TDMA系统目标多站定位理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时分多址(TDMA)系统以其组网灵活、支持多业务等特点,在无线通信中占有重要位置。无源定位技术以其隐蔽能力强、作用距离远等特点在现代信息化战争中获得广泛应用。针对单站TOA(到达时间)系统、单站TOA和DOA(到达方向)系统、双站TOA系统以及三站TOA系统,利用TDMA系统特征,本文研究获取TDMA目标位置参数的算法以及提高参数估计精度的途径。
     本论文以TDMA系统的运动目标(终端)无源态势信息获取算法为主,在多站无源定位中兼顾TDMA固定目标定位,主要的创新之处如下:
     1.实现了TDMA系统特征和目标位置参数估计算法的有机统一。首先,TDMA系统是一个同步系统,任意两个时隙信号的发射时间间隔为时隙持续时间的整数倍,可以认为TDMA时隙信号是准周期信号。TDMA的同步特性是进行单站和多站纯TOA目标运动分析的基础。其次,TDMA系统是一个多目标系统,多目标之间是同步的,运用于多目标同步特性能够提高多目标的定位精度。
     2.在单站纯TOA目标运动分析中,提出了适合任何快拍数的以距离和速度为变量的封闭形式距离和速度估计算法,分析了目标相向运动和相背运动对距离和速度估计精度的影响,提出了前向和后向估计算法。为充分利用整个快拍数据的信息,给出了全局最小二乘测距测速算法,做到了距离和速度总体最优估计。
     3.在单站TOA和DOA目标运动分析中,运用参数化目标运动分析的方法分析目标位置的可观测性条件,并推导了定位精度的理论算法。该定位算法不需要对非线性观测方程进行任何线性化处理,用三个以上目标位置的测量值实现对TDMA目标的单站定位。
     4.在双站纯TOA目标运动分析中,对目标各种位置参数的可观测性进行了分析,给出了三维目标各种距离和速度的估计算法,对估计精度进行了仿真对比分析;提出了二维目标的位置坐标和速度分量的估计算法,在一般意义下能够得到目标位置坐标和速度分量的二值估计,给出以两个接收站的轴线为对称的上下两条目标运动航迹,借助目标活动的区域或方向测量值可以去掉目标的虚假航迹,实现二维目标的定位。
     5.在三站纯TOA目标运动分析中,分析了三维目标各种距离和速度的估计算法;提出了二维目标的位置坐标和速度分量的估计算法,只要三个接收站不在一条直线上,能够实现二维目标的位置坐标和速度分量的唯一估计;同时给出了三维目标的位置坐标和速度分量的估计算法,在一般意义下能够得到目标位置坐标和速度分量的二值估计,由于空中飞行目标的高度不可能为负值,去掉目标的虚假位置,可以实现三维目标的定位。
     6.对于传统的三站时差定位系统,根据TDMA系统的基站位置坐标已知的情况,由时隙信号的TOA可以推算出目标的距离,提出了两种TDOA和TOA联合定位的算法,可以提高时差定位算法的精度。在TDMA系统多目标情况下,即使不知道基站位置坐标,给出了两种多目标联合时差定位算法,避免了传统时差定位算法中的模糊和无解情况,由于利用所有目标的时差信息对目标进行定位,在多目标情况下提高了目标定位的精度。对于运动TDMA目标,提出了三种在三站时差定位系统中实现目标定位的算法。采用目标运动分析的方法,对TDMA目标位置的可观测性进行分析,实现了目标运动分析时差定位算法。运用目标运动分析测距算法,提出了测距与传统时差定位和目标运动分析时差定位相结合的两种定位算法,充分利用了目标的运动特性,提高了TDMA目标的定位精度。
     与现有的纯方位目标运动分析和多站时差定位相比,本文深入研究了单站、双站和三站的纯TOA目标运动分析,提出了距离速度估计闭式解及其性能改进算法;利用TDMA系统的时间同步特征,实现了多种TDMA系统单目标和多目标的时差定位算法,不仅提高了定位精度,还避免了模糊与无解现象。该研究成果对实际TDMA系统目标无源定位具有指导意义,部分算法已在实际的单站和多站定位系统中得到应用。
Time division multiple access (TDMA) system plays an important role in wireless communication which has the advantages of flexible of networking architecture and multi-service support.Passive location technology is widely used in modern information warfare because of its strong hidden ability and long operation distance.Based on the study of the features of the TDMA system, this dissertation investigates target location estimation algorithms and provides methods for improving the estimation accuracy. Location systems with single-sensor time of arrival (TOA), single-sensor TOA and direction of arrival (DOA), bi-sensor TOA and tri-sensor TOA are considered.
     This dissertation focuses on localization algorithms for moving TDMA targets, and for fixed TDMA targets in multi-sensor localization systems.The contributions of this dissertation are as follows:
     1. The features of the TDMA system are employed in the target location algorithms. Firstly, the TDMA system is time synchronized. The time difference between the transmission of signals at different slots is an integer multiple of the slot signal cycle. Hence, the slot signal can be considered as quasi-periodic. The synchronization of the TDMA system makes it possible for single and multiple station TOA-only target motion analysis. Secondly, the TDMA system has multiple targets which are synchronous in time. The target location accuracy can be improved by the use of multi-target synchronization.
     2. For the TOA-only target motion analysis (TMA) in a single-sensor system, the closed-form algorithm of range-velocity estimation is proposed which is suitable for any number of snapshots of TOAs. The estimation accuracies are analyzed for targets that move towards or away from the localization system. The forward and the backward estimation algorithms for range-velocity estimation are presented. In order to fully utilize the data information of the entire snapshot, the globally-weighted least-square range estimation algorithm is proposed which leads to an overall optimal range estimation.
     3. In the single-sensor TOA and DOA target motion analysis, the parametric TMA method is used in analyzing the observability condition of the target position, which deduces the theoretic analysis algorithm of location accuracy. The single-sensor location of the TDMA target can be realized using measurements of more than two target positions without the linearization of nonlinear observation equation.
     4. For the dual-sensor system, algorithms for the estimation of range, velocity, velocity components and position coordinates are proposed, and respective observabilities for the above target motion parameters are analyzed. In addition to the situation of target motion on the sensor axis, these algorithms can estimate the range and velocity of moving target in three-dimensional space, and make two-valued estimations of velocity components and position coordinates for two-dimensional target and then obtain two upper and lower trajectories symmetrical to the connecting line of the two sensors. The false trajectory can be excluded by the information of the region or bearing of moving target and then the target can be located.
     5. In the three-sensor time different of arrival (TDOA) location system, the algorithms to estimate its range, velocity, velocity components and position coordinates are presented. Unique solutions of velocity components and position coordinates of two-dimensional target can be obtained by using the TMA method. For the target moving with a constant speed in a three-dimensional space, the two-valued estimations of its velocity components and position coordinates can be obtained. Since the height of a flying target cannot be negative, the false position can be excluded.
     6. In the traditional TDOA localization system, if the base station position of the TDMA system is known, the target range will be calculated according to the TOA of a slot. Two kinds of joint localization algorithms of TDOA and TOA for TDMA target are proposed. Two weighed least square algorithms for multi-target ranging and locating are presented in order to improve the localization precision. For TDMA moving target, three location algorithms are proposed based on the measurements of TOA. The TMA method is used to analyze the observability condition of target position, and realize the TMA TDOA localization of moving target (TDOA-M). Two joint algorithms of conventional TDOA location (TDOA-C) and TDOA-M with TMA ranging algorithm are proposed to improve the localization precision by making full use of the target motion property. The ambiguity and non-solution problems in the traditional TDOA location algorithm are avoided in these algorithms.
     In contrast with the existing bearing-only TMA and multi-station TDOA localization approaches, the TOA-only TMAs of single, bi- and tri-station are lucubrated. The closed-form algorithm of range-velocity estimation and its improved algorithms are proposed. Several TDOA location algorithms of single and multi-target are realized by the use of the synchronization characteristic of the TDMA system. The results of this work are instructional for the actual passive location of the TDMA targets. Some parts of these algorithms have been applied to the actual single and multi-station location systems.
引文
[1]孙仲康,周一宇,何黎星.单多基地有源无源定位技术.北京:国防工业出版社,1996.
    [2]孙仲康,郭福成,冯道旺等.单站无源定位跟踪技术.北京:国防工业出版社,2008.
    [3]胡来招.无源定位.北京:国防工业出版社,2004.
    [4]刘忠,周丰,石章松,薛锋.纯方位目标运动分析定位.北京:国防工业出版社,2009.
    [5]杨争斌,对机动目标的单站无源定位跟踪关键技术研究[博士学位论文].长沙:国防科学技术大学,2007.
    [6]冯道旺,利用径向加速度信息的单站无源定位技术研究[博士学位论文].长沙:国防科学技术大学,2003.
    [7]李宗华,无机动单站对运动辐射源的无源定位跟踪技术研究[博士学位论文].长沙:国防科学技术大学,2003.
    [8] Tremois O, Le Cadre J P. Target motion analysis with multiple arrays: Performance analysis. IEEE Transactions on Aerospace and Electronic System, 1996, 32(3): 1030-1046.
    [9] Iltis R A, Anderson K L. A consistent estimation criterion for multisensory bearings-only tracking. IEEE Transactions on Aerospace and Electronic System, 1998, 34(3):777-788.
    [10]陈永光,李昌锦,李修和.三站时差定位的精度分析与推算模型,电子学报,2004,32(9): 1452-1455.
    [11]陆静,郭克成,袁翔宇,陆洪涛.解析法分析三站时差定位系统的定位精度,现代雷达,2004,26(12):20-22.
    [12]杨星,潘谊春,杜克新.三站无源时差定位系统优化布站研究,现代防御技术,2009,37(4):123-127.
    [13]愈志强,王宏远,武文.四站时差定位布站研究,电子学报,2005,33(B12):2308-2311
    [14]范平志等.蜂窝网无线定位.北京:国防工业出版社,2002.
    [15]顾杰,无线蜂窝移动通信系统中移动台定位技术研究与实现[博士学位论文].成都:电子科技大学,2003.
    [16]江虹,移动网中的位置管理技术研究[博士学位论文].成都:电子科技大学,2004.
    [17]郭云飞,纯方位角目标跟踪理论与应用研究[博士学位论文].杭州:浙江大学,2007.
    [18]盛安冬,TMA中不完全量测估计与观测平台机动模式研究[博士学位论文].南京:南京理工大学,2007.
    [19] Nardone S, Lindgren A, Gong K. Fundamental properties and performance of conventional bearing-only target motion analysis. IEEE Trans. on Automatic Control, AC-29, 1984(9):775—787.
    [20] Levine J, Marino R. Constant-speed target tracking via bearings-only measurements. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):175—182.
    [21] Gavish M, Weiss A J. Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems,1992,28(3):817—828.
    [22] Pham D T. Some quick and efficient methods for bearings-only target motion analysis. IEEE Transactions on Signal Processing,1993,41(9):2737—2751.
    [23] Peach N, Ceng M A, MIEE. Bearing-only tracking using a set of range-parameterized extended Kalman filters. IEE Proc.Control Theory Appl, 1995, 1421(1).
    [24] Le Cadre J P, Tremois O. Properties and performance of extended target motion analysis. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 66—83.
    [25] Sastry C R, Kamen E W, Simaan M. An efficient algorithm for tracking the angles of arrival of moving targets. IEEE Trans. on Signal Process, 1991,39(1):242—246.
    [26]邓新蒲,运动单观测器无源定位与跟踪方法研究[博士学位论文].长沙:国防科学技术大学,2000.
    [27] Kirubarajan T,Bar-shalom Y,Lerro D.Bearing-only tracking of maneuvering target using batch-recuisive estimator. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 770-780.
    [28] Chan Y T,Rea T A.Passive tracking scheme fro a single stationary observer.IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):1046-1054.
    [29]薛锋,刘忠,石章松.Unscented粒子滤波器及其在纯方位跟踪中的应用.电子与信息学报,2007,29(7):1722-1725.
    [30]单月晖,赵巨波,孙仲康等.MGEKF算法在无源定位中的应用.航天电子对抗,2003(1):10-13.
    [31]Le Cadre J P, Jauffret C. Discrete-time observability and estimability for bearings-only target motion analysis. IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):178—201.
    [32]HERMANN ROBERT KRENER ARTHER. Nonlinear controllability and observability. IEEE Transactions on Automatic Control,Oct.1977,AC-22(5):728-740.
    [33]NARDONE STEVEN C,AIDALA VICENT J. Observability criteria for bearing-only targetmotion analysis. IEEE Transactions on Aerospace and Electronic System,1981,17(2):162-166.
    [34]HAMMEL SHERRY E, AIDALA VINCENT J. Observability requirements for three-dimensional tracking via angle measurements. IEEE Transactions on Aerospace and Electronic System,1985,21(2):200-207.
    [35]PAYNE ANTHONY N. Observability problem for bearing-only tracking. International Journal of Control,1989,49(3):761-768.
    [36]Oshman Y,Davidson P. Optimization of observer trajectories for bearing-only target localization. IEEE Transactions on Aerospace and Electronic System, 1999, 35(3):892-902.
    [37]Fawcett J A. Effect of course maneuvers on bearings-only range estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(8):1193-1199.
    [38]Hammel S E, Liu P T, Hilliard E J, and Gong K F. Optimal observer motion for localization with bearings measurements. Computer and Mathematics with Applications, 1989, 18(1-3):171-186.
    [39]Hua, Y., W. Wen-Quan and L. Zhong. Observer trajectory optimization of maneuvering target for bearings-only tracking. Proceedings of International Conference of Information Science and Management Engineering (ISME), Xi’an, 2010, pp: 207– 211.
    [40]Smith Julius O, Abel Jonathan S. Closed-Form Least–Squares Source Location Estimation from Range-Difference Measurements. IEEE Transactions on Acoustics, Speech, and Signal Processing,1987,35(12):1661-1669.
    [41]Lindgren A G, Gong K F. Position and velocity estimation via bearing observation. IEEE Transactions on Aerospace and Electronic System,1978,14(4):564-577.
    [42]Le Cadre J P,Jauffret C.On the convergence of iterative methods for bearing-only tracking.IEEE Transactions on Aerospace and Electronic Systems,1999,35:801—817.
    [43]Pham D T,Some quick and efficient methods for bearing-only target motion analysis.IEEE Trans. on Signal Processing,1993,41(9):2737—2751.
    [44]Tao X J,Zou C R,He Z Y.Passive target tracking using maximum likelihood estimation.IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):801—817.
    [45]Tafe T G.Target localization from bearing-only observation.IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):2—10.
    [46]Nordone S C,Marcus L G.A closed-form solution to bearing-only target motion analysis.IEEE Journal of Oceanic Engineering,1997,22(1):168—178.
    [47]Moon J R,Nordone S C.An Approximate Linearisation approach to bearing-only TargetTracking.IEEE Transactions on Aerospace and Electronic Systems,2000,36(1):176—188.
    [48]杨莘元,郑思海,基于运动辐射体TOA和DOA测量的单站被动定位算法,电子学报,1996,24(12):66-69.
    [49]李宗华,郭福成,周一宇,孙仲康,测量TOA和DOA的单站无源定位跟踪可观测条件,国防科技大学学报,2004,26(2):30-34.
    [50]谢细全,王琴,谢成祥,昊庆军,DOA和TOA的单站无源定位可观测性分析,电光与控制,2007,14(2):47-49.
    [51]Nordone S C,Aidala V J.Observability Criteria for Bearings-Only Target Motion Analysis.IEEE Transactions on Aerospace and Electronic Systems,1981,17(2):162—166.
    [52]FOGEL ELI,GAVISH MOTTI. Nth-order dynamics target observability from angle measurements. IEEE Transactions on Aerospace and Electronic System,1988,24(3):305-308.
    [53]Song T L. Observability of Target Tracking with Bearing-only Measurements. IEEE Transactions on Aerospace and Electronic System,1996.32(4):1468-1472.
    [54]何友,火欣,衣晓.纯方位二维运动目标的不可观测性问题研究.系统工程与电子技术2003,25(1):11-14,92.
    [55]潘泉,戴冠中,张洪才.被动式跟踪可观测性分析的非线性系统方法.信息与控制,1997,26(3):168-173.
    [56]RONALD A. ILTIS, KRAIG L. ANDERSON. A Consistent Estimation Criterion for Multisensor Bearings-Only Tracking. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 108-120.
    [57]O. TR′EMOIS, J. P. Le CADRE. Target Motion Analysis With Multiple Arrays: Performance Analysis. IEEE Transactions on Aerospace and Electronic Systems, 1996,32(3):1030—1046.
    [58]刘忠.多站纯方位定位系统的可观测性条件.海军工程大学学报,2004,16(1):18-22.
    [59]刘健,刘忠,玄兆林.纯方位两站协同目标运动分析算法研究.舰船科学技术, 2006,28(1):64-69.
    [60]杜选民,姚蓝.多基阵联合的无源纯方位目标运动分析研究.声学学报,1999,24(6):604—610.
    [61]屈津竹,刘忠,刘健.基于三元阵的水下目标运动分析算法研究.火力与指挥控制,2008,33(11):56-58.
    [62]郭福成,基于运动学原理的单站定位跟踪关键技术研究[博士学位论文].长沙:国防科学技术大学,2002.
    [63] GUO Fu-cheng,SUN Zhong-kang,AN Wei.Single Observer Location of 3-D Fixed EmitterUsing Bearing and Its Rate of Changing Information.Proceedings of IEEE TENCON’02,1642-1645.
    [64] Xu Tianyuan,Liu Shunlan.Single Observer Passive Location using Phase Rate of Change with the extended kalman particle filter.2009 ISECS International Colloquium on Computing, Communication, Control, and Management.65-68.
    [65] Huang Dengcai and Ding Min, Introduction to Passive Location Using Phase Rate of Change,Modem Radar, vol. 29, August 2007,32–34.
    [66] Wang Qiang, Guo Fucheng and Zhou Yiyu. A Single Observer Passive Location Method and Accuracy Analysis using Phase Difference Rate of Change Only. Proceedings of the 2008 IEEE International Conference on Information and Automation, IEEE Press, June 2008, 1030-1033.
    [67] K. C. Ho, Y. T. Chan. An asymptotically unbiased estimator for Bearings-only and Doppler-bearing target motion analysis. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54( 3): 809-822.
    [68] K. BECKER. Three-dimensional target motion analysis using angle and frequency measurements. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41(1): 284-301.
    [69]周春阳,周国标.方位-多普勒频率合成TMA的可测性分析.战术导弹技术,2005,(5):17-20.
    [70] Guerci J R, A method for improving extended kalman filter performance for angle only passive ranging. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):1091—1093.
    [71] GUO Fu-cheng,SUN Zhong-kang,Huangfu Kan.A Modified Covariance Extended Kalman Filtering Algorithm In Passive Location . Proceedings of the 2003 IEEE International Conference on Robotics,Intelligent Systems and Signal Processing,307-311.
    [72] Deng Xiaolong, Xie Jianying and Yang Yupu, Improved Particel Filter for Passive Target Tracking. Journal of Shanghai University (English Edition), Dec. 2005, vol. 9, 534-538.
    [73] Vermaak J, Godsill S and Perez P, Monte Carlo filtering for multitarget tracking and data association. IEEE Transactions on Aerospace and Electronic systems, Jan. 2005, vol. 41, 309-332.
    [74]徐本连.双(多)基纯方位目标定位与跟踪算法研究[博士学位论文].南京:南京理工大学,2006.
    [75]许耀伟,一种快速高精度定位方法的研究[博士学位论文].长沙:国防科学技术大学,1998.
    [76]李立萍,无源定位技术的研究与应用[博士学位论文].成都:电子科技大学,1999.
    [77]张正明,辐射源无源定位研究[博士学位论文].西安:西安电子科技大学,2000.
    [78]王满玉,机载雷达组网中被动探测与定位技术研究[博士学位论文].西安:西北工业大学研究生院,2000.
    [79] Foy W H. Position location solutions by Taylor series estimation. IEEE Trans on Aerospace and Electronic Systems, 1976,12(2):1 87-194.
    [80] Chart Y Ho K C. A simple and efficient estimator for hyperbolic location. IEEE Trans On Signal Processing,1994,42(8):1905-1915.
    [81] Huang Z, Lu J. Total least squares and equilibration algorithm for range difference Location. Electronics Letters, 2004,40(5):12l-122.
    [82]李万春,魏平,肖先赐.一种新的稳健的TDOA定位算法,电子与信息学报,2006,28(1 l):2019-2021.
    [83] Spargna.J oeh, G Huber, etal. Passive ECM:Emitter Location Techniques. Microwave Journal,1971.14(5):45-50,74.
    [84] J. O. Smith, J.S.Abel, Closed-form least-squares source location estimation from range-difference measurements, IEEE Trans. on ASSP, 1987 ,35(12):1661—1669.
    [85] R.Schmitd, Least squares range-diference location. IEEE Trans on AES,1996.32(1):234-241.
    [86] Yiteng Huang , Jacob Benesty.Real-Time Passive Source Localization : A Practical Linear-Correction Least-Squares Approach. IEEE Transactions on Speech and Audio Processing,2001,9(8):943-956.
    [87]张正明,杨绍全.平面相交法时差定位,电子与信息学报,2001,23(5):512-515.
    [88] CHEN Zhangxin, WAN Qun, WEI Hewen and YANG Wanlin.A Novel Subspace Approach for Hyperbolic Mobile Location. Chinese Journal of Electronics,2009,18(3):569-573.
    [89]黄光明,余刚,李和平.基于奇异值分解的秩截短多站时差定位算法.探测与控制学报,2010,32(3):74-82.
    [90]俞志强,叶朝谋.四站三维时差定位模糊分析,空军雷达学院学报,2009,23(5):370-372.
    [91]叶朝谋,俞志强.三维时差定位系统的模糊及无解分析,现代电子技术,2009,23(5):22-24,27.
    [92]毛永毅,白菊蓉.空问四站时差定位中的模糊及无解研究,电讯技术,2006,6:53-57.
    [93]陈玲,李少洪.可消除定位模糊的无源时差定位算法,北京航空航天大学学报,2005,31(1):89-93.
    [94]张贤达.矩阵分析与应用.北京:清华大学出版社,2009.
    [95]Blanc-Benon P, Jauffret C. TMA from bearings and multipath time delays. IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):813-824.
    [96]Le Cadre J.P. Optimization of the observer motion for bearings-only target motion analysis. Proceedings of the 36th IEEE Conference on Decision and Control, 1997,Vol.4:3126-3131.
    [97]Koteswara Rao S. Comments on“Bearings-only and Doppler-bearing tracking using instrumental variables”. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):370-371.
    [98]Streit R L, Walsh M J. A linear least squares algorithm for bearings-only target motion analysis.1999 IEEE Aerospace Conference, 1999, Vol.4:443-455.
    [99]Blanc-Benon P, Passerieux J M. Fusion of reduced-rank TMA estimates. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3):750-759.
    [100]Hue C, Le Cadre J-P, Perez P. A particle filter to track multiple objects. 2001 IEEE Workshop on Multi-Object Tracking, 2001:61-68.
    [101]Malcolm, W.P.; Doucet, A.; Zollo, S. Sequential Monte Carlo tracking schemes for maneuvering targets with passive ranging. Proceedings of the Fifth International Conference on Information Fusion, 2002, Vol.1:482-488.
    [102]Clark, J.M.C.; Vinter, R.B.; Yaqoob, M.M. On high precision bearings only tracking for manoeuvring targets. IEE Target Tracking 2004: Algorithms and Applications, 2004:51-56.
    [103]Bavencoff, F.; Vanpeperstraete, J.-M.; Le Cadre, J.-P. Constrained bearings-only target motion analysis via monte carlo markov chains. Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004:153-162.
    [104]Yi Xu, Li Liping. Single observer bearings-only tracking with the unscented Kalman filter. 2004 International Conference on Communications, Circuits and Systems, 2004. ICCCAS 2004, Vol.2:901-905.
    [105]Clark, J.M.C.; Vinter, R.B.; Yaqoob, M.M. The shifted Rayleigh filter for bearings only tracking. 2005 7th International Conference on Information Fusion, 2005, Vol.1:93-100.
    [106]Clark, M.; Maskell, S.; Vinter, R.; Yaqoob, M. A comparison of the particle and shifted Rayleigh filters in their application to a multisensor bearings-only problem. 2005 IEEE Aerospace Conference, 2005:2142-2147.
    [107]Guan Xin, Yi Xiao, He You. Research on unobservability problem for two-dimensional bearings-only target motion analysis. Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005:56-60.
    [108]Dogancay K. Bias compensation for the bearings-only pseudolinear target track estimator. IEEE Transactions on Signal Processing, 2006, 54(1):59-68.
    [109]Bavencoff, F.; Vanpeperstraete, J.M.; Le Cadre, J.P. Constrained bearings-only target motion analysis via Markov chain Monte Carlo methods. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4):1240-1263.
    [110]Hanselmann, T.; Morelande, M. Multiple target tracking with asynchronous bearings-only-measurements. 2007 10th International Conference on Information Fusion, 2007:1-8.
    [111]Castaneda, N.; Charbit, M.; Moulines, E. A new bearings-only tracking algorithm for ground moving targets constrained to roads. IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, 2007. SPAWC 2007:1-5.
    [112]Bonneton, F.; Jauffret, C. Bearing Line Tracking and Bearing-Only Target Motion Analysis. 2007 IEEE Aerospace Conference, 2007: 1 - 9.
    [113]Srinivasan, M.; Raj, H. Anitha; Haritha, D.; Krishna, D. Siva; Tyagi, Manoj Kumar. Derivative-free filters for target motion analysis with bearings-only measurement. IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), 2007: 93– 99.
    [114]Arulampalam, S.; Clark, M.; Vinter, R. Performance of the shifted Rayleigh filter in single-sensor bearings-only tracking. 2007 10th International Conference on Information Fusion, 2007: 1– 6.
    [115]Zhang, H.; Laneuville, D. Grid Based Solution of Zakai Equation with Adaptive Local Refinement for Bearings-only Tracking. 2008 IEEE Aerospace Conference, 2008: 1– 8.
    [116]Jauffret, C.; Pillon, D.; Pignol, A.-C. Bearings-only TMA without observer maneuver. 2008 11th International Conference on Information Fusion, 2008: 1– 8.
    [117]Zhong Liu, Yi Qu, Chao Mao. Research of aerial maneuvering platform passive tracking based on photoelectron. 9th International Conference on Signal Processing, 2008: 2900– 2904.
    [118]Laneuville, D. Bearings-only TMA on manoeuvring target a Gaussian mixture approach. 2008 IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications, 2008: 129– 136.
    [119]Ho, K.C.; Chan, Y.T. Geometric-Polar Tracking From Bearings-Only and Doppler-Bearing Measurements. IEEE Transactions on Signal Processing, 2008, 56(11) : 5540– 5554.
    [120]Rao, S.K.; Babu, V.S. Unscented Kalman Filter with Application to Bearings-Only PassiveManoeuvring Target Tracking. International Conference on Signal Processing, Communications and Networking, 2008. ICSCN '08: 219– 224.
    [121]Xinpu Deng, Qiang Wang, Yiyu Zhou. Motion analysis of observer for bearings-only passive location and tracking. International Conference on Information and Automation, 2008. ICIA 2008: 850– 853.
    [122]Zhigang Xu, Andong Sheng, Zhi Guo.The Analysis of the Unobservable Criteria on the Single Platform Bearings-Only Target Tracking System. IEEE International Conference on Networking, Sensing and Control, 2008. ICNSC 2008: 1008 - 1013.
    [123]Ulker, Y.; Gunsel, B.; Kirbiz, S. A multiple model structure for tracking by variable rate particle filters. 19th International Conference on Pattern Recognition, 2008. ICPR 2008: 1- 4.
    [124]Laneuville, D.; Jauffret, C. Recursive Bearings-Only TMA via Unscented Kalman Filter: Cartesian vs. Modified Polar Coordinates. 2008 IEEE Aerospace Conference, 2008: 1- 11.
    [125]Sathyan T, Sinha A. An algorithm for multitarget tracking with multiple asynchronous bearings-only sensors. 12th International Conference on Information Fusion, 2009. FUSION '09: 1807– 1814.
    [126]Liu Xiaohua, Xiu Jianjuan, Wang Guohong. Passive tracking algorithm of single sensor based on multi-hypothesis unscented Kalman filter. 2009 IET International Radar Conference, 2009: 1– 4.
    [127]Jauffret C, Pillon D, Pignol A-C. Leg-by-leg bearings-only TMA without observer maneuver. 12th International Conference on Information Fusion, 2009. FUSION '09: 2036– 2043.
    [128]Xuezhi Wang, Morelande M, Moran B. Target Motion Analysis Using Single Sensor Bearings-Only Measurements. 2nd International Congress on Image and Signal Processing, 2009. CISP '09 : 1– 6.
    [129]Hongrui Li, Li Chen, Andong Sheng. Two-step modeling and observability for bearings-only tracking. International Conference on Mechatronics and Automation (ICMA 2009),2009: 691– 695.
    [130]Hoffmann G. M, Tomlin C. J. Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters. IEEE Transactions on Automatic Control,2010,55(1) : 32 -47.
    [131]Yu Hua,Wu Wen-Quan,Liu Zhong. Observer Trajectory Optimization of Maneuvering Target for Bearings-only Tracking. 2010 International Conference of Information Science and Management Engineering (ISME), Vol. 2 : 207 - 211.
    [132]Jauffret C, Pillon D, Pignol A-C. Bearings-Only Maneuvering Target Motion Analysis from aNonmaneuvering Platform IEEE Transactions on Aerospace and Electronic Systems, 2010,46(4) : 1934 -1949.
    [133]Pignol Annie-Claude, Jauffret Claude, Pillon Denis. A statistical fusion for a leg-by-leg bearings-only TMA without observer maneuver. 2010 13th Conference on Information Fusion (FUSION), 2010: 1- 8.
    [134]Yun Jun Zhang, Guo Zhong Xu. Bearings-Only Target Motion Analysis via Instrumental Variable Estimation. IEEE Transactions on Signal Processing, 2010, 58(11): 5523-5533.
    [135]Yinfei Fu, Zhi Tian. Cramer–Rao Bounds for Hybrid TOA/DOA-Based Location Estimation in Sensor Networks. IEEE Signal Processing Letters, 2009, 16(8) : 655 - 658.
    [136]Fei Linghan, Yin Jinrong, XuBing, Ma Weirong. Passive Location Using TDOA Measurements in Four Sites. International Conference on Radar, 2006. CIE '06: 1 - 4.
    [137]Kai Yang, Jianping An, Zhan Xu, Xiangyuan Bu. A Generalized Total Least-Squares Algorithm for Hyperbolic Location. 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08: 1- 4.
    [138]Gillette, M.D.; Silverman, H.F. A Linear Closed-Form Algorithm for Source Localization from Time-Differences of Arrival. IEEE Signal Processing Letters, 2008 , 15: 1 - 4.
    [139]Kai Yang, Jianping An, Xiangyuan Bu, Gangcan Sun. Constrained Total Least-Squares Location Algorithm Using Time-Difference-of-Arrival Measurements. IEEE Transactions on Vehicular Technology, 2010, 59(3) : 1558- 1562.
    [140]Guaning Su, Morf M. The signal subspace approach for multiple wide-band emitter location. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983, 31(6) : 1502 - 1522.
    [141]Cadzow, J.A. Multiple source location-the signal subspace approach. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(7) : 1110– 1125.
    [142]Zhang-Xin Chen, He-Wen Wei, Qun Wan, Shang-Fu Ye, Wan-Lin Yang. A Supplement to Multidimensional Scaling Framework for Mobile Location: A Unified View. IEEE Transactions on Signal Processing, 2009, 57(5) : 2030– 2034.
    [143]Cheung, K.W.; So, H.C. A multidimensional scaling framework for mobile location using time-of-arrival measurements: Part: 1. IEEE Transactions on Signal Processing, 2005, 53(2) : 460– 470.
    [144]Ostmann T K,Bell A E. A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks.IEEE Communications Letters,2001,5(8):343—345.
    [145]Ryosuke Fujiwara,Kenichi Mizugaki,Tatsuo Nakagawa.TOA/TDOA Hybrid RelativePositioning System Using UWB—IR.IEEE Radio and Wireless Symposium,2009,l8(22):679—682.
    [146]何伟俊,周非.基于粒子滤波的TOA/TDOA融合定位算法研究,传感技术学报,2010,23(3):404-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700