往复式压缩机的可靠性分析与数字化研究方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型机械产品广泛应用于国民经济的各个部门,它们的可靠性、经济性和安全性是一个国家机械工业发展状况和水平的标志。目前,国内安全生产的形势依然严峻。由于大型设备发生故障,而导致重大经济损失,甚至造成人身伤亡的严重事故,不胜枚举。同时,制造业市场的竞争愈演愈烈,产品的设计、试验、生产及投入市场的周期是相关企业生存和发展的关键。如何迅速、快捷地设计出经济、可靠的机械类产品,始终是工程科技人员全力研究的重点内容。
     往复式压缩机具有压力范围广、热效率高、适应性强等特点,是化工合成和石油开采等领域必不可少的关键设备。由于其结构庞大、设计周期长、制造费用高昂等原因,导致目前产品在可靠性、经济性和灵活性等方面存在的问题日益突出。而且,此类机械产品大都是小批量,甚至单件生产,难以完成大样本的试验研究;同时,用户的需求多变,需要能够快速地响应市场。因此,对此类机械产品开展可靠性分析、敏捷化设计和虚拟可靠性试验研究的工作具有现实意义。
     本文以大型往复式压缩机产品为研究对象,将可靠性理论与计算机技术相融合,提出了机械数字化研究的理念,分别从分析、设计和仿真三个方面展开研究;同时,在分析研究的基础上,对压缩机的局部结构进行了改进,通过理论计算和ANSYS仿真分析两种手段,验证了改进后结构的合理性和有效性。论文具体的研究工作如下:
     (1)开发了往复式压缩机设计计算的程序平台。该平台基于VC++编程语言,结合Matlab软件,将原本复杂繁琐的热力学与动力学计算变得简单、易行,并且能够迅速、准确地获得各项设计数据和各种载荷曲线,为关键零部件的强度校核和设计系统、仿真系统的建立提供基础。
     (2)开发了关键件可靠性灵敏度分析的程序平台。以经典的强度校核理论为基础,考虑到各种设计参数(尺寸公差、材料属性和加工工艺等)的随机性,建立关键零部件可靠性灵敏度分析的数学模型;以VC++6.0为开发环境,实现分析过程的可视化和程序化。该平台能够以概率的形式定量给出压缩机关键件的可靠性评价指标,给出各种设计参数对可靠度的影响程度,为合理地选择和控制设计参数提供指导。
     (3)开发了往复式压缩机的参数化设计系统。该系统基于Pro/E软件和Pro/TOOLKIT二次开发工具包,全面接收设计计算平台和可靠性分析平台中确定的设计参数,快速构造和修改零件、产品模型,快速生成符合要求的零件和产品工程图。因此,能够极大地提高设计效率,避免人为设计过程中信息的遗漏。同时,本文将Pro/E中的LAYOUT(布局)功能与其二次开发技术相结合,成功解决了装配体模型的参数化设计问题,从真正意义上实现了机械产品设计的智能化和敏捷化。
     (4)开发了往复式压缩机的虚拟可靠性试验系统。利用设计好的三维零件和产品模型,基于VC++编程技术,采用ANSYS/LS-DYNA软件结合APDL二次开发语言,搭建虚拟试验的系统平台。考虑到制造、装配的误差和材料属性的随机性对机械系统寿命可靠性的影响,对压缩机的传动机构进行动态的虚拟仿真,获得关键零部件的虚拟试验数据;分析数据的分布类型,计算关键件的可靠度,从而考核整个传动系统的可靠性。此外,为解决多因素耦合作用结构的强度分析问题,对压缩机的活塞杆进行虚拟试验研究;基于响应面方法分析虚拟试验数据,建立极限状态方程,计算活塞杆的疲劳强度可靠度及各影响因素的灵敏度,为现实中的设计工作提供指导。
     (5)对往复式压缩机活塞杆的螺纹连接结构提出了改进措施。基于上述分析研究的结果,针对目前活塞杆疲劳断裂事故频发的事实,在螺纹连接理论分析的基础上,提出一种结构改进的方案。并且,经过理论计算和ANSYS仿真分析,证明改进后的结构方案能够大大提高活塞杆的疲劳寿命。
Large mechanical products were used in all sectors of the national economy widely, and their reliability, economy and safety are symbols of development level of state mechanical industry. At present, situation of safe production is still severe. As a result of large equipment fault, serious accidents that cause heavy economical loss, even personal injury and death, are too numerous to enumerate. At the same time, the competition among manufacturing market becoming more and more severe, the cycle of design, test, production and occupying market are key factors impacting on survival and development of relative enterprises. How to design economical and reliable mechanical products agilely and quickly is always very important matter to scientific and technical personnel in engineering.
     Reciprocating compressor has many merits, such as its pressure range is wide, thermal efficiency is high and applicability is better etc, so it is indispensable equipment in petroleum exploitation and chemical synthesis fields. Presently the problems for reliability, economy and flexibility of reciprocating compressor product become increasingly outstanding, because of its large structure, long design period and high manufacturing cost etc. Furthermore because more of these mechanical products are small-batch, even single production, it is very difficult to go on research on large sample test; at the same time, demands of users are changeful constantly, so rapid reaction to the market is very necessary. Therefore it has practical significance that study on reliability evaluation, agile design and virtual test about reciprocating compressor.
     The paper regards large reciprocating compressor as study case, combine reliability theory with compute technology, put forward the concept of digital study to go on research on analysis, design and simulation of mechanical products; at the same time, the paper improved on the part structure of reciprocating compressor based on research, and methods of theory calculation and simulation analysis were used to verify rationality and validity of improved structure. The detail contents of the paper are as following:
     (1) The paper developed a program platform for design calculation of reciprocating compressor. The platform can go on complicated thermodynamics and dynamics calculation handily, and get all kinds of design data and load graphs rapidly and accurately using VC++ and Matlab software, and provide basis for checking strength of key parts and building systems of design and simulation.
     (2) The paper developed a program platform for reliability sensitivity analysis of key parts. Based on reliability theory and considering various influencing factors (such as size tolerance, material property and machining process etc) completely, the paper built mathematic models of strength reliability analysis of key parts; and come true visualized and programmed course of analysis using VC++6.0. The platform can quantitatively provide scientific and accurate data of estimation reliability of key parts through probability; and give study on the influence of various factors on reliability, and provide theoretical basis for determining and controling design parameters reasonably.
     (3) The paper developed a software system of parametric design of reciprocating compressor. The software system received all determined design information coming from design calculation platform and reliability analysis platform to construct and modify 3-D models of parts and product rapidly and regenerate relative working drawings based on Pro/E and Pro/TOOLKIT. So it can improve design efficiency greatly and avoid the phenomena of information loss in human design. At the same time, the paper combined LAYOUT function of Pro/E with its second development technology, and solve the problem of parametric design for assemble models successfully, and come true intelligent and agile design of mechanical products indeed.
     (4) The paper developed a software system of virtual reliability test of reciprocating compressor. The designed 3-D models of parts, ANSYS/LS-DYNA, APDL and VC++ were used to build system platform of virtual test. Considering the influences of machining tolerance and property randomness of material on life reliability of mechanical system, dynamic virtual simulation of transmission mechanism of compressor was done and virtual test data of key parts was got; distribution type of data was analyzed and reliability of key parts was calculated to estimate reliability of whole transmission system. Moreover response surface method was used to go on study of virtual test on piston rod of compressor to solve the problem for strength analysis of multi-factors coupling action structure, and sensitivity of various influencing factors were analyzed, and reliability of structure was calculated to direct real design work.
     (5) The paper proposed the improved measure on thread connector of piston rod of reciprocating compressor. Based on the result of above study and pointed to the facts that piston rod always causes fatigue fracture, the improved method of structure was proposed. Moreover it was verified that the improved method of structure can improve fatigue life of piston rod greatly with theory calculation combining simulation analysis of ANSYS.
引文
1.郑学鹏.提高往复式压缩机运行可靠性的方法浅析[J],石油化工设备技术,2004,25(4):28-33.
    2.王迪生,杨乐之.活塞式压缩机结构[M],北京:机械工业出版社,1990:15-78.
    3.林梅,孙嗣莹.活塞式压缩机原理[M],北京:机械工业出版社.1987:105-106.
    4.金光熹,杨绍侃.压缩机可靠性[M],北京:机械工业出版社.1989:56-132.
    5.郁永章.活塞式压缩机[M],北京:机械工业出版社.1982:6-83.
    6.Sivaprasad S,Narasaiah N,Das S K,et al.Investigation on the failure of air compressor[J],Engineering Failure Analysis,2009,(9):71-76.
    7.Hsieh W H,Wu T T.Experimental investigation of heat transfer in a high-pressure reciprocating gas compressor[J],Experimental Thermal and Fluid Science,1996,13(1):44-54.
    8.Longo G A,Gasparella A.Unsteady state analysis of the compression cycle of a hermetic reciprocating compressor[J],International Journal of Refrigeration,2003,26(6):681-689.
    9.Johnson K D,Martin C D,Davis T G.Treatment of wastewater effluent from a natural gas compressor station[J],Water Science and Technology,1999,40(3):51-56.
    10.余秀琴.乙炔压缩机可靠性技术探讨[J],电子测试,2007:45-50.
    11.张政林,吴小辉.M-73/314型氮氢气压缩机活塞杆断裂原因分析[J],压缩机技术,2003,(5):35-37.
    12.张可红,郭玉华.浅谈压缩机活塞杆断裂事故的原因[J],压缩机技术,2005,(5):40-41.
    13.陈峰,吴孝强,李凤先,等.甲烷制冷压缩机失效事故分析[J],石油化工设备,2001,30(2):17-19.
    14.马守信.化工事故案例分析与防范[M],合肥:合肥工业大学出版社,2004:127-136.
    15.庄森,文立刚.6MD20空气压缩机曲轴断裂失效分析[J],压缩机技术,2004,(5):29-30.
    16.孟庆武,张久龙,魏洪战,等.压缩机曲轴断裂失效分析[J],压缩机技术,2009,(3):28-30.
    17.周永跟.活塞式压缩机“积炭”事故分析及预防措施[J],流体机械,2004,32(2):33-36.
    18.吴立志,董淳,郭小平.CAD参数化设计在活塞压缩机设计中的应用[J],压缩机技术,2002,(1):43-45.
    19.贺元成,兰芳,郑国君.活塞式压缩机设计计算系统的开发研究[J],四川轻化工学院学报,2003,16(2):16-24.
    20.卢朝霞,杨海堂,梁景.压缩机综合活塞力计算应用软件[J],化工装备技术,2006,27(6):52-55.
    21.杨乐之.活塞压缩机设计可靠性的计算[J],压缩机技术,1996,(5):3-6.
    22.郁永章,高秀峰.国内外压缩机学术研究近况[J],压缩机技术,2003,(4):14-17.
    23.张海峰.车用空压机曲轴连杆机构的动力学分析与仿真[D],武汉理工大学,2009.
    24.宋春青.大型压缩机曲轴特性研究[D],南京理工大学,2005.
    25.刘成武.大型压缩机动力学分析与噪声预测[D],南京理工大学,2006.
    26.武亚静,史锋.往复活塞式压缩机设计软件[J],计算机辅助工程,2009,18(2):60-63.
    27.韩绿霞.活塞式压缩机计算方法的研究[D],郑州大学,2005.
    28.苗刚.往复活塞式压缩机关键部件的故障诊断方法研究及应用[D],大连理工大学,2006.
    29.蒋宗传,王迪生.活塞杆螺纹联接的动态响应及可靠性研究[J],流体工程,1987,(12):1-10.
    30.李德昌.活塞杆螺纹部分受力分析[J],压缩机技术,1991,(14):1-4.
    31.赵娥君,虞岩贵.活塞杆破坏的疲劳-损伤-断裂的计算和分析[J],机电工程,2000,17(3):61-64.
    32.刘荣阁,陈士英,周成仁,等.大型往复活塞式压缩机活塞杆的应力分析[J],沈阳工业大学学报,1988,10(3):67-74.
    33.扈延光,田永江,钟群鹏.压缩机活塞杆断裂分析及预防[J],材料工程,1997,(12):45-47.
    34.刘朋宏,王明武.柴油机曲轴的结构可靠性分析[J],中国造船,1999,(1):54-58.
    35.仲石廉,刘敦康.曲轴圆角处最大应力的探讨[J],压缩机技术,1998,(6):12-16.
    36.王银燕,王善.柴油机曲轴疲劳强度可靠性分析[J],舰船科学技术,2004,26(1):20-23.
    37.叶晓淡,蒋小平,许建强,等.往复泵曲轴疲劳可靠性分析[J],机械工程学报,2008,44(10):272-276.
    38.程绍桐,王致钊,程淑颖,等.柴油机曲轴可靠性分析[J],内燃机配件,2008,(4):23-28.
    39.姚大坤,黄文虎,邹经湘.滑动轴承油膜刚度参数的识别[J],动力工程,2005,25(4):483-486.
    40.叶荣学,孙伟,张敏全,等.油膜刚度变化对转子振动特性的影响[J],汽轮机技术,2006,48(2):114-115.
    41.王兆伍,许尚贤.滑动轴承的可靠性分析[J],中国机械工程,1995,(6):25-28.
    42.崔毅,陈大荣,王明武.柴油机连杆可靠性分析研究[J],内燃机工程,1998,19(3):50-55.
    43.张义民,王龙山.发动机连杆的可靠性灵敏度设计[J].航空动力学报,2004,19(5):587-592.
    44.王充德,徐青萍,邹曼君.双作用活塞式压缩机气缸体强度分析[J].压缩机技术,1986,(3):2-10.
    45.王迪生.压缩机高压气缸可靠性准则[J].西安交通大学学报,1982,16(4):1-10.
    46.Freudenthal A M.The safety of structures[J],Transactions ASCE,1947,112:125-129.
    47.Cornell C A.A Probability-based structural code[J],Journal of ACI,1969,66(2):15-25.
    48.Lind N C.Consistent partial safety factors[J],ASCE,1971,97(ST6):10-12.
    49.Hasofer A M,Lind N C.An exact and invariant first order reliability format[J],ASCE,1974,100(1):1-2.
    50.Hasofer A M,Lind N C.An exact invariant second-moment code format[J],ASCE,1974,100(1):111-121.
    51.Rackwitz R,Fiessler B.An algorithm for calculation of structural reliability under combined loading[J],Munchen,1977:2-5
    52.Rackwitz R,Fiessler B.Structural reliability under combined random load sequences[J],Computers and Structure,1978,9(5):489-494.
    53.Hohenbichler M,Rackwitz R.Sensitivity and importance measures in structural reliability [J],Civ.Eng.Syst.,1986,3(4):203-209.
    54.Bjerager P,Krenk S.Parametric sensitivity in first order reliability theory[J],ASCE,1989,115(7):1577-1582.
    55.Karamchandani A,Cornell C A.Sensitivity estimation within first and second order reliability methods[J],Struct Safety,1992,11(2):95-107.
    56.Lataillade A D,Blanco S,Clergent Y,et al.Monte Carlo method and sensitivity estimations[J],Journal of Quantitative Spectroscopy and Radiative Transfer,2002,75(5):529-538.
    57.Melchers R E,Ahammed M.A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J],Computers and Structures,2004,82(1):55-61.
    58.Wu Y T,Millwater H R,Cruse T A.An advance probabilistic analysis method for implicit performance function[J],AIAA J.,1990,28(9):1663-1669.
    59.Wu Y T.Computational methods for efficient structural reliability and reliability sensitivity analysis[J],AIAA J,1994,32(8):1717-1723.
    60.Au S K.Reliability-based design sensitivity by efficient simulation[J],Computers and Structures,2005,83(14):1048-1061.
    61.Wong F S.Slope reliability and response surface method[J],Journal of Geotechnical Engineering,1985,111:32-53.
    62.Bucher C G,Bourgund U.A fast and efficient response surface approach for structural reliability problems[J],Structural Safety,1990,7:57-66.
    63.Chowdhury R N,Xu D W.Rational polynominal technique in slope reliability analysis[J],Journal of Geotechnical Engineering,1993,119(12):1910-1928.
    64.Das P K,Zheng Y.Cumulative formation of surface and its use in reliability analysis[J],Probabilistic Engineering Mechanics,2000,15:309-315.
    65.Guan X L,Melchers R E.Effect of response surface parameter variationon structural reliability estimates[J],Structural Safety,2001,23(4):429-444.
    66.Hurtado J E.An examination of methods for approximating implicit limit state functions from the view point of statistical learning theory[J],Structural Safety,2004,26:271-293.
    67.Irfan K,Chris A M.A response surface methodon weighted regression for structural reliability analysis[J],Probabilistic Engineering Mechanics,2005,20:11-17.
    68.孙广义.矿井支护系统可靠性理论研究[D],辽宁工程技术大学,2003.
    69.王光远,张淑华,顾平.论完全相关系统的可靠性[J].哈尔滨建筑工程学院学报,1994,27(1):1-5.
    70.张鹏,王光远.机械产品全寿命期价值期望的可靠性优化模型[J].制造业设计技术,2000,(8):9-12.
    71.张爱林,赵国藩,王光远.现役结构可靠性评定研究述评[J].北京工业大学学报,1998,24(2):130-135.
    72.赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展[J].大连理工大学学报,2000,40(3):253-258.
    73.贡金鑫,赵国藩.国外结构可靠性理论的应用与发展[J].土木工程学报,2005,38(2):1-7.
    74.姚继涛,赵国藩,浦幸修.现有结构可靠性基本分析方法[J].西安建筑科技大学学报,1997,29(4):364-367.
    75.孟祥旭.参数化设计模型的研究与实现[D],中国科学院计算机技术研究所,1998.
    76.Sutherland I E.A man-machine graphical communication system[D],MIT USA,1963.
    77.Hillyard R C,Braid I C.Analysis of dimensions and tolerances in computer-aided mechanical design[J],Computer Aided Design,1978,14(3):66-80.
    78.Light R A,Gossard D C.Modification of geometric models through variational geometry [J],Computer Aided Designs,1982,14(4):209-214.
    79.Roy U,Liu C R,Woo T C.Review of dimensioning and tolerancing:representation and processing[J],Computer Aided Designs,1991,23(7):466-481.
    80.Alasdair S,Pennington A.Constraint definition system:a computer-algebra based approach to solving geometric-constraint problems[J],Computer Aided Designs,1993,25(12):741-750.
    81.Feng C X,Kusiak A.Constraint-based design of parts[J],Computer Aided Designs,1995,27(5):343-352.
    82.Andrel A,Mendgen R.Modeling with constraints theoretical foundation and application [J],Computer Aided Designs,1996,28(3):155-168.
    83.Lee J Y,et al.Geometric reasoning for knowledge-based parametric designs using graph representation[J],Computer Aided Design,1996,28(10):831-841.
    84.Arinyo J.A correct rule-based geometric constraint solver[J],Computer Graphics,1997,21(5):599-609.
    85.Gao X S,Chou S C.Solving geometric constraint systems Ⅱ:a symbolic approach and decision of reconstructibility[J],Computer Aided Design,1998,30(2):115-122.
    86.任延荣,孙嗣莹.活塞式压缩机设计计算软件开发[J],压缩机技术,1995,(3):11-19.
    87.胡家顺.活塞式压缩机的CAD系统[J],机械设计与制造工程,2000,29(4):52-53.
    88.吴立志,董淳,郭小平.CAD参数化设计在活塞压缩机设计中的应用[J],压缩机技术,2002,(1):43-45.
    89.王宏江,刘宏昭.基于Pro/E的活塞压缩机系列件参数化设计[J],压缩机技术,2005,(3):41-43.
    90.白亮亮,唐良宝.基于Solidworks二次开发的活塞压缩机零件参数化设计[J],压缩机技术,2007,(4):61-68.
    91.Robert R.Digital testing in a virtual word[J],International Industrial Vehicle Technology,2001.
    92.Antonino G S,Zachmann G.Integrating virtual reality for virtual prototyping[J],Proceeding of Design Technical Conference and Computers in Engineering Conference,Atlanta,1998.
    93.Gowda S,Jayaram S,Jayaram U.Architectures for internet-based collaborative virtual prototyping[J],Proceeding of Design Technical Conference and Computers in Engineering Conference,Las Vegas,1999.
    94.Song P,Krovi V,Mahoney R.Design and virtual prototyping of human-worn manipulation devices[J],Proceeding of Design Technical Conference and Computers in Engineering Conference,Las Vegas,1999.
    95.徐延宁.虚拟样机建模技术与协同装配方法研究[D],山东大学,2006.
    96.陈曦.复杂产品虚拟样机技术及其应用研究[D],南京理工大学,2005.
    97.郑超瑜,周邵萍,林匡行.基于虚拟样机的往复压缩机动力学仿真[J],流体机械,2005,33(4):13-15.
    98.程广庆,周邵萍,郑超瑜,等.基于ADAMS和ANSYS的往复压缩机有限元分析[J],压缩机技术,2006,(4):9-11.
    99.刘成武,钱林方.压缩机曲轴系多体系统动力学仿真[J],系统仿真学报,2007,19(4):883-885.
    100.白亮亮,唐良宝.基于ADAMS的活塞压缩机动平衡虚拟设计[J],流体机械,2008,36(6):43-45.
    101.Perez-Segarra C D,Rigola J,Soria M,et al.Detailed thermodynamic characterization of hermetic reciprocating compressors[J].International Journal of Refrigeration,2005,28(4):579-593.
    102.活塞式压缩机设计编写组.活塞式压缩机设计[M],北京:机械工业出版社,1982:231-233.
    103.孙鑫,余安萍.VC++深入详解[M],北京:电子工业出版社,2006:336-491.
    104.孙雄勇.Visual C++6.0入门与提高实用教程[M],北京:中国铁道出版社,2003.
    105.徐金明,张孟喜,丁涛.Matlab实用教程[M],北京:清华大学出版社.2005:25-61.
    106.Mancuso A.Parametric design of sailing hull shapes[J].Ocean Engineering,2006,33(2):234-246.
    107.孙志礼,陈良玉.实用机械可靠性设计理论与方法[M],北京:科学出版社,2003:66-78.
    108.阎明,孙志礼,杨强.基于响应面方法的可靠性灵敏度分析方法[J],机械工程学报,2007,43(10):67-71.
    109.刘惟信.机械可靠性设计[M],北京:清华大学出版社,2000:225-240.
    110.Lee R S,Hsu Q C,Su S L.Development of a parametric computer-aided die design system for cold forging[J].Journal of Materials Processing Technology,1999,91(3):80-89.
    111.Chu C H,Song M C,Luo V C S.Computer aided parametric design for 3D tire mold production[J].Computers in Industry,2006,57(1):11-25.
    112.陈鹏霏.阀门电动装置的参数化设计[D],沈阳东北大学,2007.
    113.李世国.PRO/TOOLKIT程序设计[M].北京:机械工业出版社,2003.
    114.二代龙震工作室.Pro/TOOLKIT Wildfire 2.0插件设计[M],电子工业出版社,2002.
    115.Parametric Technology Corporation.Pro/ENGINEER 2001 Pro/TOOLKIT User's Guide [M].USA:PTC,2001.
    116.蔡玉强,田海英,孟宪举.基于Pro/E的三环减速器装配的参数化设计[J].机械设计与制造,2006,(7):1-3.
    117.詹友刚.Pro/ENGINEER中文野火版2.0高级应用教程[M],北京:机械工业出版社.2006:155-281.
    118.郭洋,魏峥,于文强,等.Pro/ENGINEER企业实施与应用[M],北京:清华大学出版社.2005:125-260.
    119.刘鸿文.材料力学[M],北京:高等教育出版社,1992:215-236.
    120.徐灏.机械设计手册[M],北京:机械设计出版社,1991.
    121.卜炎.螺纹联接设计与计算[M].北京:高等教育出版社,1995:4-9.
    122.Cunha F C,Souza J,Barreto A G,et al.Dynamic Simulation of a Compressor Located in a Natural Gas Processing Unit Using EMSO Simulator[J].Computer Aided Chemical Engineering,2009,27:603-608.
    123.张波,盛和太.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社,2005:66-78.
    124.倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003:168-183.
    125.何涛,杨竞,金鑫.ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程[M],北京:机械工业出版社,2007:12-15.
    126.时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005:66-78.
    127.周宁.ANSYS-APDL高级工程应用实例分析与二次开发[M],北京:中国水利水电出版社.2007:65-191.
    128.孙志礼,冷兴聚,魏延刚,等.机械设计[M].沈阳:东北大学出版社,2004:221-256.
    129.Ugur O,Fehim F,Mehmet D.The wear behaviour investigation of sliding bearings with a designed testing machine[J].Materials & Design,2007,28(1):345-350.
    130.Zhang W M,Meng G.Numerical simulation of sliding wear between the rotor bushing and ground plane in micromotors[J].Sensors and Actuators A:Physical,2004,11(4):537-545.
    131.Kimura T,Shimizu K,Terada K.Sliding wear characteristic evaluation of copper alloy for bearing[J].Wear,2007,263(1-6):586-591.
    132.李润方,林腾蛟,唐倩.石油钻杆联接螺纹弹塑性接触有限元分析[J],石油矿场机 械,1998,27(6):44-47.
    133.欧笛声,周雄新,王虎奇.注塑机拉杆固定端三角螺纹的应力分析与优化[J],制造业自动化,2007,29(4):22-26.
    134.同济大学数学教研室.高等数学[M],北京:高等教育出版社,1996:376-398.
    135.Yuan G J,Yao Z Q,Han J Z,et al.Stress distribution of oil tubing thread connection during make and break process[J].Engineering Failure Analysis,2004,11(4):537-545.
    136.Zhao H,Kuang Z B,Li Z H.Stress-intensity factor for a semi-elliptical surface crack at the thread root of a screwed-pipe joint[J].Computers & Structures,1996,59(3):419-424.
    137.杨方飞.机械产品数字化设计及关键技术研究与应用[D],中国农业机械化科学研究院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700