糖苷酶转化人参皂苷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参皂苷是人参的主要活性成分之一,目前已从人参中分离纯化出约四十种人参皂苷。研究表明,不同的皂苷活性不同,一些稀有人参皂苷,具有显著的药理学活性,如人参皂苷C-K,具有抗肿瘤、抗炎症、抗衰老等活性。而这些稀有皂苷在天然人参中含量甚微,只能通过人工方法制备。因此,制备稀有人参皂苷成为目前研究的热点。由于稀有皂苷与某些高含量人参皂苷相比,其皂苷母环结构相同,只是糖基数目不同。因此,理论上可以通过水解大量皂苷的糖基来制备稀有皂苷。
     水解人参皂苷的糖基的主要方法有酸水解、碱水解、加热、糖苷酶催化等。加热或酸、碱水解等化学法条件剧烈,易产生副产物。糖苷酶介导的生物转化法由于条件温和、专一性高,是潜在的转化方法,也是目前研究的热点之一。通过生物转化制备糖苷化合物或寡糖等,具有重要的理论和应用意义。因此,寻找活性高、专一性好的糖苷酶,用以转化大量皂苷从而制备稀有皂苷,是本课题的研究重点之一。该论文的主要研究成果如下:
     1.研究了12种商品糖类水解酶对人参二醇型皂苷混合物和单体皂苷Rb1的水解。其中1种酶不转化人参二醇型皂苷,其余11种酶均能不同程度地转化人参二醇型皂苷混合物和单体皂苷Rb1,但水解终产物与速率不同。8种酶水解人参皂苷Rb1产生唯一产物Rd,水解路径为:Rb1→Rd;1种酶水解Rb1至F2,水解路径为:Rb1→Rd→F2;2种酶水解Rb1至终产物Compound K(C-K),水解路径分别为Rb1→Rd→F2→C-K;Rb1→Rd/GXVII→F2→C-K。此外,测试了这11种酶转化Rb1的效率。
     2.从人参种植土壤中筛选到一株真菌sp.68,该菌能高效转化人参二醇型皂苷混合物,产生一系列稀有人参皂苷产物,其终产物为人参皂苷C-K。该菌株用分子生物学方法鉴定为草酸青霉。对草酸青霉转化人参二醇型皂苷的能力进行了研究。首先,草酸青霉发酵液经过滤、离心后的上清经DEAE-纤维素柱层析和30-90%硫酸铵沉淀后,得到草酸青霉胞外酶液。用该酶液转化人参二醇型皂苷Rb1、Rb2、Rc,得到如下转化路径:Rb1→Rd→F2→C-K;Rb2→CO→CY→C-K;Rc→Mb→Mc→C-K。对各转化产物用TLC、HPLC和~(13)C-NMR进行了鉴定。此外,对草酸青霉胞外酶液转化人参皂苷制备稀有皂苷C-K的条件进行了优化,得到如下优化结果:底物,Rb1;反应pH,3.5;反应温度,55℃;底物浓度,0.5mg/ml。
     3.对草酸青霉产生的发酵液进行分离纯化,经过一系列色谱层析分离纯化后,得到三个纯的胞外糖苷酶GH1、GH3-1和GH3-2。对这三种酶的酶学性质进行研究。底物专一性结果表明:以人参皂苷作为底物时,GH1只水解人参皂苷Rb1至唯一产物Rd,而不水解Rb2和Rc。GH3-1和GH3-2对人参皂苷Rb1、Rb2和Rc均能水解,转化路径为:Rb1→Rd→F2→C-K;Rb2→CO→CY→C-K;Rc→Mb→Mc→C-K。此外,对这三种酶的分子量、等电点、最适pH及pH稳定性、最适温度及温度稳定性等进行了研究。这三种酶虽然由同一种菌分泌到胞外,但行使不同的功能。这些糖苷酶对于人参皂苷的转化尤其是一系列中间代谢产物的制备具有重要的应用意义。
     4.从革兰氏阳性菌——粪肥杆菌中克隆、表达并纯化了七个糖苷水解酶。其中,cfi-01、cfi-08、cfi-11和cfi-13属于糖苷水解酶家族3;cfi-02属于糖苷水解酶家族31;cfi-04属于糖苷水解酶家族42;cfi-10属于糖苷水解酶家族1。对各糖苷水解酶的底物专一性进行了系统研究。在家族3的糖苷水解酶中,cfi-01是双功能酶,同时具有β-D-木糖苷酶/-L-呋喃阿拉伯糖苷酶的活性;cfi-08和cfi-11是β-D-葡萄糖苷酶;cfi-13只水解pNP-人工糖苷,而不水解二糖、寡糖,因此属于芳香基-β-D-糖苷酶。家族31的cfi-02是-木糖苷酶。家族42的cfi-04是β-D-半乳糖苷酶,同时也表现出微弱的β-D-果糖苷酶活性。家族1的cfi-10活性广泛,同时具有β-D-半乳糖苷酶、β-D-葡萄糖苷酶、β-D-果糖苷酶和β-D-木糖苷酶活性。此外,对克隆表达得到的7个糖苷水解酶转化人参皂苷的能力进行了研究。结果表明,cfi-08和cfi-10可水解人参皂苷Rb1,产生唯一产物Rd。其它5种糖苷水解酶不能转化人参皂苷。对草酸青霉中纯化得到的三个糖苷水解酶和粪肥杆菌中克隆表达得到的七个糖苷水解酶在底物专一性方面进行了系统的比较。这些糖苷水解酶可被应用于糖苷化合物的转化。
Ginsenosides are the principle components responsible for the pharmaceuticalactivities of ginseng. So far, about forty kinds of different ginsenosides have been isolatedfrom different parts of ginseng. Some minor ginsenosides exhibited various biological andpharmacological activities, including anti-tumor, immune-modulatory, anti-inflammatoryand anti-aging effects. These minor ginsenosides, however, exsited in very low content oreven did not naturally present in ginseng. The minor ginsenosides, which had sameginsengenin as the high-content ginsenosides, could therefore be prepared by hydrolyzingthe sugar moieties in high-content ginsenosides.
     Methods including heating, acid hydrolysis, microbial and enzymatic transformationwere used in the hydrolysis of high-content ginsenosides to prepare minor ginsenosides.Among these methods, microbial and enzymatic transformations are more potential due totheir high specificity, low side reaction and mild conditions. Biotransformation ofglycosides to get useful compounds was one hot spotpoint in glycoside application.Therefore, in this study, we focus on looking for suitable strains or enzymes which couldbe used in ginsenoside biotransformation. The main results are as follows:
     1. In this study, twelve kinds of commercial enzymes were tested for their ability totransform protopanaxadiol-type ginsenosides mixture and single ginsenoside Rb1. Amongthem, only one enzyme had no transformation activity against the substrates, the othereleven enzymes could transform protopanaxadiol-type ginsenosides mixture andginsenoside Rb1with different pathways and efficiencies. Among the eleven enzymes,eight kinds of enzymes transformed ginsenoside Rb1to Rd, the transformation pathwaywas Rb1→Rd; one enzyme transformed Rb1to ginsenoside F2, the pathway wasRb1→Rd→F2; two enzymes transformed Rb1to final product C-K, the transformationpathways were Rb1→Rd→F2→C-K and Rb1→Rd/GXVII→F2→C-K, respectively.
     2. A fungus, sp.68, which was found to be able to transform protopanaxadiol-typeginsenosides into bioactive C-K with high activity and specificity, was isolated from theginseng-cultivating soil. The strain was identified to be Penicillium oxalicum by18S rDNAand ITS sequencing. Then the crude enzyme was prepared by DEAE-cellulosechromatography and sulfate ammonium precipitation from the fermentation broth of P.oxalicum. The crude enzyme was used in ginsenoside transformation. Ginsenoside Rb1,Rb2and Rc were transformed to the final product C-K by the crude enzyme via differentpathways. The pathways are as following: Rb1→Rd→F2→C-K;Rb2→CO→CY→C-K; Rc→Mb→Mc→C-K. The conditions for C-K production by crude enzyme of P. oxalicumwere optimized, as well. Following optimization conditions were obtained: substrate,ginsenoside Rb1; pH,3.5; temperature,55oC; concentration of Rb1,0.5mg/ml.
     3. Three extracellular glycosidases GH1, GH3-1and GH3-2were purified from thefermentation broth of P. oxalicum. The substrate specificity results showed that GH1couldhydrolyze Rb1to sole product Rd, without hydrolyzing Rb2, Rc and Rd. GH3-1andGH3-2exhibited similar transformation pathways against Rb1, Rb2and Rc, the pathwaysare: Rb1→Rd→F2→C-K, Rb2→CO→CY→C-K, Rc→Mb→Mc→C-K. The enzymeswere characterized as well. These enzymes would be useful in ginsenosides transformation.
     4. Seven glycoside hydrolases were cloned, expressed and purified fromCellulomonas fimi. Among them, cfi-01, cfi-08, cfi-11and cfi-13belonged to glycosidehydrolase family3while cfi-02, cfi-04and cfi-10belonged to family31,42and1,respectively. The substrate specificities of these recombinant enzymes were symtemicallystudied. Among the glycoside hydrolase family3enzymes, cfi-01was bifunctional enzymewith both β-D-xylosidase and-L-arabinofuranosidase activities. The enzymes cfi-08andcfi-11were β-D-glucosidases. Cfi-13hydrolyzed p-nitrophenyl substrates, withouthydrolyzing disaccharides or oligosaccharides, therefore, cfi-13was aryl-β-D-glucosidase.The enzyme cfi-02, which belonged to glycoside hydrolase family31, was-xylosidase.Cfi-10exhibited β-D-galactosidase, β-D-glucosidase, β-D-fucosidase and β-D-xylosidaseactivities. Also, the transformation ability of these seven recombinant glycosidases againstginsenosides were studied. The results showed that cfi-08and cfi-10transformedginsenoside Rb1to give the sole product Rd. Other glycosidases exhibited no activityagainst tested ginsenosides. The substrate specificities of the glycoside hydrolases from P.oxalicum and C. fimi were symtemically studied and compared. These enzymes would beuseful for hydrolysis of glycoside compounds or oligosaccharides.
引文
[1]王铁生.中国人参[M].天津:天津科学技术出版社,2001,87-125.
    [2] Tawab M A, Bahr U, Karas M, et al. Degradation of ginsenosides in humans after oraladministration [J]. Drug Metab Dispos2003,31(8):1065–1071.
    [3] Han M, Fang X L. Difference in oral absorption of ginsenoside Rg1between in vitro and in vivomodels. Acta Pharmacol Sin2006,27:499–505.
    [4] Han B H, Park M H, Han Y N. Degradation of ginseng saponins under mild acidic conditions. PlantaMed1982,44:146–149.
    [5] Chen Y, Nose M, Ogihara Y. Alkaline cleavage of ginsenosides. Chem Pharm Bull1987,35:1653–1655.
    [6] Vanhaelen-Fastre R J, Faes M L, Vanhaelen M H. High-performance thin-layer chromatographicdetermination of six major ginsenosides in Panax ginseng [J]. J Chromatogr A,2000,868(2):269-276.
    [7] Corthout J, Naessens T, Apers S, et al. Quantitative determination of ginsenosides from Panaxginseng roots and ginseng preparations by thin layer chromatography–densitometry [J]. J PharmBiomed Anal,1999,21(1):187–192.
    [8] Kang A L, Sun J W, Tang S Y, et al. TLCS determination of ingiberensis new saponin and dioscinin Dioscorea zingiberensis [J]. Chin J Pharm Anal,2003:59–60.
    [9] Zhang S Q, Chen R Z, Wu H, et al. Ginsenoside extraction from Panax quinquefolium L.(Americanginseng) root by using ultrahigh pressure [J]. J Pharm Biom Anal,2006,41:57–63.
    [10] Yu Q T, Qi L W, Li P, et al. Determination of seventeen main flavonoids and saponins in themedicinal plant Huang-qi (Radix astragali) by HPLC-DAD-ELSD [J]. J Sep Sci,2007,30(9):1292-1299.
    [11] Li K, Yuan J S,Su W W. Determination of Liquiritin, Naringin, Hesperidin, Thymol, Imperatorin,Honokiol, Isoimperatorin, and Magnolol in the Traditional Chinese Medicinal PreparationHuoxiang-zhengqi Liquid Using High-performance Liquid Chromatography [J]. Pharm Soc Japan,2006,126:1185-1190.
    [12] Hubert J, Berger M, Dayd′e J, et al. Use of a simplified HPLC-UV analysis for soyasapenin Bdetermination: study of saponin and isoflavone varlabillit in soybean cuhivars and soy-based healthfood products [J]. Food Chem,2005,53:3923-3930.
    [13] Liu C, Han J Y, Duan Y Q, et al. Purification and quantification of ginsenoside Rb3and Rc fromcrude extracts of caudexes and leaves of Panax notoginseng [J]. Separation and PurificationTechnology,2007,54:198–203.
    [14] Park M K, Pard J H, Han S B, et al. The determination of ginsenosides by high performance liquidchromatography with the evaporative laser scatter detector [J]. Chin J Pharm Anal,1996,16:412–414(in Chinese).
    [15] Kim S N, Young W H, Shin H, et al. Simultaneous quantification of14ginsenosides in Panaxginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control [J].J Pharm Biomed Anal,2007,45:164–170.
    [16] Wang A, Wang C Z, Wu J A, et al. Determination of major ginsenoseds in panax quinquefolius(American ginseng) using high-performance liquid chromatography [J]. Phytochem Anal,2005,16:272-277.
    [17] Kwon H J, Jeong J S, Lee Y M, et al. A reversed-phase high-performance liquid chromatographymethod with pulsed amperometric detection for the determination of glycosides [J]. J Chromatogr A,2008,1185:251–257.
    [18] Zhang H J, Wu Y J, Cheng Y Y. Analysis of SHENMAI‘injection by HPLC/MS/MS [J]. J PharmBiomed Ana1,2003,31:175–183.
    [19] Wang X M, Sakuma T, Asafu-Adjaye E, et al. Determination of ginsenosides in plant extracts fromPanax ginseng and Panax quinquefolius L. by LC/MS/MS [J]. Anal Chem,1999,71:1579–1584.
    [20] Park M K, Pard J H, Han S B, et al. The determination of ginsenosides by high performance liquidchromatography with the evaporative laser scatter detector [J]. Chin J Pharm Anal,1996,16:412–414(in Chinese).
    [21] Shangguan D H, Han H W, Zhao R, et al. New method for high-performance liquidchromatographic separation and fluorescence detection of ginsenosides [J]. J Chromatogr A,2001,910:367.
    [22] Sticher O, Soldati F. HPLC Separation and Quantitative-Determination of Ginsenosides fromPanax ginseng, Panax quinquefolium and from Ginseng Drug Preparations. Planta Medica,1979,36:30-42.
    [23] Han M, Hou J G, Dong C M, et al. Isolation, Synthesis and Structures of Ginsenoside Derivativesand Their Anti-Tumor Bioactivity. Molecules,2010,15:399-406.
    [24] Ha Y W, Lim S S, Ha I J, et al. Preparative isolation of four ginsenosides from Korean red ginseng(steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupledwith evaporative light scattering detection[J]. J Chromatogr A,2007,1151:37-44.
    [25]陈英杰,张绍林,王喆星等.人参叶中微量新皂苷-La的分离与鉴定[J].药学学报,1990,25(05).
    [26]毛诗珍,袁汉珍,许肖龙等.中国人参的核磁共振研究Ⅰ.人参皂苷Re的二维核磁共振谱研究[J].波谱学杂志,1994,01.
    [27]杨玉琪,李玛琳.人参皂苷的抗肿瘤作用及其机制[J].药学进展,2003,27(5):287-290.
    [28]任莉莉,魏影非,杜惠兰等.人参抗肿瘤作用研究进展[J].Chinese Traditional Patent Medicine,2005,27(8):947-950.
    [29]夏丽娟,韩锐.人参皂苷Rh2体外对小鼠黑色素瘤细胞的分化诱导作用[J].药学学报,1996,31(10):742-745.
    [30] Nakata H, Kikuchi Y, Tode T, et a1. Inhibitory effects ofginsenoside Rh2on tumor growth in nudemice bearing human ovarian cancer cells [J].Jpn J Cancer Ras,1998,89(7):733-740.
    [31] Attele AS, Wu JN, Yuan CS. Ginseng Pharmacology: multiple constituents and multiple actions[J].Biochemical Pharmacology,1999,58:1685–1693.
    [32]窦得强,靳玲,陈英杰.人参的化学成分及药理活性的研究进展与展望.沈阳药科大学学报.1999,16(2):151一156.
    [33]刘正湘,刘晓春.人参皂苷Rb1与Re对大鼠缺血再灌注心肌细胞凋亡的影响[J].中国组织化学与细胞化学杂志,2002;11(4):374-378.
    [34]孙晓霞,夏映红,钟国赣.人参皂苷单体Rb1对大鼠在体心脏收缩性能的影响[J].长春中医学院学报,2003;19(1):43.
    [35]胡松华,林锋强.人参皂甙Rb1的免疫佐剂作用[J].中国兽医学报,2003,23(5):480-482.
    [36] Yang Z, Chen A, Sun H X, et al. Ginsenoside Rd elicits Th1and Th2immune responses toovalbumin in mice[J].Vaccine,2007(25):161–169.
    [37] Chang M S, Lee S G, Rho H M. Transcriptional activation of Cu/Zn superoxide dismutase andcatalase genes by panaxadiol ginsenosides extracted from Panax ginseng [J]. Phytoyther Res,1999,13(8):641-644.
    [38] Kim Y H, Park K H, Rho H M.Transcriptional activation of the Cu,Zn superoxide dismutase genethrough the AP2site by ginsenoside Rb2extracted from a medicinal plant, Panax ginseng[J]. J BiolChem,1996,271(40):24539-24543.
    [39]唐晖,汪保和,贺洪.人参皂苷Rg1促进小鼠力竭游泳后体能恢复期扫作用[J].中国运动医学杂志,2002,21(4):375-378.
    [40]王艳华,肖雪媛,杨贵贞.人参皂苷对手术应激大鼠下丘脑—垂体—肾上腺轴及免疫靶器官中肾上腺皮质激素释放、ACTH阳性细胞数的影响[J].中国神经免疫学和神经病学杂志,1998,5(1):12-15.
    [41] Cheng L Q, Kim M K, Lee J W, et al. Conversion of major ginsenoside Rb1to ginsenoside F2byCaulobacter leidyia. Biotechnol Lett,2006,28:1121–1127.
    [42] Quan L H, Min J W, Jin Y, et al. Enzymatic Biotransformation of Ginsenoside Rb1to CompoundK by Recombinant β-Glucosidase from Microbacterium esteraromaticum. J Agric Food Chem.2012,60(14):3776-81.
    [43] Hong S Y, Oh J H, Lee I. Simultaneous Enrichment of Deglycosylated Ginsenosides andMonacolin K in Red Ginseng by Fermentation with Monascus pilosus. Biosci Biotech Biochem,2011,75(8):1490-1495.
    [44] Yan Q, Zhou W, Shi X L, et al. Biotransformation pathways of ginsenoside Rb1to compound K byβ-glucosidases in fungus Paecilomyces Bainier sp.229. Process Biochem2010,45:1550–1556.
    [45] Hou J G, Xue J J, Wang C Y, et al. Microbial transformation of ginsenoside Rg3to ginsenosideRh2by Esteya vermicola CNU120806. World J Microbio Biotech,2012,28(4),1807-1811.
    [46] Liu L, Zhu X M, Wang Q J, et al. Enzymatic preparation of20(S, R)-protopanaxadiol bytransformation of20(S, R)-Rg3from black ginseng. Phytochemistry,2010,71(13):1514-1520.
    [47] Luan H, Liu X, Qi X, et al. Purification and characterization of a novel stable ginsenosideRb1-hydrolyzing β-D-glucosidase from China white jade snail. Process Biochem2006,41:1974–80.
    [48] Zhao X S, Wang J, Li J, et al. Highly selective biotransformation of ginsenoside Rb1to Rd by thephytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol,2009,36:721–6.
    [49] Zhao X S, Gao L, Wang J, et al. A novel ginsenoside Rb1-hydrolyzing β-D-glucosidase fromCladosporium fulvum. Process Biochem2009,44(6):612–618.
    [50] Gao J, Zhao X S, Liu H B, et al. A highly selective ginsenoside Rb1-hydrolyzing β-D-glucosidasefrom Cladosporium fulvum. Process Biochem2010,45:897-903.
    [1] Park J D, Rhee D K, Lee Y H, Biological activities and chemistry of saponins from Panax ginseng C.A. Meyer[J]. Phytochemistry Reviews,2005,4:159–175.
    [2] Tachikawa E, Kudo K, Hasegawa H, et al. In vitro inhibition of adrenal catecholamine secretion bysteroidal metabolites of ginseng saponins. Biochem Pharmacol,2003,68:441–52.
    [3] Oh S H, Yin H Q, Lee B H. Role of the Fas/Fas ligand death receptor pathway in ginseng saponinmetabolite induced apoptosis in HepG2cells. Arch Pharm Res,2004,27:402–6.
    [4] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-solublepolysaccharides isolated from Panax ginseng C.A. Meyer. Carbohyd Polym2009,77:544–52.
    [5] Zhao X S, Wang J, Li J, et al. Highly selective biotransformation of ginsenoside Rb1to Rd by thephytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol,2009;36:721–6.
    [6] Lee H U, Bae E A, Han M J, et al. Hepatoprotective effect of ginsenoside Rb1and compound K ontert-butyl hydroperoxide-induced liver injury. Liver Int,2005,25:1069–1073.
    [7] Zhou W, Feng M Q, Li J Y, et al. Studies on the preparation, crystal Structure and bioactivity ofginsenoside compound K. J Asian Nat Prod Res2006,8:519–527.
    [8] Choi K, Kim M, Ryu J, et al. Ginsenosides compound K and Rh2inhibit tumor necrosisfactor--induced activation of the NF-κB and JNK pathways in human astroglial cells. Neurosci Lett,2007,421:37–41.
    [9] Zhou W, Feng M Q, Li X W, et al. X-Ray structure investigation of(20S)-20-O-β-D-glucopyranosyl-protopanaxadiol and antitumor effect on Lewis lung carcinoma invivo. Chem Biodivers,2009,6:380–388.
    [10] Bae E A, Choo M K, Park E K, et al. Metabolism of ginsenoside Rc by human intestinal bacteriaand its related antiallergic activity. Biol Pharm Bull,2002,25:743–747.
    [11] Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolicactivation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty Acid. JPharmacol Sci,2004,95:153–157.
    [12] Kim B H, Lee S Y, Cho H J, et al. Biotransformation of Korean Panax ginseng by Pectinex. BiolPharm Bull,2006,29(12):2472-2478.
    [1] Han Y, Sun B S, Hu X M, et al. Transformation of bioactive compounds by Fusarium saccharifungus isolated from the soil-cultivated ginseng. J Agric Food Chem2007,55:9373–9379.
    [2] Ko S R, Suzuki Y, Suzuki K, et al. Marked production of ginsenosides Rd, F2, Rg3, and CompoundK by enzymatic method. Chem Pharm Bull,2007,55:1522–1527.
    [3] Zhao X S, Wang J, Li J, et al. Highly selective biotransformation of ginsenoside Rb1to Rd byphytopathogenic fungi Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol,2009,36:721–726.
    [4] Yan Q, Zhou W, Shi X L, et al. Biotransformation pathways of ginsenoside Rb1to compound K byβ-glucosidases in fungus Paecilomyces Bainier sp.229. Process Biochem,2010,45:1550–1556.
    [5] Cheng L Q, Kim M K, Lee J W, et al. Conversion of major ginsenoside Rb1to ginsenoside F2byCaulobacter leidyia. Biotechnol Lett,2006,28:1121–1127.
    [6] Yu H S, Zhang C Z, Lu M C, et al. Purification and characterization of new special ginsenosidasehydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem PharmBull,2007,55:231–235.
    [7] Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2and Rc from Panax ginseng by foodmicroorganisms. Biol Pharm Bull,2005,28:2102–2105.
    [8] Noh K H, Son J W, Kim H J, et al. Ginsenoside Compound K production from ginseng root extractby a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem,2009,73:316-321.
    [9] Bae E A, Choo M K, Park E K, et al. Metabolism of ginsenoside Rc by human intestinal bacteria andits related antiallergic activity. Biol Pharm Bull,2002,25:743–747.
    [10] Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolicactivation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty Acid. JPharmacol Sci,2004,95:153–157.
    [11] Park S Y, Bae E A, Sung J H, et al. Purification and characterization of ginsenosideRb1-metabolizing β-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium.Biosci Biotechnol Biochem,2001,65:1163–1169.
    [1] Zhao X S, Gao L, Wang J, et al. A novel ginsenoside Rb1-hydrolyzing β-D-glucosidase fromCladosporium fulvum. Process Biochem2009,44(6):612–8.
    [2] Zhao X S, Wang J, Li J, et al. Highly selective biotransformation of ginsenoside Rb1to Rd by thephytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol,2009,36:721–6.
    [3] Gao J, Zhao X S, Liu H B, et al. A highly selective ginsenoside Rb1-hydrolyzing β-D-glucosidasefrom Cladosporium fulvum. Process Biochem2010,45:897-903.
    [4] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970,227:680–5.
    [1] Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities [J].Biochem J,1991,280(2):309.
    [2] Henrissat B, Bairoch A. Updating the sequence based classification of glycosyl hydrolases [J].Biochem J,1996,316(pt2):695.
    [3] Rye C S and Withers S G. Glycosidase mechanisms [J]. Curr Opin Chem Biol,2000,4:573–580.
    [4] Carl S R, Stephen G W. Glycosidase mechanisms [J]. Curr Opin Chem Biol,2000,4:5732-5801.
    [5] Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases [J]. Structure,1995,3:8532-8591.
    [6] Mc C J, Withers S G. Mechanisms of enzymatic glycoside hydrolysis [J]. Curr Opin Struct Biol,1994,4:8852-8921.
    [7]冯世江,李春,曹竹安.糖苷酶及其在糖基化合物改性中的研究.生物加工过程,2006,4(3):16-21.
    [8] Tull D, Wither S G, Gikes N R, et al. Glumatic Acid274is the Nucleophile in the Active Site of a―Retaining‖Exoglucanase from Cellulononas fimi [J]. J Biol Chem, l991,266:15621-15625.
    [9] Grabnitz F, Seiss M, Rucknagel Karl P. Structure of the β-glucosidase gene bal A of clostridiumthermocellum sequence analysis reveals a super family of cellulose and β-glucosidase includinghuman lactase/phcoriz in hydrolase. Eur J Biochem,1991,200:301-309.
    [10] Withers S G, Street I P. Identification of a covalent-D-glucopyranosyl enzyme intermediateformed on ap-glucosidase. J Am Chem Soc,1988,110:8551-8553.
    [11] Rudick M J, Elbein A D. Glycoprotein enzymes secreted by Aspergillus fumigatus. Purificationand properties of β-glucosidase. J Biol Chem,1973,248:6506-6513.
    [12] Meyer H P, Canevascini G. Separation and Some Properties of Two Intracellular β-Glucosidases ofSporotrichum (Chrysosporium) thermophile. Appl Environ Microbiol1981,41:924–931.
    [13] Umezurike G M. The subunit structure of β-glucosidase from Botryodiplodia theobromae Pat.Biochem J,1975,145:361-368.
    [14] Filho EXF. Purification and characterization of a β-glucosidase from solid-state cultures ofHumicola grisea var. thermoidea. Can J Microbiol,1996,42:1–5.
    [15] Coughlan M P. The properties of fungal and bacterial cellulases with comments on their productionand application. Biotechnol Genet Eng Rev,1985,3:39–109.
    [1] http://www.cazy.org/Glycoside-Hydrolases/html
    [2] Dale M P, Ensley H E, Kern K, et al. Reversible inhibitors of beta-glucosidase [J]. Biochemistry,1985,24(14):3530-9.
    [3] Dale M P, Kopfler W P, Chait I, et al. Beta-glucosidase: substrate, solvent, and viscosity variation asprobes of the rate-limiting steps [J]. Biochemistry,1986,25(9):2522-9.
    [4] Wang Q, Trimbur D, Graham R, et al. Identification of the acid/base catalyst in Agrobacteriumfaecalis beta-glucosidase by kinetic analysis of mutants [J]. Biochemistry,1995,34(44):14554-62.
    [5] Harvey A J, Hrmova M, De Gori R, et al. Comparative modeling of the three-dimensional structuresof family3glycoside hydrolases [J]. Proteins,2000,41(2):257-269.
    [6] Lee R C, Hrmova M, Burton R A, et al. Bifunctional family3glycoside hydrolases from barley withalpha-L-arabinofuranosidase and beta-D-xylosidase activity. Characterization, primary structures,and COOH-terminal processing [J]. J Biol Chem,2003,278(7):5377-5387.
    [7] Varghese J N, Hrmova M, Fincher G B. Three-dimensional structure of a barley beta-D-glucanexohydrolase, a family3glycosyl hydrolase [J]. Structure,1999,7(2):179-190.
    [8] Okuyama M, Okuno A, Shimizu N, et al. Carboxyl group of residue Asp647as possible protondonor in catalytic reaction of alpha-glucosidase from Schizosaccharomyces pombe [J]. Eur JBiochem,2001,268(8):2270-80.
    [9] Lovering A L, Lee S S, Kim Y W, et al. Mechanistic and structural analysis of a family31alpha-glycosidase and its glycosyl-enzyme intermediate [J]. J Biol Chem,2005,280(3)2105-15.
    [10] Kim Y W, Lovering A L, Chen H, et al. Expanding the thioglycoligase strategy to the synthesis ofalpha-linked thioglycosides allows structural investigation of the parent enzyme/substrate complex[J]. J Am Chem Soc,2006,128(7):2202-3.
    [11] Lee S S, Yu S, Withers S G. Alpha-1,4-Glucan lyase performs a trans-elimination via a nucleophilicdisplacement followed by a syn-elimination [J]. J Am Chem Soc,2002,124(18):4948-9.
    [12] Di Lauro B, Strazzulli A, Perugino G, et al. Isolation and characterization of a new family42beta-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius:identification of the active site residues [J]. Biochim Biophys Acta,2008,1784(2):292-301.
    [13] Ohtsu N, Motoshima H, Goto K, et al. Thermostable beta-galactosidase from an extremethermophile, Thermus sp. A4: enzyme purification and characterization, and gene cloning andsequencing [J]. Biosci Biotechnol Biochem,1998,62(8):1539-45.
    [14] Kang S K, Cho K K, Ahn J K, et al. Three forms of thermostable lactose-hydrolase from Thermussp. IB-21: cloning, expression, and enzyme characterization [J]. J Biotechnol,2005,116(4):337-46.
    [15] Van Laere K M, Abee T, Schols H A, et al. Characterization of a novel beta-galactosidase fromBifidobacterium adolescentis DSM20083active towards transgalactooligosaccharides [J]. ApplEnviron Microbiol,2000,66(4):1379-84.
    [16] Hinz S W, Van den Brock L A, Beldman G, et al. Beta-galactosidase from Bifidobacteriumadolescentis DSM20083prefers beta(1,4)-galactosides over lactose [J]. Appl Microbiol Biotechnol,2004,66(3):276-84.
    [17] Shipkowski S, Brenchley J E. Bioinformatic, genetic, and biochemical evidence that someglycoside hydrolase family42beta-galactosidases are arabinogalactan type I oligomer hydrolases[J]. Appl Environ Microbiol,2006,72(12):7730-8.
    [18] Fujimoto Y, Hattori T, Uno S, et al. Enzymatic synthesis of gentiooligosaccharides bytransglycosylation with β-glycosidases from Penicillium multicolor [J]. Carbohydrate Res,2009,344:972–978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700