粘土矿物颗粒复合材料的制备及处理电镀工业废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究利用蒙脱石、凹凸棒石粘土矿物与工业废料粉煤灰制备复合颗粒吸附材料用于处理电镀工业废水,开发出环境友好型矿物吸附材料,旨在解决电镀工业废水引起的重金属污染,同时为粘土矿物与工业废料粉煤灰的综合利用开辟一条有效途径,课题研究具有重要的理论意义和实际应用价值。
     论文对蒙脱石/粉煤灰颗粒吸附材料的制备条件及其处理含Cu、Zn、Ni、Cr等多种重金属离子电镀工业废水的吸附条件进行了系统的研究;运用XRD、SEM、DTA/TG、BET等测试分析手段对其进行了表征;研究了复合颗粒吸附材料对电镀工业废水中多种不同浓度重金属离子的吸附/解吸规律;并探讨了复合颗粒吸附材料去除废水中重金属离子的吸附动力学方程、吸附热力学参数及等温吸附作用机理。
     主要研究成果如下:
     1复合颗粒吸附剂的制备研究
     (1)蒙脱石/粉煤灰复合颗粒吸附剂制备适宜工艺条件为:蒙脱石与粉煤灰的比例为6:4,焙烧温度450℃,焙烧时间为0.5h,添加剂(工业淀粉)比例为蒙脱石/粉煤灰总质量的10%,颗粒直径为1~2mm。在上述工艺条件下制备的复合颗粒用于吸附处理初始浓度为200mg/L的含Cu2+废水,吸附率可达96.34%,且散失率小于1%。
     (2)凹凸棒石/粉煤灰复合颗粒吸附剂制备适宜工艺条件为:凹凸棒石/粉煤灰混合比6:4,焙烧温度400。C,硅酸钠和淀粉添加比例分别为凹凸棒石/粉煤灰总质量的15%和10%。在上述工艺条件下制备的复合颗粒对初始浓度为50mg/L含Zn2+溶液的吸附率达94.23%,其散失率为4.33%。
     2颗粒吸附材料的表征
     (1)在适宜造粒条件下制得的蒙脱石/粉煤灰颗粒吸附材料的XRD图谱分析表明蒙脱石/粉煤灰颗粒吸附材料焙烧前后其物相组成基本未发生变化;DTA/TG分析表明颗粒吸附材料焙烧前后其蒙脱石结构变化不大,主要是失去蒙脱石中的吸附水和层间水;SEM图像分析显示未焙烧的蒙脱石/粉煤灰颗粒吸附材料几乎未见有显气孔,有极少量的空洞,而焙烧后的蒙脱石/粉煤灰颗粒微孔结构十分明显,形状规则,孔径大小约20~5μm。该材料的物理性能测试表明:吸水率为31.80%,显气孔率为46.82%,体积密度为1.47 kg/m3,抗压强度为5.28MPa,比表面积为10.28m2/g。
     (2)在适宜造粒条件下制得的凹凸棒石/粉煤灰颗粒吸附材料的XRD图谱分析表明焙烧前后物相组成基本未发生变化,说明颗粒焙烧并未改变其物相组成。DTA/TG分析表明凹凸棒石/粉煤灰颗粒吸附材料焙烧前后其凹凸棒石结构变化不大,主要是失去凹凸棒石中的吸附水和层间水;SEM图像分析显示未焙烧的凹凸棒石/粉煤灰颗粒吸附材料有极少量的空洞,而焙烧后的凹凸棒石/粉煤灰颗粒微孔结构较为明显,形状规则,孔径大小约10-30μm。该材料的物理性能测试表明:吸水率为32.89%,显气孔率为54.77%,体积密度为1.11 kg/m3,抗压强度为2.15 MPa,比表面积为17.01m2/g。
     3复合颗粒吸附剂处理含单一重金属离子废水研究
     正交试验确定蒙脱石/粉煤灰颗粒吸附材料去除重金属离子的优化条件为:Cu2+、Zn2+、Ni2+、Cr6+初始浓度分别为100mg·L-1、25mg·L-1、20mg·L-1和10mg·L-1;吸附剂投加量分别为12g·L-1、20g·L-1、24g·L-1和20g·L-1;溶液pH值分别为6、7、7和3;反应时间均为80min。在优化试验条件下,吸附剂对Cu2+、Zn2+、Ni2+、Cr6+去除率分别为99.00%;、99.10%、98.90%和99.36%。
     4复合颗粒材料处理电镀工业废水的研究
     (1)蒙脱石/粉煤灰颗粒吸附材料去除电镀工业废水中重金属的优化条件为:颗粒吸附材料用量为50g/L,pH值为6.5,反应时间为80min。在优化试验条件下,Cu2+、Zn2+、Ni2+、Cr6+去除率分别为98.19%、98.07%、98.81%、99.06%,处理后的废水中这些重金属的残留浓度均低于国家污水综合排放标准(GB8978—1996)一级标准。
     (2)凹凸棒石/粉煤灰颗粒吸附材料去除电镀工业废水中重金属的优化条件为:颗粒吸附剂投加量为70g/L,pH值为6.5,反应时间为80min。在优化试验条件下,Cu2+、Zn2+、Ni2+、Cr6+去除率分别为98.14%、87.79%、97.52%、97.58%,处理后的废水中这些重金属的残留浓度均低于国家污水综合排放标准(GB8978—1996)一级标准。
     5颗粒吸附材料的再生与重复使用研究
     在几种不同解吸剂中,以1mol·L-1NaCl溶液对两种颗粒吸附材料的解吸再生效果最好。颗粒吸附材料经过六次再生和重复使用后,对废水中重金属离子的去除效果略有下降,且经过六次再生和重复使用后的散失率均在10%左右,说明两种颗粒吸附剂解吸再生后,重复使用效果均较好。
     6颗粒吸附剂对重金属离子的吸附作用机理探讨
     (1)蒙脱石/粉煤灰颗粒吸附材料对重金属离子的吸附过程基本符合一级反应动力学方程Ct=C0·e-kt,说明液膜扩散为吸附过程的主控步骤。吸附热力学研究表明,由吸附热力学参数ΔH<0,ΔS<0可知,温度升高不利于反应正向进行。ΔG<0,表明Gibbs自由能的减少是颗粒吸附剂材料吸附的主要动力。蒙脱石/粉煤灰颗粒吸附剂的吸附等温曲线符合Freundlich和Langmuir型两种吸附等温模型,其中与Langmuir型吸附等温式相关性更好。
     (2)蒙脱石与水中重金属离子的吸附机理主要是离子交换吸附;凹凸棒石吸附重金属离子主要以3种形式:表面氧合、微孔通道、凹凸棒石晶体结构中。粉煤灰对废水中金属离子的吸附作用可分为物理吸附、化学吸附和吸附-絮凝沉淀协同作用三种形式。
     (3)颗粒材料吸附速度机理研究表明:吸附剂在流体中吸附物质的速度,可以分为外部扩散过程、孔隙扩散过程和吸附反应过程三种,其中以最慢的孔隙扩散阶段起控制作用。
Preparation of granulated composite materials using clay minerals and industrial wastes for treatment of electroplating industrial wastewater was studied in this paper.lt was the development of environment-friendly mineral adsorption materials. The issue aimed at solving heavy metal pollution caused by electroplating industrial waste water, and at the same time, it opened an effective way for the comprehensive utilization of clay minerals and fly ash of industrial wastes. The research topic was of important theoretical significance and practical application value.
     The preparation conditions for montmorillonite/fly ash granulated adsorption materials and the treatment of electroplating industrial wastewater containing Cu2+, Zn2+, Ni2+ and Cr6+ heavy metal ions were studied systematically in this paper. The materials were characterized by using XRD, SEM, DTA/TG, BET etc. The adsorption/desorption rules were studied with the particulate composite adsorbing materials to treat electroplating industrial wastewater containing a variety of heavy metal ions. The adsorption dynamic equation, thermodynamic parameters, and mechanism were discussed for the removal of heavy metal ions by using granulated adsorption materials.The main research achievements were as follows:
     1 Study on preparation of granulated adsorption materials
     (1) The optimum preparation process conditions for preparation of granulated adsorption materials of montmorillonite/fly ash were a ratio of montmorillonite to fly ash of 6:4, a calcination temperature of 450℃, a calcination time of 0.5h, additive industrial starch of 10% and the particle diameter of 1~2mm. When the granulated adsorption materials prepared under the above mentioned conditions were used to treat waste water of 200mg/L initial concentration containing Cu2+, its adsorption ratio was up to 96.34% and the loss ratio was less than 1%.
     (2) The optimum preparation process conditions for the preparation of granulated adsorption materials of attapulgite/fly ash were a ratio of attapulgite to fly ash of 6:4, a calcination temperature of 400℃, the additive ratio of sodium silicate and starch of 15% and 10% respectively. When the granulated adsorption materials prepared under the above mentioned conditions were used to treat waste water of 50mg/L initial concentration containing Zn2+, the adsorption ratio was up to 94.23%, and the loss ratio was 4.33%.
     2 Characterization of granulated adsorption materials
     (1) XRD pattern of the montmorillonite/fly ash granulated adsorption materials prepared under the optimum process conditions showed that the mineral phases were not changed before and later calcination. Montmorillonite mainly lost its adsorption water and interlayer water, which was observed from the DAG/TG pattern. SEM images analysis showed that there was hardly porous structure in granulated materials before calcination, but there were obviously porous structure and pore sizes of 20 to 50μm in granulated materials after calcination. The physical tests and analysis of granulated adsorption materials showed that the density was 1.47 kg/m3, water absorption capacity was 31.80%, apparent porosity was 46.82%, compressive strength was 5.28 MPa, and the surface area was 10.28m2/g.
     (2) XRD pattern of the attapulgite/fly ash particles adsorbed materials obtained under the appropriate conditions showed that the mineral phases were not changed before and after calcination. Attapulgite mainly lost its adsorption water and interlayer water, which was observed from the DAG/TG pattern. SEM images analysis showed that the granulated material had good porous structure, and pore sizes were from 10 to 30μm. The physical tests and analysis of granulated adsorption materials showed that the density of the granulated adsorption materials was 1.11 kg/m3, water absorption capacity was 32.89%, apparent porosity was 54.77%, compressive strength was 2.15 MPa, and the surface area was 17.01m2/g.
     3 Treatment of wastewater containing a single heavy metal ion with granulated adsorption materials
     The optimum conditions for granulated adsorption materials of montmorillonite/fly ash to remove heavy metal ions under orthogonal experiment were the amount of adsorbent dosage was 12g·L-1,20g·L-1,24g·L-1 and 20g·L-1 respectively; pH was 6,7,7 and 3 respectively; reaction time was 80min.When the initial concentration of Cu2+, Zn2+,Ni2+,Cr6+ was 100 mg·L-1,25 mg·L-1,20 mg·L-1 and 10 mg·L-1 respectively,the adsorbent ratio of removal of Cu2+,Zn2+,Ni2+,Cr6+ was 99.00%,99.10%,98.90% and 99.36% respectively under the optimal experimental conditions.
     4 Treatment of electroplating industrial wastewater with granulated adsorption materials
     (1) The optimum conditions for granulated adsorption materials of montmorillonite/fly ash to remove heavy metal in electroplating industial wastewater were the amount of granulated adsorption materials dosage was 0.05/cm3, pH was 6.5, and reaction time was 80min. The adsorbent removal rate of Cu2+、Zn2+、Ni2+、Cr6+ was 98.19%、98.07%、98.81%、and 99.06% respectively under the optimal experimental conditions. These residual concentrations of heavy metals waste water treated were lower than the first standard of the national waste water discharge (GB8978-1996).
     (2) The optimum conditions of using attapulgite/fly ash particles adsorbing material to remove heavy metal in electroplating industrial wastewater were granular adsorbent dosage was 0.07 g/cm-3, pH was 6.5, and reaction time was 80min. The removal ratio of Cu2+、Zn2+、Ni2+、Cr6+ was 98.14%,87.79%,97.52% and 97.58% respectively under the optimal experimental conditions. These residual concentrations of heavy metal wastewater were lower than the first standard of national wastewater discharge (GB8978-1996).
     5 Study on regeneration and reuse of granulated adsorption materials
     The effect of desorption and regeneration of two kinds of granulated adsorption materials was the best when using 1mol·L-1NaCl among several different desorption agents. The adsorptive ratio of granulated adsorption materials to remove heavy metal ions decreased slightly and the loss ratio was about 10% after six regeneration and reuse, which showed that the effects of two kinds of granulated adsorption materials were better after desorption and regeneration.
     6 Discussion of mechanism of adsorption of heavy metal ions on granulated adsorption materials
     (1) The reaction of adsorption with granulated adsorption materials of montmorillonite/fly generally was a first order reaction kinetics equation C1= C0·e-kt, which showed that the adsorption was mainly controlled by liquid membrane diffusion. As the adsorption thermodynamic parametersΔH<0,ΔS <0 andΔG<0 showed that rising temperature was not conducive to a positive reaction, which showed that the decrease ofΔG was the main driving force for the removal of the heavy metal ions.
     The adsorption data of granulated adsorption materials of montmorillonite/ fly fit with Freundlich and Langmuir adsorption isotherm models, and the correlation of Langmuir adsorption isotherm model was better.
     (2) The mechanism that heavy metal ions were adsorbed by montmorillonite was mainly ion-exchange adsorption. There were mainly three kinds of forms that the heavy metal ions were adsorbed by attapulgite, which were surface oxygenation, micro-pore channel and attapulgite crystal structure. Fly ash adsorbed metal ions could be divided into three forms:physical adsorption, chemical absorption and adsorption-flocculation sedimentation synergy.
     (3) Study on mechanism of adsorbent velocity of granulated adsorption materials showed that the adsorption velocity of adsorbent material in fluid could be divided into three stages, which were external diffusion, pore diffusion and adsorption reaction, and the slowest stage of pore diffusion process was the main control stage.
引文
[1]我国水污染治理行业2007年发展综述[J].中国环保产业,2008(8):25-28
    [2]我国水污染治理行业2006年发展报告[J].中国环保产业,2007(9):50-53
    [3]国家统计局.2006年各行业工业废水排放及处理情况.北京,2006
    [4]沈光范.关于城市污水治理政策的思考[J].中国环保产业,2004,(2):16-18
    [5]周全法,尚通明主编.电镀废弃物与材料的回收利用.北京:化学工业出版社.2004
    [6]李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状(126)[J].电镀与精饰,2003,25(5)36~38
    [7]奚旦立,孙裕生,刘秀英合编.环境监测(第三版).北京:高等教育出版社.2004
    [8]黄瑞光.21世纪电镀废水治理的发展趋势[J].电镀与精饰,2000,22(3):1~2
    [9]孙华主编.涂镀三废处理工艺与设备.北京:化学工业出版社.2006
    [10]涂国华.电镀废水的化学综合处理[J].电镀与环保,1988(10):29~31
    [11]张建梅.重金属废水处理技术研究进展(综述).西安联合大学学报,2003,6(2):55-59
    [12]王忠安.膨润土吸附废水中重金属离子的研究:[硕士学位论文].沈阳:东北大学,2005
    [13]朱利中,等.双阳离子有机膨润土吸附处理水中有机物的性能[J].中国环境科学,1999,19(4):325-329.
    [14]金辉,等.有机膨润土处理乳化油废水研究[J].环境污染与防治,1998,(20):11-14
    [15]王春平,胡章计.膨润土在治理环境污染中的应用.邢台学院学报,2006,21(4):114-116
    [16]唐源清.凹凸棒石粘土矿研究现状综述[J].甘肃冶金,2004,(15):3-6
    [17]胡涛,钱运华,金叶玲.凹凸棒石的应用研究[J].中国矿业,1999,(25):6-8
    [18]詹庚申,郑茂松,高振如.凹凸棒石粘开发利用现状、思考与前瞻[J].江苏地质,2002,(14):8-9
    [19]朱海青,任周杰.凹凸棒石粘土的开发利用现状及发展趋势[J].矿产保护与利用,1998,(5):12-15
    [20]朴芬淑.凹凸棒石粘土及其在水处理中的应用[J].沈阳大学学报自然科学版,1996,2:93~94
    [21]仰榴青.国产凹凸棒土的研究[J].江苏理工大学学报.1995,16(1):55~60
    [22]刘国光,刘兴旺,侯杰.粉煤灰吸附性能的研究[J].环境科学研究,1994(9):62~64
    [23]沈正,黄明.固化粉煤灰动力特性试验研究[J].东南大学交通学院,2007,24(2):21~24
    [24]杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望[J].中国矿业大学北京校区化工与环境学院,2003,11(3):33~36
    [25]田广科,石综利.粉煤灰改进及其吸附性能研究[J].兰州交通大学数理学院,2006(04):23-25
    [26]Serpil Cetin, Erol Pehlivan. The use of fly ash as a low cost. environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Physicochemical and Engineering Aspects,20 April 2007:Pages 83-87
    [27]席永慧,赵红.粉煤灰及膨润土对Ni2+、Zn2+、Cd2+、Pb2+的吸附研究.粉煤灰综合利用,2004,(3):3-7
    [28]彭荣华,陈丽娟,李晓湘.改性粉煤灰吸附处理含重金属离子废水的研究[J].材料保护,2005,(01):48-51
    [29]罗惠莉.化学改性粉煤灰用于生活污水处理的研究.粉煤灰综合利用,2008,(01):29-31
    [30]王淑英,张警声,杨迎军,关晓辉.利用粉煤灰处理含铜废水的研究[J].东北电力学院应用化学系,2000,20(6):62~66
    [30]张胜,李日强.利用粉煤灰与沸石处理含铜废水的研究[J].天津大学环境科学与工程学院,2004,27(3):313~315
    [32]李剑超,褚君达,丰华丽.我国粉煤灰在废水处理中的最新应用研究[J].河海大学环境与水利研究所,2001,24(2):72-76
    [33]N.A Booker, ELCooney and AJ Priestley[J].Wat, Sci.Tech,1998,34(9):17-24
    [34]王汉林,张春.粉煤灰地聚合物材料的合成[J].南昌大学建筑工程学院,东华理工学院核资源与环境教育部重点实验室,2005
    [35]Grover M, Narayanaswamy MSj Inst Eng(India) [J].Enriron Eng DivEnl,1982.63:36-39
    [36]周利民,刘峙嵘,黄群武.粉煤灰对二价金属离子的吸附特性.煤炭学报,2007,32(4):416—419
    [37]赵亚娟,刘转年,赵西成.粉煤灰吸附剂的研究进展.材料导报,2007,21)(11):88-92
    [38]王湖坤,龚文琪,胡婧.粉煤灰-累托石颗粒吸附材料处理含重金属废水.武汉理工大学学报,2007,29(8):62-66
    [39]郑礼胜,王士龙,颜世柱.用粉煤灰处理含镍废水的实验研究.粉煤灰,1998,(6):15~17
    [40]葛元新.以粉煤灰碱熔融分解物为原料合成4A型沸石.中国资源综合利用,2003,(01):25~27
    [41]徐国想,范丽花,李学宇,陈问宾,许兴友,严连香.粉煤灰沸石合成及应用研究.IM&P化工矿物与加工,2006,(09):32~34
    [42]刘艳,马毅,李艳,邢存章,吕海亮.粉煤灰合成沸石的研究.煤炭转化,2007,(04):91~95
    [43]胡吴,孙向阳,江辉.粉煤灰吸附含镍废水研究.水污染防治.2005,(08):1-3
    [44]袁春林,张金明,段玖祥,王洁.我国火电厂粉煤灰的化学成分特征.电力环境保护,1998(03):9-14
    [45]李尉卿,马阁,卢丽娟,李舒.改性粉煤灰结构与吸附性能及其在废水处理中的应用研究.现代科学仪器,2006,(02):76~79
    [46]王进,曾凡桂,王军霞.钠蒙脱石水化膨胀和层间结构的分子动力学模拟.硅酸盐学报.2005,33(8):996—1001
    [47]高海英,杨仁斌,龚道新.蒙脱石的吸附行为及其环境意义.农业环境科学学报2006,25(增刊):438~442
    [48]徐光年,乔学亮,邱小林,陈建国.有机蒙脱石的制备新方法及性能表征.硅酸盐通报.2006,26(5):878—882
    [49]王湖坤,龚文琪,胡婧.粉煤灰-累托石颗粒吸附材料处理含重金属废水.武汉理工大学学报,2007,29(8):62-66
    [50]刘萍,李凯,周海波.改性蒙脱土处理工业废水的试验研究.煤矿环保.2007,(6):93-95
    [51]施惠生,刘艳红.膨润土对重金属离子Pb2+、Zn2+、Cr(Ⅵ)、Cd2+的吸附性能.材料导报.2006,7(4):56—60
    [52]张凌燕,余佳,林秀玲.蒙脱石颗粒吸附剂的制备.城市环境与城市生态,2006,19(6):24-25
    [53]Shaobin Wang, Mehdi Soudi, Li Li, Z.H. Zhu. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials,20 May 2006, Pages 243-251
    [54]Serpil Cetin, Erol Pehlivan. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Physicochemical and Engineering Aspects,20 April 2007, Pages 83-87
    [55]K.S. Hui, C.Y.H. Chao',S.C. Kot. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 9 December 2005, Pages 89-101
    [56]I.J. Alinnor. Adsorption of heavy metal ions from aqueous solution by fly ash.Fuel, March-April 2007, Pages 853-857
    [57]吴平霄,粘土矿物材料与环境修复.北京:化学工业出版社,2004.4-23
    [58]陈鹏.对重金属离子高吸附性层状硅酸盐矿物材料的制备研究:[硕士学位论文].武汉: 武汉理工大学,2007防治技术,1999,12(2):107~108
    [59]孙家寿,刘羽,鲍世聪等.铝锆交联膨润土对废水中铬的吸附研究.非金属矿,2000,23(3):13-14
    [60]彭书传,叶鸽,李辉夫等.有机柱撑蒙脱石吸附Cr3+的研究.合肥工业大学学报(自然科学版),2006,29(2):226~229
    [61]李静萍,陈峰,李发达.凹凸棒石对废水中Ni2+吸附性能的研究.应用化工,2008,37(5):514-517
    [62]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性[J].江苏环境科技,2003,16(2):1~3
    [63]秦非,许鸥泳,蒋挺大.AT-SS复合颗粒吸附剂的制备和除铅性能研究[J].环境科学,1996,17(4):47~50.2003,(6):14~17
    [64]马万山,杨莹琴,马彦.多孔质沸石颗粒对Zn2+离子的吸附特性研究.矿产综合利用,2003,(6):14~17
    [65]马万山,许春首,郭鹏.多孔质天然沸石颗粒吸附剂对铝离子的吸附性能及再生研究.非金属矿,2002,25(3):46~47
    [66]王琼,吴翠玲.改性蒙脱石复合材料在污水处理中的研究与应用.环境科学与技术,2004,27(1):87-90
    [67]唐源清.凹凸棒石粘土矿研究现状综述,甘肃冶金,2004,26(2):83~86
    [68]彭书传,魏凤玉,周元祥,等.有机凹凸棒石粘土吸附水中苯酚的试验[J].城市环境与城市生态,1999,12(2):14~16
    [69]栗兆坤,马钢平,赵春禄.改性凹凸棒石氧化膜吸附剂的除氟性能[J].大连铁道学院学报,1998,19(2):27~31
    [70]马玉恒,方卫民,马小杰.凹凸棒土研究与应用进展[J].材料导报,2006,20(9):43-46
    [71]王湖坤.复合累托石颗粒材料的制备及处理铜冶炼工业废水的研究:[博士学位论文].武汉:武汉理工大学,2007
    [72]宋金如,龚治湘,罗明标,肖恺.凹凸棒石粘土吸附铀的性能研究及应用[J].华东地质学院学报,1998,21(3):265~272
    [73]陈天虎.凹凸棒石粘土处理印染废水研究[J].环境污染与防治,1995,17(1):24~26
    [74]裘祖楠,翁性尚,李勇,等.活化凹凸棒土对阳离子染料的脱色作用以及由于研究[J].中国环境科学,1997,17(4):373-376
    [75]E. Alvarez-Ayuso, A.Ganchez-Sanchez. Removal of heavy metals from waste waters by natural and Na-exchanged bentonite.Clays and Clay Minerals,2003,51(5):475~480
    [76]Atockmtyer M. Adsorption of zinc and nickel ions and phenol and diethyl ketones by bentionintes of different organ philicites.Clay Minerals,1991,26(3):431
    [77]Dennis G,Grubb Maria S,Guimaraes Rodrigo Valenia.Phosphate immobilization using an acidic type F fly ash[J]. Journal of Hazardous Materials,2000,76:217~236
    [78]W.S.Wu, Q.Fan, et al. Sorption-desorption of Th(IV) on attapulgite:Effects of pH,ionic strength and temperature [J].Applied Radiation and Isotopes,2007,65:1108-1114
    [79]Gangoli N, Markey D C, Thodos G. Removal of heavy metal ions from aqueous solutions with fly ash. In:Proceedings of the National Conference on Complete Water reuse,1975,270
    [70]Grover M, Naraynaswamy M S.Removal of hexavalent chromium by adsorption on fly ash, J Inst Eng(India), Part EN:Environ Eng Div,1982, (1):36
    [81]Dasmahapatra G P, Pal T K, Bhadra A K, et al.Studies on separation characteristics of hexavalent chromium from aqueous solution by fly ash.Sep Sci Techn,1996,31:2001
    [82]ChienJung Lin, Juu-En Chang.Effect of fly ash characteristics on removal of Cu(Ⅱ)from aqueous solution.Chemosphere,2001,44:1185
    [83]Belgin Bayat.Comparative study of adsorption properties of Turkish fly ashes I.The case of nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ).J Hazardous Mater,2002, B95:251
    [84]Belgin Bayat.Comparative study of adsorption properties of Turkish fly ashes II.The case of chromium(Ⅵ)and cadmium(Ⅱ).Hazardous Mater,2002, B95:275
    [85]Serpil Cetin. Erol pehlivan theuse of fly ash asa low cost, environmentally friendly alternative to activatedcarbon fortheremoval of heavy metals from aqueous solutions.Colloid Surf A:Physicochem Eng Aspects,2007,298:83
    [86]刘转年,周安宁,金奇庭.粘土吸附剂在废水处理中的应用[J].环境污染治理技术与设备,2003,16(2):31~34
    [87]尹奋平,何玉凤,王荣民.粘土矿物在废水处理中的应用[J].水处理技术.2005,31(5):1~6
    [88]邵涛,姜春梅.固化粉煤灰动力特性试验研究[J].环境科学研究,1999,12(6):47-49
    [89]Feihu Li, Qin Li, Jianping Zhai, Guanghong Sheng.Effect of Zeolitization of CFBC Fly Ash on Immobilization of Cu2+,Pb2+, and Cr2+.Ind[J] Eng. Chem. Res.2007,46,7087-7095
    [90]于立竟.粉煤灰的火法改性及其在废水处理中的应用[J].矿物岩石地球化学通报,2006,5(4):343~347
    [91]石棉水泥制品吸水率、容重及孔隙率测定方法.中国建材网,http://www.bmlink.com
    [92]羊依金,李志章,张雪乔等.坡缕石—钢渣颗粒吸附剂处理含铜离子废水的研究[J].工业水处理,2006,26(11):32~35
    [93]王庆平,刘志勇.粉煤灰颗粒增强铝基复合材料的研究[J].安徽理工大学材料系,江苏大
    学材料科学与工程学院,2006,22(4)46~50
    [94]席永慧,胡中雄.粉煤灰粘土膨润土等对Cd2+吸附性能的比较研究.农业环境科学学报, 2004,23(5):930~934
    [95]彭荣华,陈丽娟,李晓湘.改性粉煤灰吸附处理含重金属离子废水的研究.材料保护,2005,38(1):48~50
    [96]Viraraghavan.T, Rao.Ganesh A.K. Adsorption of Cadmium and Chromium from Wastewater by Fly Ash. Journal of Environmental Science and Health,1991,6(5):721~753
    [97]C. H. Weng&C. P. Huang. Treatment of Metal Industrial Wastewater by Fly Ash and Cement Fixation.Journal of Environmental,1994,120(6):1470~1487
    [98]C.T.Nhan, J.W.Graydon and D.W.Kirk. Utilizing Coal Fly Ash as A Landfill Barrier Material.Waste Management,1996,16(7):587~595
    [99]Julia Ayala, Francisco Blanco, Purificacibn Garcia, et al. Asturian Fly Ash as a Heavy Metals Removal Material. Fuel,1998,77(11):1147~1154
    [100]P.Ricou, V Hequet, I.Lecuyer, et al. Influence of Operating Conditions on Heavy Metal Cation Removal By Fly Ash in Aqueous Solution.1999 International Ash Utilization Symposium
    [101]Vinod K. Gupta, Imran Ali. Utilisation of Bagasse Fly Ash (A Sugar Industry Waste) for the Removal of Copper and Zinc from Wastewater. Separation and Purification Technology, 2000,18:131-140
    [102]Heechan Cho, Dalyoung Oh, Kwanho Kim. A Study on Removal Characteristics of Heavy Metals from Aqueous Solution by Fly Ash. Journal of Hazardous Materials,2005, 127:187-195
    [103]Roberto Terzano,Matteo Spagnuolo,Luca Medici,Bart Vekemans,Laszlo Vincze,Koen Janssens,Pacifico Ruggiero. Copper Stabilization by Zeolite.Synthesis in Polluted Soils Treated with Coal Fly Ash[J].Environ. Sci. Technol.2005,39,6280-6287
    [104]H. Katsuura, T. Inoue, M. Hiraoka, et al. Full-Scale Plant Study on Fly Ash Treatment by the Acid Extraction Process. Waste Management,1996,16(5/6):491~499
    [105]Paola Catalfamo, Sebastiana Di Pasquale, Francesco Corigliano, et al. Influence of the Calcium Content on the Coal Fly Ash Features in Some Innovative Applications. Resources, Conservation and Recycling,1997,20:119~125
    [106]Cheng-Fang Lin, Shun-Shin Lo, Herng-Yuh Lin, et al. Stabilization of Cadmium Contaminated Soils Using Synthesized Zeolite. Journal of Hazardous Materials,1998, 60:217~226
    [107]Ryunosuke Kikuchi. Application of Coal Ash to Environmental Improvement Transformation into Zeolite, Potassium Fertilizer, and FGD Absorbent. Resources, Conservation and Recycling,1999,27:333~346
    [108]L. Doulakas, K. Novy, S. Stucki, et al. Recovery of Cu, Pb, Cd and Zn from Synthetic Mixture by Selective Electrodeposition in Chloride Solution. Electrochimica Acta,2000, 46:349~356
    [109]X. Querol, N. Moreno, J.C. Umana, et al. Synthesis of Zeolites from Coal Fly Ash:an Overview. International Journal of Coal Geology 2002,50:413~423
    [110]佟巍.改性粉煤灰处理含铬废水:[硕士学位论文].华北电力大学,2002
    [111]Lasat M. M. Phytoex tract ion of toxic metals:Areview of biological mechanisms.Journal of Environmental Quality,2002,31:109~120
    [112]黄德荣.冶金厂含铬废水还原吸附治理[J].南京化工大学学报,2000,22(3):61-64.
    [113]Narendra N.Bakshi Colour removal from pulp mill effluents using fly ash-M ini Pilot experience[J].Utilizing Forest Resources,1980,76(195):104~110
    [114]Kapoor Anoop, et al. Use of immobilized bentonite in removal of heavy metals from waste water. Journal of Environmental Engineering,1998,124(10):1020~1024
    [115]Naseem R, Tahir S S.Removal of Pb(Ⅱ) from aqueous/acidic solutions by using bentonites as an adsorbent.Wat.Res.,2001,35(16):3982~3986
    [116]Winnie Matthes, Fritz T, Madsen, et al. Sorption of heavy-metal cations by Al and Zr-hydroxy intercalated and pillared bentonite. Clays and Clay Minerals,1999,47(5): 617-629
    [117]宋波,蒋引珊,刘见芬,韩宗钦.热处理对钠-蒙脱石结构和物化性能的影响.非金属矿.2003,26(1):19-21
    [118]丁述理,彭苏萍,刘钦甫,杜振川.膨润土吸附重金属离子的影响因素初探—以Zn2+为例.岩石矿物学杂志.2001,20(4):579-582
    [119]王忠安,朱一民,魏德洲,代淑娟.钙基膨润土吸附废水中锌离子的研究.有色矿冶,2006,22(2):45-47
    [120]邱俊,吕宪俊.蒙脱石的有机改性工艺及凝胶性能研究.有机化工.2008,22(1):6-10
    [121].Hesaraki,S(Hesaraki,S.);Zamanian,A(Zamanian,A.);Hafezi,M(Hafezi,M.).Montmorillonite-added calcium phosphate bioceramic foams.TRANS TECH PUBLICATIONS LTD.2008, 20, (2):111-114
    [122]22.Tiwari RR(Tiwari, Rajkiran R.), Khilar KC (Khilar, Kartic C.), Natarajan U (Natarajan, Upendra).Synthesis and characterization of novel organo-montmorillonites.APPLIED
    CLAY SCIENCE.2008.38 (4):203-208
    [123]Abollino O (Abollino,O.), Giacomino A (Giacomino, A.), Malandrino M (Malandrino, M.), Mentasti E (Mentasti, E.).Interaction of metal ions with montmorillonite and vermiculite.APPLIED CLAY SCIENCE.2008,38 (3):227-236
    [124]Chung YC (Chung, Yong-Chan), Cho TK (Cho, Tae Keun), Chun BC (Chun, Byoung Chul).Dependence of montmorillonite dispersion in nanocomposites on polymer matrix and compatibilizer content, and the impact on mechanical properties.FIBERS AND POLYMERS.2008,9(1):7-14
    [125]范文元.利用凹凸棒石黏土吸附含铬废水[J].化工环保,1989,9(4):248~249
    [126]陈天虎.改性凹凸棒石粘土吸附性能对比实验研究[J].工业水处理,1999,(13):21-25
    [127]徐国想,潘碌亭,刘吉堂等.粉煤灰沸石处理含铜废水的研究[J].中国矿业,2007,16(8):68~70
    [128]Shaobin Wang, Mehdi Soudi, Li Li, Z.H. Zhu. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials,20 May 2006:Pages 243-251
    [129]I.J. Alinnor. Adsorption of heavy metal ions from aqueous solution by fly ash.Fuel, March-April 2007:Pages 853-857
    [130]秦非,许鸥泳,蒋挺大.AT-SS复合颗粒吸附剂的制备和除铅性能研究.环境科学,1996,17(4):47~50
    [131]王小高,冯有利.粉煤灰在废水处理中的应用.再生资源研究,2005,(2):40~42
    [132]马万山,李玉玲,杨莹琴.天然沸石颗粒吸附剂对Cr3+的吸附性能及再生研究.IM&P化工矿物与加工,2006,(3):13~15
    [133]杨莹琴,马稳,马万山.多孔质天然沸石颗粒吸附剂对铜离子的吸附及再生.非金属矿,2004,27(2):44~48
    [134]马万山,许春萱,郭鹏.多孔2天然沸石颗粒吸附剂对镉离子的吸附性能及再生研究.非金属矿,2002,25(3):46~47
    [135]李虎杰.膨润土对重金属离子的吸附作用.中国矿业,2005,14(2):44~46
    [136]张建平,张振声,尹连庆等.粉煤灰处理废水的机理及应用.粉煤灰综合利用,1996,(4):33-35
    [137]I.Anguissola Scott, S.Silva and C.Baffi.Effect of Fly Ash pH on the Uptake of Heavy Metals by Chicory. Water, Air and Soil Pollution,1999,109:397~406
    [138]张文艺,翟建平,李琴.粉煤灰吸附法处理污水机理.粉煤灰综合利用,2006,(2):54-56
    [139]Gupta G.S., Singh V.N. Removal of Chrome Dye from Aqueous Solutions by Mixed
    Adsorbents Fly Ash and Coal. Water Research,1990,24
    [140]陈天虎.凹凸棒石黏土吸附废水中污染物机理探讨[J].高校地质学报,2000,6(2):265~270
    [141]Brunauer S, Emmett P H, Teller E. Adsorption of gases inmultimo21ecular layers[J]. J Am Chem Soc,1938,60 (2):309 -319
    [142]Young D M, Crowell A D. Physical adsorption of gasses[M]. London:Butterworth,1962
    [143]Steele W A. The interaction of gasses with solids[M]. NewYork:Wiley,1971
    [144]Hamed Ahmed M. Theoretical and experimental study on thetransient adsorption characteristics of a vertical packed porousbed[J]. Renewable Energy,2002,27:525-541
    [145]Do D D, Do Ha D. A new adsorption isotherm forheterogeneous adsorbent based on the isosterric heat as afunction of loading[J]. Chemcal Engeering Science,1997,52 (2):297-310
    [146]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1987
    [147](日)北川浩[著].鹿政理[译].吸附的基础与设计[M].北京:化学工业出版社.1983
    [148]Jaroniec M, Madey R[著],加璐,程代云,王光昌[译].非均匀固体上的物理吸附[M].北京:化学工业出版社,1997
    [149]Sakoda A, Suzuki M. Fundamental study on solar poweredadsorption cooling system[J]. J Chem Eng Japan,1984,17(1):52-57
    [150]Passos E F, Escobedo J F, Meunier F. Simulation of anintermittent adsorptive solar cooling system [J]. SolarEnergy,1989,42 (2):1-103
    [151]尹奋平,何玉凤,王荣民.粘土矿物在废水处理中的应用[J].水处理技术,2005,31(5):1-6
    [152]杨献忠,陈敬中.膨润土(蒙脱石)在城市环境治理中的应用.资源调查与环境,2003,24(4):281-286
    [153]赵耀.高强粉煤灰复合材料的研制[J].包头市环境监测站,2006,23(5)36~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700