Mn/Ce催化剂制备及CWAO降解正丁酸过程模拟及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化湿式氧化法是一种处理高浓度有机废水的有效方法,其处理效果主要受原液浓度、催化剂特性、反应温度、反应时间、氧分压等因素的影响。Mn-Ce催化剂在很多催化湿式氧化反应中显现出很高的催化活性,催化剂制备过程中影响催化剂活性的主要因素包括焙烧温度、焙烧时间及金属配比等。本文利用多元非线性回归和人工神经网络方法对Mn-Ce催化剂的制备及催化湿式氧化降解正丁酸的升温、恒温过程分别进行模拟,并综合考虑实验成本及降解效果约束,结合相应的优化算法对反应条件进行优化。对比发现,在Mn-Ce催化剂制备及催化湿式氧化的恒温反应过程中,人工神经网络相比非线性回归方法优化效果更理想,并将其应用到间硝基苯磺酸钠催化湿式氧化降解条件优化的研究中:带成本约束的降解条件优化无论是从降解效果还是成本上都起到很好的优化作用。人工神经网络及非线性回归方法均可以帮助实践较快寻求到经济性的最优条件,起到减少浪费、节省时间的作用,对指导实践有着重要的意义。
With the development of economy and the improvement of the urbanization level and people’s living standards, municipal waste production was growing, and their physical and chemical composition as well as the nutritional characteristics was taking place with the significant changes of economic development and people's living standards. At present, the methods of handling municipal solid waste including sanitary landfill disposal, high-temperature composting, incineration and the integrated treatment of refuse resources. More than 70% China's urban waste was disposed by sanitary landfill. Leachate was poisonous waste water containing high amounts of organics, and even leachate was also regarded as non-degradation organic compound and hard to be treated by most of the common disposal methods. Landfill leachates may be possible to pollute the surface water, ground water and the substrate of the landfill site. The landfill leachates were generated from precipitation, rainfall and the water in wastes. The organic compounds contained in landfill leachates were much more complicated than other aqueous. Besides that the level of COD could reach 7.0×10~4 mg/L, the value of BOD_5 was 3.8×10~4 mg/L, and the concentration of the ammonia nitrogen (NH_4~+-N) reached 1.7×10~3 mg/L, the landfill leachates contained high concentrations of many heavy metals such as Fe, Pb and so on. The main organic chemicals such as alkanes, alkenes, aromatic hydrocarbons, organic acids, lipids, carbonyl compounds and alcohols could be detected in landfill leachates as well. Due to its serious pollution to the surface water, ground water and the soil of the landfill sites, the long-term collection of the landfill leachates and the secondary pollution were easy to be occurred. Therefore, it is an duty to collect the landfill leachates properly and effectively treat the wastewater - leachates, especially around cities no matter the home and abroad. The treatment technologies used to dispose leachates were hot topics on earth.
     The main methods, for example physical-chemical methods, biological methods,and the combination of several different methods were usually employed to process landfill leachates. Biological methods had many advantages such as easy to be operated, lower the run cost, and the well developed operation technique. Hence, biological methods were popular and applied extensively. Some waste water was known to be of low-biodegradability, resistace to degradation and poisonous to microbial, which was not suitable to be disposed using biological methods. Physical-chemical methods had some unique merits, for example, the commonly employed technics, including photocatalysis oxidation, fenton oxidation, and physical adsorption, membrane separation, chemical precipitation, electrolytic oxidation method and other advanced oxidation technologies such as catalytic wet air oxidation (CWAO) and so on.
     CWAO was also to be considered as a kind of physical-chemical method, which was properly to be used to treat the high concentrated organic wastewater, and not properly to process those wastewater which contained too small amount of organic compounds to incinerate and too high levels of organic compounds to biological treatment. CWAO could be applied broadly to be in pratice because the treatment process was time-saving, the removal efficiency was higher, the treatment cost was lower and the chance of second pollution risk was reduce significantly. Since CWAO had been developed, the method was concerned by researchers. Under the conditions of high pressure of oxygen and temperatures, CWAO was conducted to dispose organics in wastewater with the help of some catalysts. Recently, many satisfying experimental results which employed the method of CWAO to dispose many styles of wastewater were obtained by many researchers in home and abroad. During the experiment, the degradation effecicy were affected by catalyst used, time, temperature, the levels of organic compounds and oxygen pressure. Results of degradation varied with the different degradation conditions. In order to obtain high efficiency and more economical to conduct the experiment, therefore, it was important to select the experimental conditions.
     Meanwhile, Mn-Ce catalyst shows a high catalytic activity in lots of CWAO reactions, and it has a great influence of catalytic activity and butyric acid degradation results with different catalyst preparation conditions. Therefore, it is significance for selecting a catalyst with higher catalytic activity and improving the CWAO degradation efficiency by researching the degradation effect with different catalyst preparation conditions.
     With the development of science and technology, a number of cross-science was gradually formed with the trends of "mathematical" and "intelligent". Mn-Ce catalyst preparation and CWAO degradation reaction are nonlinear dynamic processes; there are two main methods for establishing a non-linear mapping relation: non-linear regression method and artificial neural network model. The experimental data was organized and analysised by the mathematics basic theory and computational methods in the study of Mn-Ce catalyst preparation conditions and butyric acid CWAO degradation process through non-linear regression method, it is great helpful for Mn-Ce catalyst preparation conditions and butyric acid CWAO degradation mathematical simulation process by the investigation of mutual relationships between the various factors and the prediction of trends. Artificial neural network is an intelligent simulation model based on physiology; it is connected by a large number of processing units which composed of a large-scale adaptive non-linear dynamic system; it is often used to fitting and predicting complex nonlinear systems with its characteristics of strong self-learning, self-adaptive, anti-jamming, et al. In the simulation process of Mn-Ce catalyst preparation conditions and butyric acid CWAO degradation, the method of predicting the unknown results by finding out the mapping relations through the study of known experimental data has a quite broadly application prospects.
     In this paper, the influences of different Mn-Ce catalyst preparation conditions and different degradation reaction conditions during the heating and constant temperature processes on the catalytic activity prepared (expressed by TOC removal rate) and the butyric acid degradation effect (expressed by TOC removal rate) was studied. Non-linear regression method and artificial neural network model were established for different processes based on experimental data, and optimized the preparation and degradation conditions considered the experimental cost and degradation effect. In addition, it has proved that the artificial neural network method was well applied in the sodium metanitrobenzene sulfonate degradated by CWAO.
     Firstly, multiple non-linear regression mathematical model and BP neural network method were established to investigate the relationships between three main factors (baking temperature, baking time, metal matching) and butyric acid degradation result respectively, according to the experimental data of Mn-Ce catalyst preparation. Validated the models reliability by error analysis, and Matlab multi-variable optimization function--Fmincon was employed to optimize the experimental results and obtained the highest TOC removal as 95.68% which based on the regression model; and also with target of the highest TOC removal rate, Matlab genetic algorithm toolbox was combined to optimize the TOC removal rate as 99.70% which based on BP neural network model, with the baking temperature was 500.25 oC, baking time was 5h and metal matching was 0.76. The optimization result obtained by genetic algorithm based on BP neural network was 10.58% higher than the average experimental ones, and also slightly higher than the one achieved by regression model.
     Secondly, multiple non-linear regression mathematical model and BP neural network method were established to investigate the relationships between four main factors (TOC concentration of butyric acid, amount of catalyst, reaction temperature, oxygen partial pressure) and degradation result of butyric acid respectively, according to the experimental data of heating process. The average relative deviation calculated of regression model was slightly lower than the one of BP model. The degradation cost optimized by Lingo was significantly lower than the actual experiment one with the same degradation effect; the highest TOC removal rate was set as the target of optimization, and find out the best solution with Matlab genetic algorithm toolbox. The results optimized by each method had not received a significant difference with the same initial concentration and degradation cost; they had played great effect in saving cost and optimizing degradation result. The cost optimized by Lingo based on regression model was lower than the experimental one with the same degradation effect, and find out the best TOC removal rate through Matlab genetic algorithm toolbox based on BP model. The result optimized by both two methods had not significant difference with the same initial concentration and degradation cost, and both of them played great roles in degradation result and cost.
     Thirdly, mathematical model with multiple non-linear regression and BP neural network method was established to investigate the relationship between four main factors (TOC concentration of butyric acid, the amount of catalyst, reaction temperature, oxygen partial pressure, reaction time) and degradation result of butyric acid respectively, according to the experimental data of constant temperature process in butyric acid CWAO degradation. The cost optimized by Lingo software based on the regression model was significantly less than the experimental one with the same degradation results. Meanwhile, the degradation effect optimized by genetic algorithm based on BP artificial neural network was significantly better than the one optimized by Lingo with the same degradation cost.
     Finally, BP neural network was applied to simulate and optimize the meta-nitro benzene sulfonic acid sodium salt Catalytic Wet Hydrogen Peroxide Oxidation (CWPO) degradation process. The model was established to investigate the effect on degradation process which influenced by the amount of catalyst, initial pressure of oxygen, initial concentration of meta-nitro benzene sulfonic acid sodium salt, amount of H2O2, reaction temperature, reaction time and pH, and get the factors’order in significance on the TOC removal rate by factors’sensitivity analysis, the influence degree of these factors can be shown as follow: reaction temperature > initial concentration of meta-nitro benzene sulfonic acid sodium salt > pH > amount of H2O2 > reaction time > initial pressure of oxygen > amount of catalyst. With the highest TOC removal rate as the optimization objective, the degradation conditions optimization with non-cost constraints and cost constraints were carried out, the mean TOC removal rate optimized by cost constrains was more than 10% higher than the average of the experimental ones, and the mean cost was 0.2 yuan less than the one optimized by non-cost constrains.
     The icfluences of degradation effect with different reaction conditions during the processes of Mn-Ce catalyst preparation and butyric acid CWAO degradation can be described by methods of non-linear regression and artificial neural network, it is help to reduce the wastage, save time and it plays great significance to guide practice by seeking out the optimal experimental conditions with the corresponding optimization methods.
引文
Arslan I., Akmehmet Balcioglu I., Tuhkanen T.. Advanced treatment of dyehouse effluents by Fe (II) and Mn (II)-catalyzed ozonation and the H2O2/O3 process [J]. Water Science and Technology, 2000, 4(1): 13-18.
    Baig S., Coulomb I., Courant P., Liechti P.. Treatment of landfill leachates: lapeyhouse and satrod case studies [J]. Ozone Science & Engineering, 1999, 21(1): 1-22.
    Butt T. E., Oduyemi K. O. K.. A holistic approach to concentration assessment of hazards in the risk assessment of landfill leachate [J]. Environmental International, 2003, 28 (7): 597-608.
    Christensen J. B., Jensen D., Gr?n C., Filip Z., Christensen T. H.. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater [J]. Water Research, 1998, 32 (1): 125-135.
    Cybenko, G. Approximation by superposition of a sigmoid function [J], Math. Control Signals System, 1989, (2): 303-314.
    Davoli E., Gangai M. L., Morselli L., Tonelli D.. Characterization of odorants emissions from landfills by SPME and GC/MS [J]. Chemosphere, 2003, 51 (5): 357-368.
    de Morais J. L., Zamora P. P.. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates [J]. Journal of Hazardous Materials, 2005, 123 (1-3): 181-186.
    Dükkanci M., Gündüz G.. Catalytic wet air oxidation of butyric acid and maleic acid solutions over noble metal catalysts prepared on TiO2 [J]. Catalysis Communications, 2009, 10(6): 913-919.
    Fraser, J. A. L.. Hydrogen peroxide in municipal landfill and industrial effluent treatment [J]. Effluent Water Treatment, 1984, 24(5): 184-188.
    Fu J. F., Zhao Y. Q., Xue X. D., Li W. C., Babatunde A. O.. Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box-Behnken design [J]. Desalination, 2009, 243: 42-51.
    Glaze W. H., Kang J. W., Chapin D. H.. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone: Science and Engineering, 1987, 9(4): 335-352.
    Goi D., de Leitenburg C., Dolcetti G., Trovarelli A.. COD and AOX abatement in catalytic wet oxidation of halogenated liquid wastes using CeO2-based catalysts [J]. Journal of Alloys and Compounds, 2006, 408-412: 1136-1140.
    Gomes H. T., Figueiredo J. L., Faria J. L.. Catalytic wet air oxidation of butyric acid solutions using carbon-supported iridium catalysts [J]. Catalysis Today, 2002, 75(1-4): 23-28.
    Güvena G., Perendeci A., Tanyolac A.. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology [J]. Journal of Hazardous Materials, 2008, 157: 69-78.
    HoignéJ., Bader H.. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions [J]. Water Research, 1976, 10(5): 377-386.
    Huang M. Z., Wan J. Q., Ma Y. W., Wang Y., Li W. J., Sun X. F.. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks [J]. Expert Systems with Applications, 2009, 36: 10428-10437.
    Hussain S. T., Sayari A., Larachi F.. Novel K-Doped Mn-Ce-O wet oxidation catalysts with enhanced stability. Journal of Catalysis, 2001, 201(1): 153-157.
    Ismagilov I. Z., Ekatpure R. P., Tsykoza L. T., Matus E. V., Rebrov E. V., de Croon M. H. J. M., Kerzhentsev M. A., Schouten J. C.. Optimization of anodic oxidation and Cu-Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining [J]. Catalysis Today, 2005, 105: 516-528.
    Istadi, Amin N. A. S.. Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO-MnO/CeO2 catalyst using response surface methodology [J]. Fuel Processing Technology, 2006, 87: 449-459.
    K?rbahti B. K., Akta? N., Tanyola? A.. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology [J]. Journal of Hazardous Materials, 2007, 148: 83-90.
    Kurniawan T. A., Lo W. H., Chan G. Y. S.. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chemical Engineering Journal, 2006, 125(1): 35-57.
    L. A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design and application [J]. Fuel, 2000, 43:3-31.
    Luck F. Wet air oxidation: past, present and future [J]. Catalysis Today, 1999, 53 (1): 81-91. Medsker, L. R. Hybrid Neural Network and Expert System [M]. Kluwer Academic Publisher, Boston, 1994.
    MikulováJ., Rossignol S., Barbier Jr J., Duprez D., Kappenstein C.. Characterizations of platinum catalysts supported on Ce, Zr, Pr-oxides and formation of carbonate species in catalytic wet airoxidation of acetic acid [J]. Catalysis Today, 2007, 124(3-4): 185-190.
    Mirzaei A. A., Habibpour R., Kashi E.. Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins [J]. Applied Catalysis A: General, 2005, 296: 222-231.
    Mohammed, E. Haque, and K. V. Sudhakar. ANN back-propagation prediction model for fracture toughness in microalloy steel [J]. International Journal of Fatigue, 2002, 24: 1003-1010.
    Qi, L.H. Hou, J. J. Cui, P. L. Li, H. J. Research on predictions of the processing parameters of liquid extrusion by BP network [J]. Fuel, 1999, 95: 232-237.
    Ren N. Q., Chen Z. B., Wang X. J., Hu D. X., Wang A. J.. Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment [J]. International Biodeterioration & Biodegradation, 2005, 56: 216-223.
    Rumelbart, D. E. Hinton G.E. Williams R. J. Learning internal representations by error propagation [J]. Parallel Distribution Processing, 1986, 1: 318-362.
    Tronci S., Baratti R., Servida A.. Monitoring pollutant emissions in a 4.8 MW power plant through neural network [J]. Neural Computing, 2002, 43: 3-15.
    Sang N., Li G. K., Xin X. Y.. Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulagre [J]. Ecotoxicology and Environmental Safety, 2006, 63(3): 469-473.
    Sang N., Li G. K.. Genotoxicity of municipal landfill leachate on root tips of Vicia faba [J]. Mutation Research, 2004, 560(2): 159-165.
    Sarioglua M., Insel G., Artan N., Orhon D.. Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor [J]. Journal of Membrane Science, 2009, 337: 17-27.
    Schrab G. E., Brown K. W., Donnelly K. C.. Acute and genetic toxicity of municipal landfill leachate [J]. Water, Air and Soil Pollution, 1993, 69(1-2): 99-112.
    Suty H., De Traversay C., Cost M.. Applications of advanced oxidation processes: present and future [J]. Water Science and Technology, 2004, 49(4): 227-233.
    Vogl, T. P. ,Mangis, J. K. , Rigler, A. K. ,Zink, W. T. , and Alkon, D. L. Accelerating the convergence of the back propagation method [J]. Biol Cybern, 1998, 59: 257-263.
    Wang J. B., Zhu W. P., He X. W., Yang S. X.. Catalytic wet air oxidation of acetic acid over different ruthenium catalysts [J]. Catalysis Communications, 2008, 9(13): 2163-2167.
    Watanabe Y., Umegaki T., Hashimoto M., Omata K., Yamada M.. Optimization of Cu oxide catalysts formethanol synthesis by combinatorial tools using 96 well microplates, artificial neural network and genetic algorithm [J]. Catalysis Today, 2004, 89: 455-464.
    Wong F. S., Qin J. J., Wai M. N., Lim A. L., Adiga M. A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating [J]. Separation and Purification Technology. 2002, 29(1): 41-45.
    Wu J. G., Luo S. C., Toyir J., Saito M., Takeuchic M., Watanabe T.. Optimization of preparation conditions and improvement of stability of Cu/ZnO-based multicomponent catalysts for methanol synthesis from CO2 and H2 [J]. Catalysis Today, 1998, 45: 215-220.
    Yu, X. H. Can back-propagation error surface not have local minimum [J]. IEEE Trans Neural networks, 1992, 3: 1019-1021.
    Zhang Z. Y., Peng J. H., Qu W. W., Zhang L. B., Zhang Z. B., Li W., Wan R. D.. Regeneration of high-performance activated carbon from spent catalyst: Optimization using response surface methodology [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, in press.
    Zimmermann F. J.. Wet air oxidation of hazardous organics in wastewater [P]. U.S. Patent No. 2665249, 1950.
    安成强,崔作兴,郝建军。电镀三废治理技术[M]。北京:国防工业出版社,2002。
    宾月景,祝万鹏,蒋展鹏,殷彤。催化湿式烟花处理H-酸溶液的反应动力学[J]。环境科学,2000,21(3):77-80。
    陈长太,曾扬。城市垃圾填埋场渗滤液水质特性及其处理[J]。工程与技术,2001,(9):19-21。
    陈江,来丽芳,许四法。城市垃圾填埋场渗滤液生物处理技术[J]。水科学与工程技术,2007,(2):15-17。
    陈景光。高浓度果法废水处理工艺优化研究[D]。青岛:中国海洋大学,2003。
    陈莎,张颖,曹莹,王晓伟。催化湿式氧化法处理有机废水的催化剂研究[J]。环境科学与管理,2007,32(3):119-123。
    陈文纳,陈文,杨联敏,钟惠萍。助凝助沉剂在高浓度有机废水处理应用研究[J]。广西师范学院学报(自然科学版),2002,19(2):9-13。
    陈现明,王成伟,董云峰。垃圾填埋场渗滤液的组成和处理方法[J]。舰船防化,2008,(3):27-33。
    陈宇。Mn-Ce催化剂催化湿式氧化降解正丁酸条件的优化研究[D]。长春:吉林大学,2006。
    戴启洲。湿式电催化氧化处理难降解有机污染物的研究[D]。杭州:浙江大学,2008。
    戴勇,邵荣,钱晓荣,郁桂云。催化湿式氧化山梨酸生产废水催化剂的研究[J]。化学工程,2007,35(12):62-65。
    丁真真。Fenton试剂氧化苯酚废水和橡胶工业废水的研究[D]。兰州:西北师范大学,2007。
    董国华。催化湿式过氧化氢氧化法降解间硝基苯磺酸钠[D]。长春:吉林大学,2007。
    董俊明,曾光明,杨朝晖。催化湿式过氧化氢氧化法的研究[J]。环境科学动态。2004(3):29-31。
    窦和瑞,朱静东,陈拥军,吴鸣,孙承林。催化湿式氧化中铜基催化剂的流失与控制[J]。催化学报,2003,24(5):328-332。
    樊宇红,任长明,李建峰。基于B-P神经网络的非线性系统预测控制的研究田。天津大学学报,1999,32(6):720-723。
    顾凡及,李训经,阮炯。神经网络的动态模型[A]。中国神经网络学术大会论文集,1991。
    郭创新,梁年生,景雷等。自适应鲁棒BP算法及其应用研究[J]。模式识别与人工智能,1996,9(l):78-86。
    郭东辉,吕迎阳,刘瑞堂,吴伯僖。神经网络及其在网络通讯中的应用研究[J]。厦门大学学报(自然科学版),2001,40(2):283-292。
    郭晓。接触辉光放电电解技术在有机印染废水处理中的应用及其条件优化[D]。西安:西北工业大学,2007。
    韩雷。城市生活垃圾热解产气特性研究及神经网络预测[D]。杭州:浙江大学,2005。
    韩玉英,赵彬侠,张小里,张秀成,金奇庭。催化湿式氧化吡虫啉农药废水的研究[J]。工业催化,2005,13(2):43-46。
    侯昭胤,戴擎镰,吴肖群,陈甘棠。人工神经网络技术在催化剂设计中的应用[J]。石油化工,1997,26(11):743-749。
    胡胜,古梅,肖成建,罗阳明,王和义,罗顺忠,朱祖良,任兴碧。催化剂制备方法及高温还原对Pt/C/FN疏水催化剂活性的影响[J]。核技术,2008,31(7):539-545。
    黄健平,鲍姜伶。垃圾渗滤液处理技术[J]。环境科学与管理,2008,33(1):93-98。
    黄进。光催化法降解有机废水的显著性研究[J]。四川环境,2004,23(3):26-27。
    姜必亮,蓝崇钰,王伯荪。垃圾填埋场渗滤液灌溉后重金属的生态效应[J]。中国环境科学,2001,21(1):18-23。
    姜岩,闻建平,胡宗定。工业废水处理新技术与新方法的研究进展[J]。化工进展,2004,23(3):256-259。
    蒋海涛,周恭明,高廷耀。城市垃圾填埋场渗滤液的水质特性[J]。环境保护科学,2002,28(3):11-13。
    靖薇。Mn-Ce催化剂制备条件的优化研究[D]。长春:吉林大学,2005。
    康春莉,全玉莲,于宏兵,王洋,林学钰。纳米TiO2光催化降解乙酸[J]。吉林大学学报(理学版),2005,43(2):241-246。
    康春莉,隋海清,高红杰,郭晶,郭平,于宏兵,林学钰。UV/H2O2法降解乙酸影响因素的研究[J]。吉林大学学报(地球科学版),2007,37(2):371-374。
    康海笑。UASB-MBR联合工艺处理亚麻沤制废水的研究[D]。昆明:昆明理工大学,2004。
    郎咸明,魏德洲,崔振强,甘丽华。水解-UNITANK工艺处理制药废水工序的优化[J]。东北大学学报(自然科学版),2005,26(9):904-906。
    李海生。催化湿法氧化(CWAO)降解垃圾渗滤液的研究[D]。北京:北京化工大学,2004。
    李红梅。遗传算法概述[J]。软件导刊,2009,8(1):67-68。
    李建政,王卫娜,叶菁菁。丁酸甲烷发酵优势菌群的选育及其丁酸降解特性[J]。科技导报,2008,26(11):49-52。
    李宁,李光明,姚贞娅,赵建夫。废水催化湿式氧化稀土金属氧化物催化剂的研制[J]。环境污染治理技术与设备,2005,6(2):40-44。
    李世平,武文波。人工神经网络及其在遥感图像处理中的应用[J]。矿山测量,2007,(3):28-30。
    李维军。好氧-厌氧耦合法处理番茄酱加工有机废水工艺的研究[D]。石河子:石河子大学,2007。
    李维新,程树培,崔益斌。跨界融合子处理高浓度有机废水投资最小化模型研究[J]。农村生态环境,1999,15(1):37-40。
    李亚,张洪燕。处理垃圾渗沥液的新尝试:交替运行式氧化沟(PID)技术[J]。工程与技术,2001,(9):22-23。
    李鱼,刘建林,董国华,王健。催化湿式过氧化物法(CWPO)降解间硝基苯磺酸钠动力学研究[J]。安全与环境学报。2007,7(4):31-34。
    李鱼,郑爽,王江玲,陈宇。基于BP神经网络模型的催化湿式氧化正丁酸反应条件的优化[J]。吉林大学学报(理学版),2009,47(2):397-402。
    廖志民,朱小红,杨圣云。电镀废水处理与资源化回用技术发展现状与趋势[J]。环境保护。2008,406(20):71-73。
    林于廉,龙腾锐,尤鑫,易洁。微波/Fe-Zr联用技术处理正丁酸模拟废水的研究[J]。中国给水排水,2008,24(23):61-63。
    刘代飞,李劼,陈湘涛,丁凤其,邹忠。基于神经网络的氢氧化铝焙烧优化控制系统[J]。中北大学学报(自然科学版),2008,29(2):125-130。
    刘光辉。催化湿式氧化法处理垃圾渗滤液影响因素研究[D]。长春:吉林大学,2005。
    刘金平。基于BP神经网络硅热法炼镁工艺参数的优化研究[D]。南昌:南昌大学,2006。
    刘亮,李鱼,刘光辉,王健,董德明,李海生。氧化剂对CWAO降解垃圾渗滤液中有机物的影响[J]。吉林大学学报(理学版),2005,43(4):541-545。
    刘明刚。低温液相合成甲醇铜铬催化剂制备及合成工艺的研究[D]。成都:四川大学,2003。
    刘伟丽。电——多相催化祸合氧化处理苯胺废水的研究[D]。大连:大连理工大学,2006。
    刘艳侠,高新琛。BP神经网络在材料领域中的应用(综述),辽宁大学学报自然科学版,2007,34(2):116-119。
    刘燕,陈银广,郑弘,周琪。乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究[J]。环境科学学报,2006,26(8):1278-1283。
    刘怡,吴亚,魏灵朝,张谦。用人工神经网络优化乙酸乙酯的制备条件[J]。河南化工,2005,22(9):15-17。
    刘迎新,未作君,陈吉祥,张继炎。采用BP神经网络优化间二硝基苯催化加氢的反应条件[J]。催化学报,2005,26(1):20-26。
    卢建红,旷亚非,王静。间—硝基苯磺酸钠在化学退镀中的应用[J]。航空制造技术。2005(6):107-108。
    罗洁。光催化氧化法处理有机废水的研究[D]。广州:广东工业大学,2001。
    潘志彦,林春绵,周红艺,金耀门,章渊昶。超临界水中乙酸氧化降解的研究[J]。浙江工业大学学报,2000,28(4):298-301。
    祁伟。负载型钯催化剂制备方法的研究现状[J]。科技情报开发与经济,2008,18(6):125-126。
    钱小青,牛东杰,楼紫阳,赵由才。填埋场矿化垃圾资源综合利用研究进展[J]。环境卫生工程,2006,14(2):62-64。
    邵荣,戴勇。催化湿式氧化高浓度对氯苯基异氰酸酯生产废水催化剂的研究[J]。化工新型材料,2008,11(36):108-111。
    石红瑞,左锋。催化精馏合成碳酸二甲酯神经网络建模与操作条件的遗传算法优化[J]。东华大学学报,2006,32(4):47-50。
    石永,周少奇,张鸿郭。垃圾渗滤液处理技术研究进展[J]。中国沼气,2006,24(3):27-30。
    宋凌雁,李永丹,吴东方。Taguchi试验方法在CO氧化整体催化剂制备中的应用[J]。化学通报,2003,10:665-668。
    宋振寰,郭振华。神经网络在大功率船用柴油机NOx排放预测中的应用[J]。大连理工大学学报,2002,42(1):56-59。
    苏保林,王建平,贾海峰,程声通,杨忠山,武佃卫,孙峰。密云水库流域非点源模型系统[J]。清华大学学报(自然科学版)。2006,46(3):355-359。
    孙红玉。酵母菌处理高含油废水的研究[D]。天津:河北工业大学,2006。
    孙健。焚烧法处理生活垃圾发展前景探析[J]。煤炭工程,2005,(7):57-59。
    孙英杰,徐迪民,胡跃城。城市生活垃圾填埋渗滤液处理方案探讨[J]。环境污染治理技术与设备,2002,3(3):65-68。
    汤庆合,丁振华,黄仁华,王海谨,王文华。垃圾填埋场及周边水系中汞污染调查[J]。城市环境与城市生态,2003,16(6):15-17。
    汤文生,合烨,陈小安。基于BP神经网络和遗传算法的硫化工艺参数优化[J]。2008,55(2):105-108。
    谭磊,王宝山。高级氧化技术处理垃圾渗滤液的研究进展[J]。环境科学与管理,2009,34(4):87-93。
    田伟。异丁烯选择制备甲基丙烯醛催化剂的研究[D]。无锡:江南大学,2008。
    涂锦葆。电镀废水治理手册[M]。北京:机械工业出版社出版,1989。
    汪洋,余定华,孙鹏,顾铭艳,谢毓胜,黄和。基于BP神经网络的乳酸脱水制丙烯酸仿真模拟[J]。化工学报,2009,60(1):84-88。
    王保伟,张旭,许茜,许根慧。Cu/SiO2催化剂的制备、表征及其对草酸二乙酯加氢制乙二醇的催化性能[J]。催化学报,2008,29(3):275-280。
    王健,李鱼,董国华,汤洁。交互正交试验设计在Mn/Ce催化剂制备中的应用[J]。吉林大学学报(地球科学版),2007,37(3):605-610。
    王健。催化湿式氧化降解垃圾渗滤液模拟废水的研究[D]。长春:吉林大学,2008。
    王如意,何品晶,邵立明,张斌,李国建。渗滤液灌溉对香根草胁迫及抗氧化系统的影响[J]。中国环境科学,2005,25(2):155-159。
    王万俊。高浓度难降解聚醋树脂废水预处理研究[D]。苏州:江苏大学,2007。
    王秀英。基于BP神经网络的故障模式识别与应用[J]。机电工程技术,2008,37(10):103-105。
    王亚东,张林生。电镀废水处理技术的研究进展[J]。安全与环境工程。2008,15(3):69-72。
    王元军。高浓度有机废水处理工艺的研究[D]。无锡:江南大学,2008。
    魏灵朝,王福安,刘怡。LB型节能高温变换催化剂的制备工艺研究[J]。天然气化工31卷,2006,31(2):11-15。
    魏灵朝,王福安,刘怡。高温变换催化剂制备条件的神经网络优化[J]。化学反应工程与工艺,2006,22(6):497-501。
    魏云梅,赵由才。垃圾渗滤液处理技术研究进展[J]。有色冶金设计与研究,2007,28(2-3):176-181。
    温俊明。城市生活垃圾热解特性实验研究及预测模型[D]。杭州:浙江大学,2006。
    吴志敏,韦朝海,吴超飞。H2O2湿式氧化处理含酸性红B染料模拟废水的研究[J]。环境科学学报,2004,24(5):809-814。
    伍江林,杨运泉,段正康,刘文英。新型环己醇脱氢催化剂的制备及其与工业催化剂性能比较[J]。广东化工,2007,34(10):19-22。
    夏立江,温小乐。生活垃圾堆填区周边土壤的性状变化及其污染状况[J]。土壤与环境,2001,10(1):17-19。
    夏至。Cu系湿式氧化催化剂的制备及降解有机污染物的研究[D]。哈尔滨:哈尔滨理工大学,2007。
    肖雪峰,李娟英,张雁秋。垃圾填埋场渗滤液的产生、控制处理[J]。江苏环境科技,2001,14(1):38-39。
    徐强,张幸红,赫晓东,韩杰才,王雪峰。TiB2-Cu复合材料SHS工艺的人工神经网络优化[J]。哈尔滨工业大学学报,2003,(10):1199-1201。
    闫海生,刘博,喻为福,旋咏梅,刘冬雪。氧化预处理技术在农药废水处理中的应用研究进展[J]。农药,2006,45(2):78-83。
    艳萍,杨昌柱。电化学氧化法在难降解有机废水处理中的应用[J]。工业安全与环保,2004,30(6):12-14。
    杨霞,杨朝辉,陈军,陈信常,曾光明,陈维平。城市生活垃圾填埋场渗滤液处理工艺的研究[J]。环境工程,2000,18(5):12-14。
    杨玉敏。双酚A生产废水超临界催化氧化研究[D]。天津:天津大学,2005。
    杨运泉。Cu-ZrO2催化剂的制备、表征及其在醇类液相脱氢过程的反应性能研究[D]。湘潭:湘潭大学,2008。
    姚昌荣,姚山毛,李亚东。神经网络参数识别技术在施工控制中的应用[J]。四川建筑,2007,27(3):210-212。
    叶新才。膨润土处理含油废水的研究——以新疆乌兰林格膨润土为例[D]。武汉:中国地质大学,2004。
    殷春根,骆仲映,倪明江。煤的工业分析与元素分析的BP神经网络预测模型[J]。燃料化学学报,1999,27(5):408-414。
    于晓菲。应用多介质环境模型评价典型有机物污染物的环境行为[D]。大连:大连理工大学,2006。
    曾新平,唐文伟,赵建夫,顾国维。乳化液废水催化湿式氧化处理工艺中的负载型催化剂的研制与应用[J]。化工进展,2006,25(2):213-217。
    张冰。电化学法处理电镀废水[J]。煤矿环境保护,1999,13(6):40-41。
    张东平。城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测[D]。杭州:浙江大学,2003。
    张和,周立。电渗析法处理低浓度乙酸废液的研究[J]。化工环保,1998,18(4):195-198。
    张辉,赵晓峰,唐清,李文超。人工神经网络在聚苯乙烯乳胶球制备中的应用[J]。过程工程学报,2002,2(6):544-546。
    张立明。人工神经网络的模型及其应用[M]。上海:复旦大学出版社,1995。
    张瑞祥。有机高分子絮凝剂的制备及对含油废水的处理研究[D]。西安:长安大学,2006。
    张夏欢,高谦。神经网络滑坡预报系统研究与应用[J]。有色金属(矿山部分),2009,61(1):62-63。
    张跃升,松全元,赵书平,苏昭晖。垃圾填埋场渗滤液处理技术研究进展[J]。安全与环境学报,2001,1(6):1-6。
    张徵晟,李光明,夏凤毅,王华,赵修华。高级氧化技术处理垃圾渗滤液的研究进展[J]。四川环境,2005,24(5):72-78。
    赵彬侠,白伟利,李红亚,王进,张小里,金奇庭。催化湿式过氧化氢氧化农药废水Cu-Ni-Ce/SiO2催化剂的研究[J]。环境化学,2008,27(1):39-43。
    赵彬侠。湿式氧化处理毗虫琳农药生产废水的研究[D]。西安:西安建筑科技大学,2007。
    赵万有,艾桂琴。垃圾填埋场对地下水污染的研究[J]。环境科学,1997,14(5):32-33。
    郑琳,赵修军,宋建军,刘德元。城市生活垃圾处理的环境污染分析[J]。中国环境管理干部学院学报,2008,18(1):94-97。
    郑爽,董国华,王健,刘建林,李鱼。用催化湿式过氧化氢氧化法降解间硝基苯磺酸钠的影响因素[J]。吉林大学学报(理学版)。2008,46(3):560-564。
    郑爽,王健,李鱼。催化湿式氧化法降解垃圾渗滤液的应用研究[J]。环境保护,2008,404(18):74-76。
    周书天,杨润昌,黄明,谢磊。湿式过氧化氢氧化处理高浓度染料废水的工艺研究[J]。重庆环境科学,2001,23(2):62-64。
    朱耀华。电镀废水治理技术综述[M]。北京:中国环境科学出版社,2009。
    朱正峰。固体超强酸的制备、表征及其在酯化反应中的应用[D]。呼和浩特:内蒙古工业大学,2007。
    朱智飞。固相光催化氧化法处理印染废水的研究[D]。广州:广东工业大学,2002。
    蔡文生,邵学广,赵贵文,张懋森。遗传算法及其在分析化学中的应用[J]。分析化学,1997,25(2):231-237。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700