, K. Kabeya, H. H. Cudney, D. J. Inman. Impedance-based structural health monitoring for temperature varying applications[J]. JSME Int. Journ. A., 1999,42:249-258.
    [112]G. Park, H. H. Cudney, D. J. Inman. Impedance-based health monitoring technique for massive structures and high-temperature structures[C]. Proc. SPIE,1999,3670:461-469.
    [113]G Park, H. H. Cudney, D. J. Inman. Impedance-based health monitoring of civil structural components[J]. J. Infrastruct. Syst. ASCE,2000,6:153-160.
    [114]G Park, H. H. Cudney, D. J. Inman. Feasibility of using impedance-based damage assessment for pipeline systems[J]. Earthq. Eng. Struct. Dyn.,2001, 30:1463-1474.
    [115]G Park, H. Sohn, C. R. Farrar, D. J. Inman. Overview of piezoelectric impedance-based health monitoring and path forward[J]. The Shock. Vib. Digest.,2003,35:451-463.
    [116]C. K. Soh, K. K. H. Tseng, S. Bhalla, A. Gupta. Performance of smart piezoceramic patches in health monitoring of a RC bridge[J]. Smart Mater. Struct.,2000,9:533-542.
    [117]S. Bhalla, A. S. K. Naidu, C. W. Ong, C. K. Soh. Practical issues in the implementation of electro-mechanical impedance technique for NDE[C]. Proc. SPIE 2002, SPIE's International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, Australia, Melbourne,2002.
    [118]A. Naidu, S. Bhalla. Damage detection in concrete structures with smart piezoceramic transducers[C]. Proc. ISSS-SPIE 2002, Int. Conf. Smart Mater. Struct. Syst., India, Bangalore,2002.
    [119]A. Naidu, S. Bhalla, C. K. Soh. Incipient damage localization with smart piezoelectric transducers using high-frequency actuation[C]. Proc. SPIE 2002, SPIE's Int. Symp. on Smart Mater. Nano-, and Micro-Smart Syst., Australia, Melbourne,2002.
    [120]S. Bhalla, C. K. Soh. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages[J]. NDT&E Inter.,2004,37:23-33.
    [121]K. K. Tseng, A. Naidu. Non-parametric damage detection and characterization using smart piezoceramic materials[J]. Smart Mater. Struct.,2002,11:317-329.
    [122]K. K. Tseng, L. Wang. Smart piezoelectric transducers for in situ health monitoring of concrete[J]. Smart Mater. Struct.,2004,13:1017-1024.
    [123]Y. W. Yang, Y. Y. Lim, C. K. Soh. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures:I. Experiment[J]. Smart Mater. Struct.,2008,17:035008.
    [124]Y. W. Yang, Y. Y. Lim, C. K. Soh. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures:II. Numerical verification[J]. Smart Mater. Struct.,2008,17: 035009.
    [125]V. Giurgiutiu, A. N. Zagrai. Embedded self-sensing piezoelectric active sensors for online structural identification[J]. ASME J. Vib. Acoust.,2002, 124:116-125.
    [126]V. Giurgiutiu, J. Bao. Embedded ultrasonic structural radar for the nondestructive evaluation of thin-wall structures[C]. Proc. IMECE 2002, ASME Int. Mecha. Eng. Cong, New Orleans, LA,2002.
    [127]V. Giurgiutiu, J. Bao, W. Zhao. Piezoelectric wafer active sensor embedded ultrasonics in beams and plates[J]. Exp.Mech.,2003,43:428-449.
    [128]V. Giurgiutiu, C. Adrian. Embeded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention[J]. The Shock. Vib. Digest.,2005,37:83-105.
    [129]高峰,李以农,王德俊,沈亚鹏,江钟伟.用于结构健康诊断的压电阻抗技术[J].振动工程学报,2000,13(1):94-99.
    [130]高峰,王德俊,江钟伟,长南征二.压电阻抗技术用于螺栓松紧健康诊断[J].中国机械工程,2001,12(9):1048-1049.
    [131]周乐,黄世国.阻抗测量法及梁的阻抗应答分析[J].重庆大学学报(自然科学版),2007,30(3):15-18.
    [132]熊先锋,杨光瑜,杨拥民,宋立军.压电阻抗技术用于结构健康诊断的一种方法[J].传感器技术,2003,22(10):62-64.
    [133]李焰,钟方平,刘乾,刘瑜,秦学军,谭红梅.PVDF在动态应变测量中的应用[J].爆炸与冲击,2003,23(3):230-233.
    [134]宋颖,杜彦良.动态应变压电传感技术的研究及工程应用[J].电子测量与仪器学报,2008,22(5):96-100.
    [135]郑旭锋,肖沙里,谭霞,姚实颖.压电传感技术在桥梁振动检测中的研究与应用[J].压电与声光,2005,23(1):71-74.
    [136]郑旭锋.桥梁振动检测系统的研究与应用[D].重庆:重庆大学,2002.
    [137]石荣,李在铭,黄尚廉.桥梁动态应变的压电传感和远程监测的研究[J].仪器仪表学报,2002,23(4):369-372.
    [138]石荣,陈伟民,朱永,封君,龙辉敏,文玉梅,黄尚廉.采用压电片阵列传感进行损伤监测的研究[J].压电与声光,2000,22(4):277-280.
    [139]G Song, C. Olmi, H. Gu. An over height vehicle-bridge collision monitoring system using piezoelectric transducers[J]. Smart Mater. Struct.,2007, 16(2):462-468.
    [140]纪洪广.混凝土材料声发射性能研究与应用[M].煤炭工业出版社,2004.
    [141]H. Rusch. Physical problems in testing of concrete[J]. Zement-Kalk-Gips (Wiesbaden),1959,12(1):1-9.
    [142]G. S. Robinson. Methods of detecting the formation and propagation of microcracks in concrete[J]. International Conference on the Structure of Concrete, Session C,1965.
    [143]千力.基于声发射技术的混凝土损伤评估[D].武汉:华中科技大学,2005.
    [144]J. F. Labuz, S. Cattaneo, L. H. Chen. Acoustic emission at failure in quasi-Brittle materials[J]. Constru. Buil. Mater..2001,15:225-233.
    [145]Kim, W. J. Weiss. Using acoustic emission to quantify damage in restrained fiber-reinforced cement mortars[J]. Cem. Concr. Res.,2003,33:207-214.
    [146]陈兵,姚武,吴科如.声发射技术在混凝土研究中的应用[J].无损检测,2000,22(9):387-390.
    [147]陈兵,吴科如,姚武.水泥基材料损伤自诊断机理声发射研究[J].同济大学学报(自然科学版),2004,32(7):924-928.
    [148]陈兵,张东,姚武.用声发射技术研究水泥基复合材料脆性[J].无损检测,2000,23(10):421-423.
    [149]陈兵,张东,姚武,吴科如.用AE技术研究集料尺寸对混凝土断裂性能的影响[J].建筑材料学报,1999,2(4):303-307.
    [150]魏学军,胡静海.钢筋混凝土构件破坏过程的声发射特性试验研究[J].中国水运,2008,8(5):210-211.
    [151]吴宏平,刘远,余学芳.混凝土劈裂抗拉声发射特性性能研究[J].安徽建筑工业学院学报(自然科学版),2008,16(1):27-30.
    [152]王彬,顾建祖,骆英,李忠芳.预应力钢筋混凝土梁破坏过程的声发射特性实验研究[J].防灾减灾工程学报,2006,26(4):453-457.
    [153]彭春华,刘建业,刘岳峰,等.车辆检测传感器综述[J].传感器与微系统,2007,26(6):1-7.
    [154]X. P. Zhang, N. L. Nihan, Y. H. Wang. Improved dual-loop detection system for collecting real-time truck data[J]. Transport. Res. Rec.,2005, (1917):109-115.
    [155]G. Q. Weng, T. N. He, M. J. Chen, et al. The vehicle's classification recognition system based on DTW algorithm[C].5th World Congress Proceedings on Intelligent Control and Automation,2004:4169-4171.
    [156]S. Lee, S. C. Oh, B. Son. Heuristic algorithm for traffic condition classification with loop detector data[C].2005 International Conference Proceedings on Computational Science and Its Applications,2005:816-821.
    [157]J. S. Tao, S. X. Chen, L. Yang, et al. Ultrasonic technique based on neural networks in vehicle modulation recognition[C].7th International IEEE Conference Proceedings on Intelligent Transportation Systems,2004:201-204.
    [158]F. Tong, S. K. Tso, T. Z. Xu. A high precision ultrasonic docking system used for automatic guided vehicle[J]. Sens. Actua. A.,2005,118(2):183-189.
    [159]T. Minakata, Y. Taniguchi, H. Shranaga, et al. Development of far infrared vehicle sensor system[J]. SED Tech. Rev.,2004, (58):23-27.
    [160]姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004.
    [161]段国元,解幸幸,张学荣,赵世婧.公路动态称重系统的测试研究[J].计量技术,2006,(4):9-12.
    [162]刘飞飞,杨忠.车辆动态称重系统的设计[J].科技应用,2004,33(3):12-14.
    [163]潘昊,陈琼,侯清兰,彭钰,王晓勇.汽车动态称重系统的设计与实现[J].武汉理工大学学报,2006,28(9):90-93.
    [164]张犇,蔡萍,沈生培.电容称重传感器的研制[J].仪表技术与传感器,2001,3:4-5.
    [165]E. Doupal, R. Calderara. Remote WIM systems in alpine tunnels[C].1st International Conference on Virtual and Remote Weigh Stations, Orlando, F L, 2004.
    [1]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社,1982.
    [2]张卫珂,张敏,尹衍升,谭训彦.材料的压电性及压电陶瓷的应用[J].现代技术陶瓷,2005,(1):38-41.
    [3]许谕寰.铁电与压电材料[M].北京:科学出版社,1978.
    [4]孙福学.压电铁电应用[M].北京:国防工业出版社,1987.
    [5]R. E. Newnham, D. P. Skinner, L. E. Cross. Connectivity and piezoelectric pyroelectric composites[J]. Mat. Res. Bull.,1978, (13):525-536.
    [6]N. Jayasunders, B. V. Smith. Dielectric constant for binary piezoelectric 0-3 composites[J]. J. Appl. Phys.,1993,73(5):2462-2466.
    [7]H. Banno, K. Ogura. Dielectric and piezoelectric properties of a flexible composite consisting of polymer and mixed ceramic powder of PZT and PbTiO3[J]. Ferroelectrics,1989,95:171-174.
    [8]D. K. Das-gupta, M. J. Abdullah. Dielectric and pyroelectric properties of polymer/ceramic composites[J]. J. Mater. Sci. Lett.,1988,7:167-170.
    [9]H. P. Svakaus, K. A. Klicer, R. E. Nemnham. PZT-Epoxy piezoelectric transducers: a simplified fabrication procedure[J]. Mat. Res. Bull.,1981,16(6):677-680.
    [10]W. A. Smith, A. A. Shaulov, B. A. Auld. Design of piezo-composites for ultrasonic transducers[J]. Ferroelectrics,1989,91:155-162.
    [11]B. A. Auld, H. A. Kunkel, Y. A. Shui, Y. Wang. Dynamic behavior of periodic piezoelectric composites[J]. Ultrasonics Symposium Proceedings, IEEE,1983, 1:554-558.
    [12]Z. J. Li, D. Zhang, K. R. Wu. Cement-based 0-3 piezoelectric composites[J]. J. Am. Cera. Soc.,2002,85(2):305-313.
    [13]张东,吴科如,李宗津.0-3型水泥基压电机敏复合材料的制备和性能[J].硅酸盐学报,2002,30(2):161-166.
    [14]张东,吴科如,李宗津.2-2型水泥基压电机敏复合材料的研制[J].压电与声光,2002,24(3):217-220.
    [15]Z. J. Li, D. Zhang, K. R. Wu. Cement matrix 2-2 piezoelectric composite:Part I. Sensor effect[J]. Mater. Struct.,2001,34(242):506-512.
    [16]D. Zhang, Z. J. Li, K. R. Wu.2-2 Piezoelectric cement matrix composite:Part II. Actuator effect[J]. Cem. Conc. Res.,2002,32:825-830.
    [17]K. H. Lam, H. L. W. Chan. Piezoelectric cement-based 1-3 composites[J]. Appl. Phys.A.,2005,81:1451-1454.
    [18]D. Y. Xu, X. Cheng, S. F. Huang, M. H. Jiang. Electromechanical properties of 2-2 cement based piezoelectric composite[J], Curr. Appl. Phys.,2009,9(4):816-819.
    [19]S. F. Huang, D. Y. Xu, X. Cheng, M. H. Jiang. Dielectric and piezoelectric properties of 2-2 cement based piezoelectric composite[J]. J. Comp. Mater.,2008, 42(3):2437-2443.
    [20]IEEE Standard on Piezoelectricity [S].ANSI/IEEE Std.176-1987.USA:American National Standard,1987, p.227.
    [1]宋颖,王志臣,杜彦良.压电传感测试技术的应用研究进展[J].传感器与微系 统,2008,27(5):8-11.
    [2]王金斗,宋颖.压电传感技术的研究及应用[J].测控技术与仪器仪表,2008,8:89-93.
    [3]孟金凡,蓝金辉.传感器原理与应用[M].北京:电子工业出版社,2007.
    [4]陶艳.压电智能材料在土木工程中的应用[J].工程技术,2007,12:89-90.
    [5]李宏男,赵晓燕.压电智能传感结构在土木工程中的研究和应用[J].地震工程与工程振动,2004,24(6):165-172.
    [6]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-8.
    [7]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.
    [8]杨晓明.土木工程结构的性能监测系统与损伤识别方法研究[D].天津:天津大学,2006.
    [9]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社,1982.
    [10]李道华,李玲,朱艳.传感器电路分析与设计[M].武汉:武汉大学出版社,2000.
    [11]金发庆.传感器技术与应用[M].北京:机械工业出版社,2004.
    [12]周凯,赵望达.超声波对混凝土强度的无损检测[J].仪器仪表装置,2007,(3):36-38.
    [13]吕洁.声学无损检测法用于研究水泥基材料的早期水化[J].中国西部科技,2008,7(22):33-35.
    [14]C. Liang, F. P. Sun, C. A. Rogers. An impedance method for dynamic analysis of active material system[J]. IEEE Transactions of the ASME,1994,116:120-128.
    [15]高峰,李以农,王德俊,沈亚鹏,江钟伟.用于结构健康诊断的压电阻抗技术[J].振动工程学报,2000,13(1):94-99.
    [16]熊先锋,杨光瑜,杨拥民,宋立军.压电阻抗技术用于结构健康诊断的一种方法[J].传感器技术,2003,22(10):62-64.
    [17]周文委.结构混凝土压电机敏监测技术的基础研究[D].重庆:重庆大学,2003.
    [18]D. W. Fitting. Ultrasonic Spectral Analysis for Nondestructive Evaluating[M]. New York:Plenum Press,1981.
    [1]潘昊.智能方法在水泥性能分析中的应用研究[D].武汉:武汉理工大学,2006.
    [2]乔军志.水泥浆凝结硬化时内部结构与超声频谱的变化[J].湖南大学学报(自然科学版),1999,26(3):80-83.
    [3]雷海林.水泥水化过程的计算机模拟算法分析[D].大连:大连理工大学,2005.
    [4]董必钦,马红岩.水泥胶凝材料水化进程及力学特性研究[J].混凝土,2008, (5):23-25.
    [5]王培铭,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,8(6):646-652.
    [6]K. O. Kjellsen, R. J. Detwiler, O. E. Gjorv. Backscattered electron imaging of cement pastes hydrated at different temperatures[J]. Cem. Conc. Res.,1990, 20(2):308-311.
    [7]宋文娟,杨正宏,史美伦.研究水泥基材料性质的时间电流法[J].建筑材料学报,2008,11(1):76-97.
    [8]张莹,史美伦.水泥基材料水化过程的交流阻抗研究[J].建筑材料学报,2000,3(2):109-112.
    [9]史美伦,陈志源.硬化水泥浆体孔结构的交流阻抗研究[J].建筑材料学报,1998,1(1):30-35.
    [10]吴浩,姚燕,王玲.数字图像处理技术在水泥混凝土研究中的应用[J].混凝土与水泥制品,2007,(4):8-13.
    [11]缪仑,单波,黄政宇.新拌水泥浆体超声传播特性的试验研究[J].湖南大学学报(自然科学版),2000,27(6):77-81.
    [12]陈烨,简文彬,林生凉,胡忠志.水泥土的超声波特性研究[J].福州大学学报,2006,1(36):124-127.
    [13]吕洁.声学无损检测法用于研究水泥基材料的早期水化[J].中国西部科技,2008,7(22):33-35.
    [14]林宗寿.无机非金属材料工学[M].武汉:武汉工业大学出版社,1999.
    [15]王琦.无机非金属材料工艺学[M].北京:中国建材工业出版社,2005.
    [16]李骁春,吴胜兴.早期混凝土超声波测试研究进展[J].混凝土与水泥制品,2006,(3):11-13.
    [1]李宏男.结构健康监测[M].大连:大连理工大学出版社,2004.
    [2]G. B. Song, H. C. Gu, Y. L. Mo. Smart aggregates:multi-functional sensors for concrete structures-a tutorial and a review[J]. Smart Mater. Struct.,2008,17:1-17.
    [3]H. W. Song, V. Saraswathy. Corrosion monitoring of reinforced concrete structures-A Review[J]. Int. J. Electrochem. Sci.,2007,2:1-28.
    [4]欧进萍.重大工程结构智能传感网路与健康监测系统的研究与应用[J].中国科学基金,2005,1:8-12.
    [5]S. Park, C. B. Yun, Y. Roh, J. J. Lee. Health monitoring of steel structures using Impedance of thickness modes at PZT patches[J]. Smart Struct. Syst.,2005, 1(4):339-353.
    [6]骆英,陶宝祺.土木工程智能结构中传感器原理与应用[J].江苏理工大学学报(自然科学版),2000,21(5):9-13.
    [7]焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展[J].防灾减灾工程学报,2006,26(1):102-108.
    [8]孙明清,李卓球,候作富.压电材料在土木工程结构健康检测中的应用[J].混凝土,2003,3:22-24.
    [9]郑旭锋,肖沙里,谭霞,姚实颖.压电传感技术在桥梁振动检测中的研究与应用[J].压电与声光,2003,25(1):71-74.
    [10]宋颖,杜彦良.动态应变压电传感技术的研究及工程应用[J].电子测量与仪器学报,2008,22(5):96-100.
    [11]M. Egashira, N. Shinya. Local strain sensing using piezoelectric polymer[J]. J.Intel. Mate.Syst. Struct.,1993,4(7):558-560.
    [12]陈雨,文玉梅,李平,田卉.压电埋入式混凝土应力及温度传感器[J].微纳电子技术,2007,(7/8):203-206.
    [13]彭鸽,袁慎芳.主动Lamb波监测技术中的传感元件优化布置研究[J].航空学报,2006,27(5):957-962.
    [14]H. W. Park, H. Sohn, K. H. Law, C. R. Farrar. Time reversal active sensing for health monitoring of a composite plate[J]. J. Sound Vib.,2007,302:50-66.
    [15]A. A. Shah, Y. Ribakov, S. Hirose. Nondestructive evaluation of damaged concrete using nonlinear ultrasonics[J]. Mater. Desig.,2009,30:775-782.
    [16]C. Liang, F. P. Sun, C. A. Rogers. An impedance method for dynamic analysis of active material system[J]. IEEE Transactions of the ASME,1994,116:120-128.
    [17]C. Liang, F. P. Sun, C. A. Rogers. Electro-mechanical impedance modeling of active material systems[J]. J. Intell. Mater. Syst. Struct.,1994,21:232-252.
    [18]F. P. Sun, C. Chaudhry, C. Liang. Truss structure integrity identification using PZT sensor-actuator[J]. J. Intell. Mater. Syst. Struct.,1995,6:134-139.
    [19]G. Park, H. Cudney, D. Inman. Impedance-based health monitoring technique for massive structures and high-temperature structures[J]. Proc. SPIE.,1999, 3670:461-469.
    [20]K. K. Tseng, A. Naidu. Non-parametric damage detection and characterization using smart piezoceramic materials[J]. Smart Mater. Struct.,2002,11:317-329.
    [21]V. Giurgiutiu, A. N. Zagrai. Embedded self-sensing piezoelectric active sensors for online structural identification[J]. ASME J. Vib. Acoust.,2002,124:116-125.
    [22]高峰,李以农,王德俊,沈亚鹏,江钟伟.用于结构健康诊断的压电阻抗技术[J].振动工程学报,2000,13(1):94-99.
    [23]熊先锋,杨光瑜,杨拥民,宋立军.压电阻抗技术用于结构健康诊断的一种方法[J].传感器技术,2003,22(10):62-64.
    [24]王丹生.基于反共振频率和压电阻抗的结构损伤检测[D].武汉:华中科技大学,2006.
    [25]C. K. Soh, K. K. Tseng, S. Bhalla, A. Gupta. Performance of smart piezoceramic patches in health monitoring of a RC bridge[J]. Smart Mater. Struct.,2000, 9:533-542.
    [26]A. Naidu, S. Bhalla. Damage Detection in concrete structures with smart piezoceramic transducers[C]. Proc. ISSS-SPIE 2002, Int. Conf. Smart Mater. Struct. Syst., India, Bangalore,2002.
    [27]K. K. Tseng, L. Wang. Smart piezoelectric transducers for in situ health monitoring of concrete[J]. Smart Mater. Struct.,2004,13:1017-1024.
    [28]Y. W. Yang, Y. Y. Lim, C. K. Soh. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures:I. Experiment[J]. Smart Mater. Struct.,2008,17:035008.
    [29]Y. W. Yang, Y. Y. Lim, C. K. Soh. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures:II. Numerical verification[J]. Smart Mater. Struct.,2008,17: 35009.
    [30]E. Garnett. J. Simmers. Impedance-based structural health monitoring to detect corrosion[D]. Blacksburg:Virginia Polytechnic Institute and State University
    [1]陆化普.智能运输系统[M].北京:人民交通出版社,2000.
    [2]李淦山,译.日本智能交通(ITS)研究综述[J].国外公路,2000,20(4):33-35.
    [3]李峰.智能交通系统在国外的发展趋势[J].国外公路,1999,19(1):1-5.
    [4]陈慧芳.高速公路汽车测距系统的研究[D].浙江:浙江大学,2004.
    [5]郭雪峰.基于数据融合的短时交通流预测与智能交通信号系统的研究[D].湖南:湘潭大学,2007.
    [6]张小军.智能交通系统中的车辆检测和车型识别技术研究[D].陕西:西北大学,2006.
    [7]高健,沈庆宏,高敦堂.ITS中车辆检测器设备的研究与实现[J].交通与计算机,2002,5(20):15-18.
    [8]阐大顺.车辆检测器及其发展研究[J].交通与计算机,1999,17(2):38-41.
    [9]夏新春.汽车动态称重的研究[D].北京:中国农业大学,2005.
    [10]张雨,贺曙新,文绍波,邹政耀,张士强.汽车动态称重信号的两个处理方法[J].南京工程学院学报(自然科学版),2004,2(4):17-21.
    [11]段国元,解幸幸,张学荣,赵世婧.公路动态称重系统的测试研究[J].计量技术,2006,(4):9-12.
    [12]吴文兵.汽车动态称重技术在高等级公路管理中的应用[J].交通与计算机,2004,22(2):111-113.
    [13]施昌彦.动态称重测力技术的现状和发展方向[J].力学与测试技术,2000(1):18-20.
    [14]何红丽.汽车动态称重系统的研究与设计[D].河南:郑州大学,2007.
    [15]商长富.汽车动态称重系统数据处理的算法研究[D].吉林:吉林大学,2007
    [16]M. Niedzwiecki, A. Wasilewski. Application of Adaptive Filtering to Dynamic Weighing of Vehicles[J]. Control. Eng. Practice.,1996,4:635-644.
    [17]白瑞林.基于神经网络技术的动态定量称重控制方法的研究[J].自动化仪表,2000.21(7):8-10
    [18]K. Taek, B. Aryal. Development of a pc-based eight-channel wim system[M]. Published by Minnesota Department of Transportation Research Services Section, 2007.
    [19]史航,李霆.基于压电电缆的动态称重系统的分析与设计[J].华东公路,2005,5:87-89.
    [20]孙全胜.智能桥梁结构健康监测的研究[D].黑龙江:东北林业大学,2005.
    [21]赵志国,林师灼.现代桥梁健康诊断的最新发展与研究[J].国外建材科技,2004,25(5):57-58.
    [22]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999,27(2):184-187.
    [23]郑旭锋,肖沙里,谭霞,姚实颖.压电传感技术在桥梁振动检测中的研究与应用[J].压电与声光,2005,23(1):71-74.
    [24]宋颖,杜彦良.动态应变压电传感技术的研究及工程应用[J].电子测量与仪器学报,2008,22(5):96-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700