非线性通信信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,非线性科学,尤其是混沌科学在通信与电子工程领域中得到了广泛的关注。在其诸多应用中,最典型最重要的应用之一是基于混沌理论来构造多种多样的通信系统,如混沌跳频通信系统,基于非线性动力系统同步的通信系统以及混沌直扩通信系统等。尽管这些领域的研究工作已经开展了多年,但其中仍然存在很多有待进一步深入研究的问题,并且随着这些领域中研究工作的逐渐深入,也带来了很多新的富有挑战性的问题,如针对混沌通信的对抗等。本论文的工作在混沌通信以及混沌通信对抗这两个方面均有所涉及,所研究的主要内容及其创新点包括:
     1.为了对抗具有高跳速的混沌跳频通信系统,作者提出了两种新的混沌时间序列单步预测算法,包括基于Bernstein多项式以及基于Legendre多项式的自适应预测算法,这两种模型均具有良好的建模能力,能对各种典型的混沌序列进行建模和预测,由于采用了收敛速度较快的递推最小二乘算法,这两种方法的建模速度也较快,适合于对短数据进行实时预测的场合;此外,当混沌跳频通信系统的跳速很高时,仅作单步预测则干扰机的工作范围十分有限,因此需要作多步预测以扩大干扰机的有效工作范围。针对这一问题,作者对基于一维迭代混沌映射构造的跳频码提出了一种改善多步预测效果的算法,其思想是对传统预测方法的预测轨道进行修正,将一条预测轨道修正为两条预测序列,如果同时按照两条修正的预测序列进行跳频干扰,将得到比按照传统方法给出的一条预测轨道进行跳频干扰更好的效果。
     2.为了增强基于非线性动力系统同步的通信系统的抗噪声性能或保密性能,作者提出了若干种新颖的非线性动力系统同步方案,这些方案包括:非线性时滞动力系统的一类广泛的同步模型以及非线性耦合动力系统的切响应模型。前者涵盖了非常广泛的动力系统,由之可以构造出具有不同动力学行为的同步系统,如一般延迟响应系统以及一般预测响应系统,这两种系统中均含有一个待定函数,选择不同的函数就将得到不同类型的系统,作者对这两种系统分别选择了一个特殊的函数,并对得到的两个特殊系统做了详细的研究,它们分别是减速延迟响应系统与加速预测响应系统,它们均有着与传统同步系统截然不同的全新的变速同步性质,并且理论分析证明它们在大多数情况下都对噪声的干扰以及参数失配有着良好的鲁棒性,此外作者还构造了一种快速收敛的一般延迟响应系统,以减少其达到同步的过渡时间;后者,即切响应模型,也有着全新的动力学行为,该模型使得响应系统的状态逐渐接近驱动系统状态的一阶导数,并且在渐近意义下,可以把响应系统的相空间视为驱动系统相空间的非线性扭曲,这种同步方式比完全同步更加复杂。以上两类同步系统均可用于基于非线性动力系统同步的通信系统以增强其抗噪声或保密的性能。
     3.为了破译利用一维迭代混沌映射产生扩频码的混沌直扩通信系统,作者提出的思路分为两个步骤:(1)从接收数据中恢复出信息码1与-1各自对应的动力学规律;(2)判决接收到的两个相邻时刻数据点背后所遵循的动力学规律。在论文中,首先对步骤(2)进行了研究,提出了一种新的混沌直扩通信的信息码半盲估计算法,该算法在混沌动力学方程已知但精确混沌扩频序列未知的条件下,把信息码的估计问题转换为对接收的两个相邻时刻数据背后的潜在动力学规律进行判决的问题,利用概率统计理论推导了判决表达式,仿真表明,即使缺少了精确扩频码以及扩频增益等信息,利用该方法也可在负信噪比的环境中有效估计出信息码,且估计性能总体上随着信噪比的提高而改善。
     4.上述第3点中的步骤(1)是最具挑战性的问题,但目前还没有完全解决,作者针对一个相关的稍简单的问题进行了研究,以期为此工作的进一步研究打下基础。作者研究了含噪混沌序列的动力学规律的提取问题,该问题与步骤(1)中的问题的区别在于没有考虑信息码的引入所带来的影响。解决的基本思路是将一维迭代混沌映射的定义域均匀划分为充分小的区间,然后取每个小区间的中点为代表点,最后估计出混沌映射的函数在定义域内的代表点处的取值。该算法首先将观测的相邻时刻的两个含噪混沌序列值描述为一个二维随机向量的观测值,然后利用这个二维随机向量落入特殊区域的概率及其特殊的条件数学期望建立起待估计值的线性方程组,最后采用正则化方法求解线性方程组以得到稳定的数值解。算法除了估计出混沌映射的函数在定义域内的代表点处的取值外,也给出了混沌的自然不变密度在代表点处的取值。仿真表明,该方法即使在负信噪比的环境中也能有效工作并且当参数选择恰当时,方法对一维迭代混沌映射的变化以及信噪比的变化具有一定的鲁棒性。该算法除了为继续进行第3点中的步骤(1)的研究提供了一个基础外,也具有独立的科研意义,即给出了一种从低信噪比的含噪混沌序列中估计动力学方程以及自然不变密度这些重要信息的方法。
Over the past two decades, the nonlinear science, especially the science of chaos has attracted a lot attention in the fields of communication and electronic engineering. Among many applications of chaotic theory, one of the most typical and important applications is the construction of various communication systems based on chaotic theory. These kinds of communication systems involve, for example, the frequency hopping communication system based on chaos, the communication system based on synchronization of nonlinear dynamical systems and the chaotic direct-sequence spread-spectrum (CD3S) communication system. Though the research in these areas has been conducted for many years, quite a lot of problems still need to be further studied. Besides, in-depth study in these fields has also given rise to many new and challenging problems such as chaotic communication countermeasure. This dissertation deals with chaotic communication as well as chaotic communication countermeasure simultaneously. The main research topics and the related new results are listed as follows.
     1. For the countermeasure of the high-speed frequency hopping communication system based on chaos, two new approaches of one-step-ahead prediction of chaotic time series are proposed. They are adaptive approaches based on Bernstein polynomial and Legendre polynomial respectively. Since both polynomial models have good modeling capabilities, the proposed approaches can model and predict various typical chaotic series. Due to the use of recursive least-squares algorithm with fast convergence, the speeds of modeling of these two approaches are fast. This makes the approaches can be applied to predict short record time series in real time. When the frequency hop rate of frequency hopping communication system is very high, the effective interference range of a jammer is fairly limited if only one-step-ahead prediction is made. Therefore, multi-step-ahead prediction is needed to expand the effective interference range of a jammer. Under this background, a method is suggested to improve the prediction precision of multi-step-ahead prediction for the frequency-hopping sequence generated by a one-dimensional chaotic map. The basic idea of this method is to modify the single predicted trajectory of the traditional method appropriately to obtain two predicted sequences. Interfering with the frequency hopping communication system according to these two predicted sequences provides better performance than utilizing the single predicted trajectory of the traditional method to interfere.
     2. To enhance the anti-noise performance or the security of communication system based on synchronization of nonlinear dynamical systems, some new synchronization schemes of nonlinear dynamical systems are proposed. These schemes are a broad class of synchronization schemes of nonlinear time-delay dynamical systems and the tangent response scheme in coupled nonlinear systems. The former covers a very wide range of dynamical systems and synchronization schemes capable of generating various dynamical behaviors can be constructed according to it. For example, the general lag response scheme and the general anticipating response scheme are such schemes. For each of these two general schemes, various specific schemes can be obtained by choosing a function to be determined in them. The decelerative lag response scheme, a specific case of the general lag response scheme, and the accelerative anticipating response scheme, a specific case of the general anticipating response scheme are studied in detail. They have new property of speed-changing synchronization which is completely different from the traditional synchronization schemes. Theoretical analyses demonstrate that, in most cases, they are robust against the disturbances as well as parameter mismatches. Further, a general lag response scheme with the property of fast convergence is proposed to reduce the transient time before synchronization is achieved. The later, i.e., the tangent response scheme in coupled nonlinear systems makes the state of the response system asymptotically approach the first-order derivative of the state of the driver, which is a completely new dynamical behavior. In the asymptotic sense, the state space of the response system can be viewed as a distorted version of the one of the drive system, which makes the synchronization mode of this scheme more complex than the one of complete synchronization scheme. The above-mentioned two synchronization schemes can be used to enhance the anti-noise performance or the security of communication system based on synchronization of nonlinear dynamical systems.
     3. For breaking a CD3S communication system whose spreading sequence is generated by a one-dimensional chaotic map, a two-step method is proposed, where step (1) is to recover the dynamical rules corresponding to information symbol 1 and -1 respectively from the receiving data and step (2) is to decide the underlying dynamical rule of two receiving data at adjacent times. In this dissertation, the step (2) is studied first. A new semi-blind estimation algorithm for information symbols of CD3S communication is proposed. Under the condition that the chaotic dynamical rule is known and the exact chaotic spreading sequence is unknown, the proposed algorithm changes the problem of estimation of information symbols into the problem of decision of the underlying dynamical rule of two receiving data at adjacent times. A decision expression is derived according to the theory of probability and statistics. Numerical simulations demonstrate that, though the exact spreading sequence and the spreading gain are unknown, the proposed algorithm can estimate information symbols effectively even when the signal-to-noise ratio (SNR) is negative and generally, the higher the SNR is, the better this algorithm performs.
     4. The step (1) mentioned in point 3 above is the most challenging problem, which has not been solved completely yet. A related but relatively simpler problem is studied to lay the foundation for a further investigation of the step (1). This related problem is to estimate the dynamical rule from noisy chaotic series. The difference between this problem and the one in the step (1) lies in that the information symbols are not considered here. The basic idea to solve this problem is first to divide the domain of the one-dimensional chaotic map into subintervals of uniform length which is sufficiently small, second to take the midpoint of every subinterval as a representative point, and third to estimate the function values of the chaotic map at these representative points. The procedure of the proposed algorithm is outlined as follows: first regard two observations at adjacent times in the noisy chaotic series as an observation of a two-dimensional random vector; then establish the linear equations of the values to be estimated by utilizing the probability that the random vector falls into a special area and a special conditional expectation of the random vector; finally the regularization methods are applied to stabilize the numerical solutions of the linear equations. The proposed algorithm estimates the function values of the chaotic map at the representative points as well as the values of the natural invariant density at the same representative points. Numerical simulations demonstrate that this algorithm works effectively even when the SNR is negative and it is robust to changes of one-dimensional chaotic map and changes of SNR when the parameters are chosen appropriately. This algorithm lays the foundation for a further investigation of the step (1) and besides that, it has independent significance for providing a method for the estimation of the dynamical rule and the natural invariant density from noisy chaotic series when the SNR is low.
引文
[1] Marquis de Laplace. A philosophical essay on probabilities (F. W. Truscott, F. L. Emory译). New York: Dover Publications, 1951, 4
    [2]郝柏林.混沌与分形——郝柏林科普文集.上海:上海科学技术出版社, 2004, 15, 73-78
    [3] Florin Diacu, Philip Holmes.天遇——混沌与稳定性的起源(王兰宇译).上海:上海科技教育出版社, 2001, 25, 54-55
    [4] E. N. Lorenz. Deterministic nonperiodic flow. J. Atm. Sci., 1963, 20(2): 130-141
    [5] M. Hénon. A two-dimensional mapping with a strange attractor. Commun. math. Phys., 1976, 50(1): 69-77
    [6] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 1976, 261(5560): 459-467
    [7] D. Ruelle, F. Takens. On the nature of turbulence. Commun. math. Phys., 1971, 20: 167-192
    [8] T. Y. Li, J. A. Yorke. Period three implies chaos. The American Mathematical Monthly, 1975, 82(10): 985-992
    [9] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 1978, 19(1): 25-52
    [10] B. B. Mandelbrot. The fractal geometry of nature. New York: Freeman, 1982, 1
    [11] N. H. Packard, J. P. Crutchfield, J. D. Farmer, et al.. Geometry from a time series. Phys. Rev. Lett., 1980, 45(9): 712-716
    [12] L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 1990, 64(8): 821-824
    [13] E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos. Phys. Rev. Lett., 1990, 64(11): 1196-1199
    [14] E. Ott. Chaos in dynamical systems (Second edition). Cambridge: Cambridge University Press, 2002, 57, 139, 140, 32, 52, 53, 55, 56, 57
    [15] P. Stoica, R. Moses.现代信号谱分析(吴仁彪,韩萍,冯青,等译).北京:电子工业出版社, 2007, 41
    [16]李月,杨宝俊.混沌振子检测引论.北京:电子工业出版社, 2004, 55-56
    [17]聂春燕.混沌系统与弱信号检测.北京:清华大学出版社, 2009, 63
    [18] J. D. Farmer, J. J. Sidorowich. Predicting chaotic time series. Phys. Rev. Lett., 1987, 59(8): 845-848
    [19] E. S. Chng, S. Chen, B. Mulgrew. Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Trans. Neural Netw., 1996, 7(1): 190-194
    [20] D. S. K. Karunasinghe, S. Y. Liong. Chaotic time series prediction with a global model: artificial neural network. Journal of Hydrology, 2006, 323(1-4): 92-105
    [21] M. Small, C. K. Tse. Minimum description length neural networks for time series prediction. Phys. Rev. E, 2002, 66: 066701 1-12
    [22] M. Abel, K. Ahnert, J. Kurths, et al.. Additive nonparametric reconstruction of dynamical systems from time series. Phys. Rev. E, 2005, 71: 015203(R) 1-4
    [23] Z. W. Shi, M. Han. Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw., 2007, 18(2): 359-372
    [24] M. Giona, F. Lentini, V. Cimagalli. Functional reconstruction and local prediction of chaotic time series. Phys. Rev. A, 1991, 44(6): 3496-3502
    [25] J. Jiménez, J. A. Moreno, G. J. Ruggeri. Forecasting on chaotic time series: a local optimal linear-reconstruction method. Phys. Rev. A, 1992, 45(6): 3553-3558
    [26] Z. Liu, X. L. Ren, Z. W. Zhu. Equivalence between different local prediction methods of chaotic time series. Phys. Lett. A, 1997, 227(1-2): 37-40
    [27] D. Kugiumtzis, O. C. Lingj?rde, N. Christophersen. Regularized local linear prediction of chaotic time series. Physica D, 1998, 112(3-4): 344-360
    [28] A. K. Alparslan, M. Sayar, A. R. Atilgan. State-space prediction model for chaotic time series. Phys. Rev. E, 1998, 58(2): 2640-2643
    [29] X. F. Gong, C. H. Lai. Improvement of the local prediction of chaotic time series. Phys. Rev. E, 1999, 60(5): 5463-5468
    [30] A. W. Jayawardena, W. K. Li, P. Xu. Neighbourhood selection for local modelling and prediction of hydrological time series. Journal of Hydrology, 2002, 258(1-4): 40-57
    [31] H. Kantz, T. Schreiber. Nonlinear time series analysis(影印版).北京:清华大学出版社, 2001, 208-215, 175, 51-56, 154-171
    [32] H. C. Li, J. S. Zhang. Local prediction of chaotic time series based on support vector machine. Chin. Phys. Lett., 2005, 22(11): 2776-2779
    [33] Q. F. Meng, Y. H. Peng. A new local linear prediction model for chaotic time series. Phys. Lett. A, 2007, 370(5-6): 465-470
    [34]简相超,郑君里.一种正交多项式混沌全局建模方法.电子学报, 2002, 30(1): 76-78
    [35] S. Mukherjee, E. Osuna, F. Girosi. Nonlinear prediction of chaotic time series using support vector machines. Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, 1997, 511-520
    [36] K. R. Müller, A. J. Smola, G. R?tsch, et al.. Predicting time series with support vector machines. Proceedings of the 7th International Conference on Artificial Neural Networks (ICANN’97), 1997, 999-1004
    [37] U. Thissen, R. van Brakel, A. P. de Weijer, et al.. Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 2003, 69(1-2): 35-49
    [38] H. Liu, D. Liu, L. F. Deng. Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines. Chin. Phys., 2006, 15(6): 1196-1200
    [39]张家树,党建亮,李恒超.时空混沌序列的局域支持向量机预测.物理学报, 2007, 56(1): 67-77
    [40]张军峰,胡寿松.基于多重核学习支持向量回归的混沌时间序列预测.物理学报, 2008, 57(5): 2708-2713
    [41] D. S. Broomhead, D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems, 1988, 2: 321-355
    [42] T. Poggio, F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 1990, 78(9): 1481-1497
    [43] J. Park, I. W. Sandberg. Universal approximation using radial-basis-function networks. Neural Computation, 1991, 3: 246-257
    [44] J. Park, I. W. Sandberg. Approximation and radial-basis-function networks. Neural Computation, 1993, 5(2): 305-316
    [45] H. Leung, T. Lo, S. C. Wang. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Netw., 2001, 12(5): 1163-1172
    [46]李军,刘君华.一种新型广义RBF神经网络在混沌时间序列预测中的研究.物理学报, 2005, 54(10): 4569-4577
    [47] C. Harpham, C. W. Dawson. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing, 2006, 69(16-18): 2161-2170
    [48]张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测.物理学报, 2007, 56(2): 713-719
    [49] J. S. Zhang, X. C. Xiao. Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett., 2000, 17(2): 88-90
    [50] M. Han, J. H. Xi, S. G. Xu, et al.. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process., 2004, 52(12): 3409-3416
    [51]韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测.物理学报, 2007, 56(1): 43-50
    [52] Q. L. Ma, Q. L. Zheng, H. Peng, et al.. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chin. Phys. B, 2008, 17(2): 536-542
    [53] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, 2(4): 303-314
    [54] K. Hornik, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366
    [55] K. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural Networks, 1989, 2(3): 183-192
    [56] K. Hornik, M. Stinchcombe, H. White. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 1990, 3(5): 551-560
    [57]张家树,肖先赐.混沌时间序列的Volterra自适应预测.物理学报, 2000, 49(3): 403-408
    [58]张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测.物理学报, 2000, 49(7): 1221-1227
    [59]张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器.物理学报, 2001, 50(7): 1248-1254
    [60]甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波.物理学报, 2003, 52(5): 1096-1101
    [61]甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波.物理学报, 2003, 52(5): 1102-1107
    [62]甘建超,肖先赐.混沌时间序列基于邻域点的非线性多步自适应预测.物理学报, 2003, 52(12): 2995-3001
    [63] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press, 2001, 1
    [64] H. Fujisaka, T. Yamada. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys., 1983, 69(1): 32-47
    [65] T. Yamada, H. Fujisaka. Stability theory of synchronized motion in coupled-oscillator systems. II-the mapping approach. Prog. Theor. Phys., 1983, 70(5): 1240-1248
    [66] T. Yamada, H. Fujisaka. Stability theory of synchronized motion in coupled-oscillator systems. III-mapping model for continuous system. Prog. Theor. Phys., 1984, 72(5): 885-894
    [67] H. Fujisaka, T. Yamada. Stability theory of synchronized motion in coupled-oscillator systems. IV-instability of synchronized chaos and new intermittency. Prog. Theor. Phys., 1986, 75(5): 1087-1104
    [68] V. S. Afraimovich, N. N. Verichev, M. I. Rabinovich. Stochastic synchronization of oscillation in dissipative systems. Radiophysics and Quantum Electronics, 1986, 29(9): 795-803
    [69] T. L. Carroll. Synchronizing chaotic systems using filtered signals. Phys. Rev. E, 1994, 50(4): 2580-2587
    [70] T. Kapitaniak. Synchronization of chaos using continuous control. Phys. Rev. E, 1994, 50(2): 1642-1644
    [71] J. H. Peng, E. J. Ding, M. Ding, et al.. Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett., 1996, 76(6): 904-907
    [72] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett., 1997, 78(22): 4193-4196
    [73] E. Bai, K. E. Lonngren. Synchronization and control of chaotic systems. Chaos, Solitons & Fractals, 1999, 10(9): 1571-1575
    [74] R. Femat, G. Solís-Perales. On the chaos synchronization phenomena. Phys. Lett. A, 1999, 262(1): 50-60
    [75] Y. Liu, P. Davis. Dual synchronization of chaos. Phys. Rev. E, 2000, 61(3): R2176-R2179
    [76] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, et al.. Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett., 2001, 87(15): 154101 1-3
    [77] M. Feki. Observer-based exact synchronization of ideal and mismatched chaotic systems. Phys. Lett. A, 2003, 309(1-2): 53-60
    [78] C. G. Li, X. F. Liao, J. B. Yu. Synchronization of fractional order chaotic systems. Phys. Rev. E, 2003, 68(6): 067203 1-3
    [79] E. A. Rogers, R. Kalra, R. D. Schroll, et al.. Generalized synchronization of spatiotemporal chaos in a liquid crystal spatial light modulator. Phys. Rev. Lett., 2004, 93(8): 084101 1-4
    [80] E. M. Shahverdiev, K. A. Shore. Generalized synchronization in time-delayed systems. Phys. Rev. E, 2005, 71(1): 016201 1-6
    [81] S. Sano, A. Uchida, S. Yoshimori, et al.. Dual synchronization of chaos in Mackey-Glass electronic circuits with time-delayed feedback. Phys. Rev. E, 2007, 75(1): 016207 1-6
    [82] D. C. Yu, U. Parlitz. Partial synchronization of chaotic systems with uncertainty. Phys. Rev. E, 2008, 77(6): 066208 1-9
    [83] Q. J. Zhang, J. A. Lu. Passive control and synchronization of hyperchaotic Chen system. Chin. Phys. B, 2008, 17(2): 492-497
    [84] G. L. Cai, S. Zheng, L. X. Tian. Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system. Chin. Phys. B, 2008, 17(7): 2412-2419
    [85] H. G. Zhang, T. D. Ma, J. Fu, et al.. Robust lag synchronization between two different chaotic systems via dual-stage impulsive control. Chin. Phys. B, 2009, 18(9): 3751-3757
    [86] U. Parlitz, L. O. Chua, L. Kocarev, et al.. Transmission of digital signals by chaotic synchronization. Int. J. Bifurc. Chaos, 1992, 2(4): 973-977
    [87] L. Kocarev, U. Parlitz. General Approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 1995, 74(25): 5028-5031
    [88] U. Parlitz, L. Kocarev, T. Stojanovski, et al.. Encoding messages using chaotic synchronization. Phys. Rev. E, 1996, 53(5): 4351-4361
    [89] T. L. Liao, S. H. Tsai. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons & Fractals, 2000, 11(9): 1387-1396
    [90] J. R. Terry, G. D. VanWiggeren. Chaotic communication using generalized synchronization. Chaos, Solitons & Fractals, 2001, 12(1): 145-152
    [91] M. Feki. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals, 2003, 18(1): 141-148
    [92] J. Q. Lu, J. D. Cao. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos, 2005, 15(4): 043901 1-10
    [93] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, et al.. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995, 51(2): 980-994
    [94] L. Kocarev, U. Parlitz. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 1996, 76(11): 1816-1819
    [95] H. D. I. Abarbanel, N. F. Rulkov, M. M. Sushchik. Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E, 1996, 53(5): 4528-4535
    [96] R. Brown. Approximating the mapping between systems exhibiting generalized synchronization. Phys. Rev. Lett., 1998, 81(22): 4835-4838
    [97] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 1996, 76(11): 1804-1807
    [98] U. Parlitz, L. Junge, W. Lauterborn, et al.. Experimental observation of phase synchronization. Phys. Rev. E, 1996, 54(2): 2115-2117
    [99] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, et al.. Phase synchronization of chaotic oscillators by external driving. Physica D, 1997, 104(3-4): 219-238
    [100] H. U. Voss. Anticipating chaotic synchronization. Phys. Rev. E, 2000, 61(5): 5115-5119
    [101] C. Masoller. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett., 2001, 86(13): 2782-2785
    [102] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Inverse anticipating chaos synchronization. Phys. Rev. E, 2002, 66(1): 017204 1-4
    [103] S. Boccaletti, D. L. Valladares. Characterization of intermittent lag synchronization. Phys. Rev. E, 2000, 62(5): 7497-7500
    [104] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Lag synchronization in time-delayed systems. Phys. Lett. A, 2002, 292(6): 320-324
    [105] R. Mainieri, J. Rehacek. Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett., 1999, 82(15): 3042-3045
    [106] D. L. Xu. Control of projective synchronization in chaotic systems. Phys. Rev. E, 2001, 63(2): 027201 1-4
    [107] G. H. Li. Projective synchronization of chaotic system using backstepping control. Chaos, Solitons & Fractals, 2006, 29(2): 490-494
    [108] L. M. Pecora, T. L. Carroll, G. A. Johnson, et al.. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos, 1997, 7(4): 520-543
    [109] J. P. Fran?oise, G. L. Naber, T. S. Tsun.数学物理学百科全书7,无序系统;动力系统.北京:科学出版社, 2008, 433-446
    [110] R. L. Peterson, R. E. Ziemer, D. E. Borth.扩频通信导论(沈丽丽,侯永宏,马兰,等译).北京:电子工业出版社, 2006, 28, 4-17, 33-74
    [111]牟青.直接序列扩频信号的截获分析研究: [博士学位论文].成都:电子科技大学, 2010
    [112]胡进峰,郭静波.一种破译混沌直接序列扩频保密通信的方法.物理学报, 2008, 57(3): 1477-1484
    [113] J. F. Hu, J. B. Guo. Breaking a chaotic secure communication scheme. Chaos, 2008, 18(1): 013121 1-7
    [114] J. R. Munkres.拓扑学(原书第2版) (熊金成,吕杰,谭枫译).北京:机械工业出版社, 2006, 58, 60, 75, 76, 99, 78, 80, 68, 81, 173, 111, 125, 113
    [115]余庆余,范先令.微分形式与度数.兰州:兰州大学出版社, 1989, 6, 9
    [116]陈省身,陈维桓.微分几何讲义(第二版).北京:北京大学出版社, 2006, 3
    [117]张锦炎,钱敏.微分动力系统导引.北京:北京大学出版社, 2000, 15, 21
    [118]张筑生.微分动力系统原理.北京:科学出版社, 1987, 2-3, 12
    [119]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2005, 25-27
    [120] J. Banks, J. Brooks, G. Cairns, et al.. On Devaney's definition of chaos. The American Mathematical Monthly, 1992, 99(4): 332-334
    [121] R. C. Robinson.动力系统导论(韩茂安,邢业朋,毕平译).北京:机械工业出版社, 2007, 362-375, 227
    [122] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Tran. Moscow Math. Soc., 1968, 19: 197-231
    [123] H. O. Peitgen, H. Jürgens, D. Saupe.混沌与分形——科学的新疆界(第2版) (田逢春主译).北京:国防工业出版社, 2008, 469, 138, 139, 141, 477, 478, 483, 484, 485, 478
    [124] V. I. Arnold.常微分方程(沈家骐,周宝熙,卢亭鹤译).北京:科学出版社, 2003, 205
    [125] B. B. Mandelbrot. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156(3775): 636-638
    [126] K. Falconer.分形几何:数学基础及其应用(第2版) (曾文曲译).北京:人民邮电出版社, 2007, 26-35
    [127] A. Papoulis, S. U. Pillai.概率、随机变量与随机过程(第4版) (保铮,冯大政,水鹏朗译).西安:西安交通大学出版社, 2004, 511, 512
    [128] G. P. Williams. Chaos theory tamed. Washington, D.C.: Joseph Henry Press, 1999, 305-312
    [129] H. G. Schuster.混沌学引论(第2版) (朱鋐雄,林圭年译).成都:四川教育出版社, 2010, 116-118
    [130] P. Grassberger, I. Procaccia. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A, 1983, 28(4): 2591-2593
    [131] A. Cohen, I. Procaccia. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A, 1985, 31(3): 1872-1882
    [132]刘式达,梁福明,刘式适,等.自然科学中的混沌和分形.北京:北京大学出版社, 2004, 30, 31-32
    [133]韩敏.混沌时间序列预测理论与方法.北京:中国水利水电出版社, 2007, 238, 99-100
    [134]李文化,王智顺,何振亚.用于跳频多址通信的混沌跳频码.通信学报, 1996, 17(6): 17-21
    [135]凌聪,孙松庚. Logistic映射跳频序列.电子学报, 1997, 25(10): 79-81
    [136]凌聪,孙松庚.用于跳频码分多址通信的混沌跳频序列.电子学报, 1999, 27(1): 67-69
    [137]甘良才,吴燕翔.基于混沌的宽间隔跳频序列.通信学报, 1999, 20(4): 72-76
    [138]米良,唐刚.一种混沌跳频序列构造方法.通信学报, 2005, 26(12): 69-74, 80
    [139] H. Caglar, A. N. Akansu. A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation. IEEE Trans. Signal Process., 1993, 41(7): 2314-2321
    [140] C. J. Zarowski. Comments on regular half-band filter design via Bernstein polynomial expansions. 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Vol. 1: 477-480
    [141] J. Mayer. Enhancement of lossy compressed images by modeling with Bernstein polynomials. 2002 International Conference on Image Processing, Vol. 1: I-824 - I-827
    [142]闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法.物理学报, 2007, 56(9): 5111-5118
    [143]莫国端,刘开第.函数逼近论方法.北京:科学出版社, 2003, 11, 21, 22, 94, 97, 98, 102, 103
    [144]梁学章,李强.多元逼近.北京:国防工业出版社, 2005, 1-2
    [145]龚耀寰.自适应滤波(第二版)——时域自适应滤波和智能天线.北京:电子工业出版社, 2003, 95
    [146] H. Yan, P. Wei, X. C. Xiao. A method to improve the precision of chaotic time series prediction by using a non-trajectory. Chin. Phys. B, 2009, 18(8): 3287-3294
    [147] E. J. Kostelich, J. A. Yorke. Noise reduction in dynamical systems. Phys. Rev. A, 1988, 38(3): 1649-1652
    [148] J. D. Farmer, J. J. Sidorowich. Optimal shadowing and noise reduction. Physica D, 1991, 47(3): 373-392
    [149] R. Cawley, G. H. Hsu. Local-geometric-projection method for noise reduction in chaotic maps and flows. Phys. Rev. A, 1992, 46(6): 3057-3082
    [150] R. Cawley, G. H. Hsu. SNR performance of a noise reduction algorithm applied to coarsely sampled chaotic data. Phys. Lett. A, 1992, 166(3-4): 188-196
    [151] T. Sauer. A noise reduction method for signals from nonlinear systems. Physica D, 1992, 58(1-4): 193-201
    [152] E. J. Kostelich, T. Schreiber. Noise reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E, 1993, 48(3): 1752-1763
    [153] T. Schreiber, H. Kantz. Noise in chaotic data: diagnosis and treatment. Chaos, 1995, 5(1): 133-142
    [154] C. C. Strelioff, A. W. Hübler. Medium-term prediction of chaos. Phys. Rev. Lett., 2006, 96(4): 044101 1-4
    [155] C. M. Danforth, J. A. Yorke. Making forecasts for chaotic physical processes. Phys. Rev. Lett., 2006, 96(14): 144102 1-4
    [156] M. G. Rosenblum, J. Kurths, A. Pikovsky, et al.. Synchronization in noisy systems and cardiorespiratory interaction. IEEE Engineering in Medicine and Biology Magazine, 1998, 17(6): 46-53
    [157] C. Sch?fer, M. G. Rosenblum, H. H. Abel, et al.. Synchronization in the human cardiorespi- ratory system. Phys. Rev. E, 1999, 60(1): 857-870
    [158] S. Rzeczinski, N. B. Janson, A. G. Balanov, et al.. Regions of cardiorespiratory synchronization in humans under paced respiration. Phys. Rev. E, 2002, 66(5): 051909 1-9
    [159] K. Kotani, K. Takamasu, Y. Ashkenazy, et al.. Model for cardiorespiratory synchronization in humans. Phys. Rev. E, 2002, 65(5): 051923 1-9
    [160] M. D. Prokhorov, V. I. Ponomarenko, V. I. Gridnev, et al.. Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E, 2003, 68(4): 041913 1-10
    [161] V. I. Ponomarenko, M. D. Prokhorov, A. B. Bespyatov, et al.. Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos, Solitons & Fractals, 2005, 23(4): 1429-1438
    [162] R. Bartsch, J. W. Kantelhardt, T. Penzel, et al.. Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett., 2007, 98(5): 054102 1-4
    [163] C. Hamann, R. P. Bartsch, A. Y. Schumann, et al.. Automated synchrogram analysis applied to heartbeat and reconstructed respiration. Chaos, 2009, 19(1): 015106 1-8
    [164] T. L. Carroll, L. M. Pecora. Synchronizing chaotic circuits. IEEE Trans. Circuits Syst., 1991, 38(4): 453-456
    [165] K. M. Cuomo, A. V. Oppenheim, S. H. Strogatz. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II, 1993, 40(10): 626-633
    [166] A. Kittel, J. Parisi, K. Pyragas. Generalized synchronization of chaos in electronic circuit experiments. Physica D, 1998, 112(3-4): 459-471
    [167] H. U. Voss. Real-time anticipation of chaotic states of an electronic circuit. Int. J. Bifurc. Chaos, 2002, 12(7): 1619-1625
    [168] T. Yang, L. O. Chua. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I, 1997, 44(10): 976-988
    [169] T. L. Liao, N. S. Huang. An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans. Circuits Syst. I, 1999, 46(9): 1144-1150
    [170] M. Boutayeb, M. Darouach, H. Rafaralahy. Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I, 2002, 49(3): 345-349
    [171] C. C. Wang, J. P. Su. A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos, Solitons & Fractals, 2004, 20(5): 967-977
    [172] A. N. Miliou, I. P. Antoniades, S. G. Stavrinides, et al.. Secure communication by chaotic synchronization: robustness under noisy conditions. Nonlinear Analysis: Real World Applications, 2007, 8(3): 1003-1012
    [173]李辉.混沌数字通信.北京:清华大学出版社, 2006, 38
    [174] G.álvarez, F. Montoya, G. Pastor, et al.. Breaking a secure communication scheme based on the phase synchronization of chaotic systems. Chaos, 2004, 14(2): 274-278
    [175] G.álvarez, S. J. Li, F. Montoya, et al.. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos, Solitons & Fractals, 2005, 24(3): 775-783
    [176] K. Pyragas. Synchronization of coupled time-delay systems: analytical estimations. Phys. Rev. E, 1998, 58(3): 3067-3071
    [177] M. J. Bünner, W. Just. Synchronization of time-delay systems. Phys. Rev. E, 1998, 58(4): R4072-R4075
    [178] C. D. Li, X. F. Liao, K. W. Wong. Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D, 2004, 194(3-4): 187-202
    [179] M. Y. Chen, J. Kurths. Synchronization of time-delayed systems. Phys. Rev. E, 2007, 76(3): 036212 1-5
    [180] A. A. Budini. Langevin approach to synchronization of hyperchaotic time-delay dynamics. J. Phys. A: Math. Theor., 2008, 41(44): 445001 1-19
    [181] D. Li, Z. G. Zheng. Multiple attractors and generalized synchronization in delayed Mackey-Glass systems. Chin. Phys. B, 2008, 17(11): 4009-4013
    [182] H. Yan, P. Wei, X. C. Xiao. General lag response in coupled dynamical systems. 2010 International Symposium on Image Analysis and Signal Processing, 369-372
    [183] H. U. Voss. A backward time shift filter for nonlinear delayed-feedback systems. Phys. Lett. A, 2001, 279(3-4): 207-214
    [184] K. Ikeda, K. Matsumoto. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, 1987, 29(1-2): 223-235
    [185] H. Yan, P. Wei, X. C. Xiao. General anticipating response in coupled dynamical systems. Chaos, 2009, 19(2): 023122 1-7
    [186] R. Brown, L. Kocarev. A unifying definition of synchronization for dynamical systems. Chaos, 2000, 10(2): 344-349
    [187] H. Yan, P. Wei, X. C. Xiao. Tangent response in coupled dynamical systems. Chin. Phys. B, 2010, 19(9): 090501 1-9
    [188] H. J. Yu, Y. Z. Liu. Chaotic synchronization based on stability criterion of linear systems. Phys. Lett. A, 2003, 314(4): 292-298
    [189] D. P. Chantov. Modified linear-nonlinear decomposition method for chaotic synchronization. Phys. Lett. A, 2008, 372(36): 5783-5789
    [190] M. W. Hirsch, S. Smale, R. L. Devaney.微分方程、动力系统与混沌导论(第2版) (甘少波译).北京:人民邮电出版社, 2008, 87-92
    [191] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Massachusetts: Perseus Books, Reading, 1994, 333
    [192] U. Parlitz, S. Ergezinger. Robust communication based on chaotic spreading sequences. Phys. Lett. A, 1994, 188(2): 146-150
    [193] M. T. Heath.科学计算导论(第2版) (张威,贺华,冷爱萍译).北京:清华大学出版社, 2005, 299-300
    [194]刘会师,余重秀,尹霄丽,等.切比雪夫光混沌发生器的优化.物理学报, 2009, 58(4): 2231-2234
    [195] P. C. Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. Philadelphia: Society for Industrial and Applied Mathematics, 1998, 19, 21, 22, 122, 138-141
    [196] H. W. Engl, M. Hanke, A. Neubauer. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers, 1996, 134-140, 262-276, 166-176
    [197]肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社, 2003, 102-114
    [198] P. C. Hansen. Regularization tools version 4.1 (for Matlab version 7.3). http://www2.imm.dtu. dk/~pch/Regutools/regutools.html, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700