用户名: 密码: 验证码:
微纳氧化亚铜及其复合物的电子束辐照制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu_2O是一种p型半导体,其禁带宽度仅为2.17eV,能被太阳光中的可见光激发,因此能充分利用清洁能源太阳能。Cu_2O的优点是无毒、相对价廉、化学稳定性较好。近年来已有一些关于Cu_2O可见光降解染料和持久性有机污染物的报道。然而存在的问题是氧化亚铜被光激发产生的光生空穴电子对易复合,导致光量子效率不高。而沉积导体如贵金属在Cu_2O表面或者Cu_2O和其它半导体复合能解决这些问题。目前,制备各种形貌的纳米Cu_2O的方法很多,但是电子束辐照方法制备Cu_2O及其复合物的报道却很少。
     本论文采用电子束辐照技术合成了Cu_2O及其Ag、TiO_2、SnO_2、SiO_2等复合物,研究了制备条件对催化剂形貌的影响。运用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电镜(TEM)、扫描电镜(SEM)、红外(IR)、紫外-可见(UV-vis)等方法对所制备的光催化剂进行组成、结构和形貌的分析,同时考察了这些光催化剂在偶氮染料的可见光降解方面的应用。探讨了溶解氧和羟基自由基的活化机理。具体的研究工作集中在以下几个方面:
     1.以硫酸铜为原料,以聚乙二醇(PEG)和聚乙烯醇(PVA)为分散剂,异丙醇为自由基清除剂,在不加任何还原剂的条件下,电子束辐照含二价铜离子的水溶液体系制备出不同形貌的Cu_2O纳米粒子。
     (1)溶液体系的pH值对产物的类型影响很大,酸性条件下得到了纳米铜与氧化亚铜,弱碱性条件下得到了纳米氧化亚铜。由于用来调节pH值的氨水对产物Cu_2O有溶蚀作用,故适宜的pH在8-9之间。分散剂PEG的浓度对产物形貌有较大的影响,浓度为0.08g/L时,得到了圆球形及立方体的Cu_2O纳米粒子,浓度增大到0.2g/L时得到立方体的纳米Cu_2O。该体系所得产物纳米Cu_2O对偶氮染料甲基橙有较好的可见光降解能力,一些因素如制备体系的pH值和PEG浓度均影响降解效果,在pH8.0和PEG浓度为0.2g/L制备条件下得到的产物光催化活性最高,可见光照射70min,甲基橙的降解率达90.8%。
     (2)以PVA为分散剂得到了正八面体Cu_2O纳米颗粒。在这个体系中,溶液pH值也对产物形貌有影响,pH增高,过量的氨水存在溶蚀纳米Cu_2O,使产物从正八面体逐渐转变为不规格的颗粒。辐照吸收剂量也影响形貌,吸收剂量从70kGy增大到280kGy,颗粒从不规则形貌逐渐变为正八面体。纳米Cu_2O的生长机理遵循Ostwald熟化定律。对甲基橙的可见光降解表明在吸收剂量为280kGy,pH8.0制备得到的正八面体纳米Cu_2O光催化活性最好,在可见光下照射70min,甲基橙的降解率可达97.6%。
     2.电子束辐照含二价铜离子的酸性溶液得到纳米Cu后再水解也得到了氧化亚铜,通入空气和升高温度均能加速Cu_2O的生成。对甲基橙的可见光降解表明其活性比商品Cu_2O的高,可见光照射70min,水解得到的Cu_2O光催化体系中甲基橙的降解率为50.7%,而商品Cu_2O体系中甲基橙的降解率仅为20.8%。
     3.电子束辐照一步法成功合成了Ag/Cu_2O纳米复合物,Ag的引入能抑制纳米Cu_2O晶体的生长,使其分散更均匀。X射线光电子能谱分析表明复合物中Cu_2O表面易被氧化成CuO。复合物对甲基橙的可见光降解实验表明其光催化活性高于单一成分的Cu_2O,适量的Ag存在有利于提高复合物的光催化活性,原料中AgNO3与CuSO4.5H2O的摩尔比例为15%所制成的Ag/Cu_2O纳米复合物的光催化活性最高,可见光照射30min,甲基橙的降解率可达97%。过量的Ag反而使复合物的催化活性降低。
     4.以PVA为分散剂,通过电子束辐照含Cu2+溶液和金属氧化物的混合物,使生成的Cu_2O分别沉积在TiO_2、SnO_2、Fe2O3这三种n型半导体上,制备了p-n型复合半导体。TEM的观测表明适量TiO_2、SnO_2的引入使复合物分散更均匀。制备的复合物在可见光下对偶氮染料金橙Ⅱ的降解表明,Cu_2O(90%)/TiO_2、Cu_2O(90%) /Fe2O3催化活性比单纯的Cu_2O高,说明这两种复合物能使光生空穴电子对有效分离从而提高光催化活性。而Cu_2O(90%)/SnO_2的催化活性与Cu_2O一样高。
     5.通过电子束辐照含Cu2+和SiO_2的混合液,将纳米Cu_2O沉积在绝缘体SiO_2上,制备了Cu_2O/SiO_2复合物,并以金橙Ⅱ为探针测试了复合物的光催化活性,结果表明Cu_2O与SiO_2比例为5: 5、7: 3和9: 1(w: w)时催化活性较高。表明以适量的SiO_2为载体,并不损失有效光照,使催化剂的活性仍然能够保持。这种情况下添加SiO_2作为载体,可以降低光催化剂的成本。
     6.溶解氧的增加促进了染料的降解,而自由基清除剂异丙醇和叔丁醇则使Cu_2O和其复合物的光催化活性降低,表明光催化是通过自由基氧化进行。
Cu_2O is a p-type semiconductor with a band gap of 2.17 eV, it can be activated by the visible light, thus, the clean energy solar energy can be effectively utilized. Cu_2O has cheap, relatively non toxic properties, and good chemical stability. In recent years, there have been some reports on the photodegradation of dyes and persistent organic pollutants by Cu_2O under visible light. There is a limitation that the carriers excitated by light cannot be transferred efficiently and are easy to recombine, to solve this problem, Cu_2O composite with other semiconductors or conductive materials such as noble metals may be a good way. Nano-Cu_2O with various morphologies has been prepared by many methods, but the reports on the electron beam irradiation synthesis of Cu_2O nanoparticles and their composites are rare.
     In this dissertation, the Cu_2O nanoparticles and their nanocomposites with Ag, TiO_2, SnO_2, Fe2O3 and SiO_2 were synthesized by electron beam irradiation, and the effects of preparation conditions on the morphologies were studied. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), UV-vis spectrophotometer and FT-IR spectrophotometer were used to analyze the compositions, structures and morphologies of the products. The applications of these photocatalysts on the visible light degradation of the azo dye were also studied. The activation mechanisms of dissolved oxygen and hydroxyl radical during the photodegradation of dyes were also investigated. This dissertation contains the following major parts:
     1. With poly (ethylene glycol) (PEG) and Polyvinyl alcohol (PVA) as templates and CuSO4 as raw materials, without further reducing reagent, with the addition of isopropanol as a scavenger of oxidative radicals such as·OH produced during water-radiolysis, nano-Cu_2O with various morphologies have been prepared by electron beam irradiation.
     (1)The pH value of the solution has a great influence on the types of products, the mixtures of nano-Cu and Cu_2O are obtained at acidic conditions, pure Cu_2O nanoparticles are obtained at alkaline conditions. The appropriate pH value of the solution is in the range of 8 to 9, because the ammonia which used to adjust the pH can dissolve the Cu_2O. The concentration of PEG also has a great influence on the shape of Cu_2O, a mixture of spheres and cubes can be obtained at 0.08g/L PEG, cubes are obtained at 0.2g/L PEG. The as-prepared Cu_2O nanostructures show activity toward photodegradation of MO. Influences of some parameters such as Cu_2O nanoparticles prepared at different pH values and PEG concentration are also investigated. Cu_2O nanoparticles prepared from pH 8.0 and 0.2g/L PEG show the highest photodegradation efficiencies, the degradation percentage of MO reaches to 90.8% after 70min irradiation of visible light.
     (2) Octahedral nano-Cu_2O can be synthesized with PVA as template. The pH values and adsorbed doses influence the shape of products. With the increase of pH, the excess ammonia will dissolve the octahedral Cu_2O into irregular particles. The obtained Cu_2O varies from irregular to octahedron by increasing the adsorbed dose from 70kGy to 280kGy. The process of crystal growth follows Ostwald ripening. Octahedral Cu_2O nanoparticles prepared from pH 8.0 and adsorbed dose of 280kGy show the highest catalytic activity on the degradation of MO under visible light, the degradation percentage of MO reaches to 90.8% after 70min irradiation.
     2. The nano-Cu can be obtained by the irradiation of acid solution containing Cu2+, then Cu is oxidized to Cu_2O by hydrolysis. The bubbling of air and higher temperature can accelerate the formation of Cu_2O. The photodegradation of MO on the as-prepared Cu_2O shows that it exhibits higher catalytic activity than that of commercial Cu_2O under visible light, the degradation percentage of MO reaches to 50.7% on the as-prepared Cu_2O, while it reaches to 20.8% on the commercial Cu_2O.
     3. The Ag/Cu_2O nanocomposites are successfully synthesized by one-step electron beam irradiation, the introduction of Ag has an inhibition effect on the growth of cuprous oxide crystallite. The XPS analysis shows that the surface of Cu_2O is easy to be oxidized to CuO. The Ag/Cu_2O nanocomposites exhibit higher catalytic activity than that of pure Cu_2O by the photodegradation of MO under visible light, and appropriate amount of Ag on the surface of the nanocomposites enhance the catalytic activity, Ag/Cu_2O nanocomposites obtained from 15%molAgNO3/CuSO4.5H2O show the best catalytic activity, the degradation percentage of MO reaches to 97% after 30min irradiation. But the excess Ag hinders the activity.
     4. Using PVA as template, the p-n semiconductors Cu_2O/TiO_2, Cu_2O/SnO_2 and Cu_2O/Fe2O3 can be synthesized by the irradiation of the mixtures containing TiO_2, SnO_2, Fe2O3 and Cu2+. The TEM observations demonstrate that the composites distribute more evenly with the addition of appropriate amount of TiO_2 and SnO_2. The photodegradation of orangeⅡby the as-prepared composites show that Cu_2O(90%)/TiO_2 and Cu_2O(90%)/Fe2O3 exhibit higher catalytic activity than that of pure Cu_2O, indicating that the photogenerated electron and hole can be effectively separated to improve the photocatalytic activity. While the Cu_2O(90%)/SnO_2 show as high photocatalytic activity as Cu_2O.
     5. The Cu_2O/SiO_2 composite is obtained by the irradiation of the mixtures containing SiO_2 and Cu2+, using PVA as template. The orangeⅡis used as the model pollutant to measure the photocatalytic activity of the Cu_2O/SiO_2 composite, the results show that the composites exhibit high catalytic activity when the ratio of Cu_2O and SiO_2 are 5: 5, 7: 3 and 9: 1 (w: w),respectively. This indicates that SiO_2 does not lose the effective light and lower the activity of photocatalyst when appropriate amount of SiO_2 acts as supports. Therefore, the addition of SiO_2 can reduce the cost of photocatalyst.
     6. The increase of dissolved oxygen enhances the degradation of the dye, the addition of free radical scavengers tertbutyl alcohol and isopropanol reduce the photocatalytic activity of Cu_2O nanoparticles and their composite.
引文
[1]李家珍,染料、染色工业废水处理.北京:化学工业出版社, 1997.
    [2]Gurnham C.F., Industries waste control. NewYork: Aeademic Press, 1965.
    [3]Chung K.T., Stevens S.E., Degradation of azo dyes by environmental microorganisms and helminthes. Envrion. Toxical. Chem., 1993, 12: 2121-2132.
    [4]赵德丰,尹志刚,费久佳,丁索心,非诱变偶氮染料的研究进展(I)─偶氮染料诱变性研究方法及其致癌机理.化工进展, 2000, 19(13): 6-40.
    [5]金若菲,偶氮染料脱色工程菌的特性及强化作用研究.大连理工大学博士学位论文, 2007.
    [6]章杰,禁用染料和环保型染料.北京:中国化学工业出版社, 2001: 117.
    [7]周琪,赵由才,染料对人体健康和生态环境的危害.环境与健康杂志, 2005, 22: 229-231.
    [8]Skipper P.L., Tannenbaum S.T., Molecular Dosimetry of Aromatic Amines in Human Populations. Environ. Health Perspect., 1994, 102: 17-21.
    [9]Turesky R.J., Gross G.A., Stillwell W.G., Skipper P.L., Tannenbaum S.T., Species Differences in Metabolism of Heterocyclic Aromatic Amines, Human Exposure, and Biomonitoring. Environ. Health Perspect., 1994, 102: 47-51.
    [10]Elizabeth A., Sweney J., Chipman K., Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes. Environ. Health Perspect., 1994, l02: l 19-122.
    [11]Charles M., Modification of plasmid and bacteriophage DNA by aromatic amines: effects on survival, template activity, and mutagenicity. Environ. Health Perspect., 1994, l02: 2l7-220.
    [12]李宏, Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究.重庆大学博士论文, 2007, p4.
    [13]Neamtu M., Yedieler A., Siminiceanu I., Macoveanu M., Kettrup A. Decolorization of disperse red 354 azo dye in water by several oxidation processes-a comparative study. Dyes Pigments, 2004, 60: 61-68.
    [14]Slokar Y.M., Le Marechal A.M., Methods of decoloration of textile wastewaters.Dyes Pigments, 1998, 37: 335-356.
    [15]章飞芳,化学氧化活性染料及其降解机理的研究.中国科学院研究生院博士学位论文,2003, p9.
    [16]张林生,蒋岚岚,染料废水的脱色方法.化工环保, 2000, 20: 14-18.
    [17]金敏,王新为,宋农,郑金来,古长庆,孔庆鑫,李君文,白腐菌J-6对五类化学结构染料的脱色性能.环境污染与防治, 2004, 3: 182-185.
    [18]Selvam K., Swaminthan K., Chae K.S., Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresource Technol., 2003, 88: 115-119.
    [19]赵东源,陈尔庭,任继光,王起斌,徐萍,郝占利,天然蒙托土对印染废水吸附处理的研究.环境污染与防治,1993, 15 (5): 23.
    [20]龚仁敏,天然植物材料作为吸附剂去除水溶液中离子型染料及吸附机理的研究.南京大学博士学位论文, 2004.
    [21]Graham N., Chen X. G., Jayaseelan S., The potential application of activated carbon from sewage sludge to organic dyes removal. Water Sci. Technol., 2001, 43(2): 245-252.
    [22]沈俊菊,庄源益,张稚妍,阳离子絮凝剂P(AM-DMC)的合成及其对活性染料废水的絮凝脱色化工环保, 2005, 25(6): 480-484.
    [23]陶映初,陶举洲,环境电化学.北京:化学工业出版社, 2003, p182-183.
    [24]Comninellies C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta., 1994, 39: 1857-1862.
    [25]Juttner K., Galla U., Schmieder H., Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta., 2000, 45: 2575-2594.
    [26]Dávila-Jiménez M.M., Elizalde-González M.P., Gutiérrez-González A., Peláez-Cid A.A., Electrochemical treatment of textile dyes and their analysis by high-performance liquid chromatography with diode array detection. J. Chromatogr. A, 2000, 889: 253-259.
    [27]Yang C.H., Wen T.C., Lee C.C., Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. J. Appl. Electrochem., 2000, 30: 1043-1051.
    [28]北京市环境技术与设备研究中心等单位,三废处理工程技术手册(废水卷).北京:化学工业出版社, 2002.
    [29]洪光,王鹏,张国宇,马慧俊,姜思朋,改性氧化铝微波诱导氧化处理雅格素蓝BFBR染料废水的研究.环境科学学报, 2005, 25(2): 254-258.
    [30]国伟林,高丽,姬广磊,王西奎,济南大学学报(自然科学版). 2006, 20(3): 213-215.
    [31]Entezari M. H., Kruus P., Otson R., The effect of frequency on sonochemical reactions III: dissociation of carbon disulfide. Ultrason. Sonochem., 1997, 4: 49-54.
    [32]Hua I., Hoffmann M. R., Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ. Sci. Technol., 1997, 31: 2237-2243.
    [33]Rehorek A., Tauber M., Gubitz G., Application of power ultrasound for azo dye degradation. Ultrason. Sonochem., 2004, 11: 177-182.
    [34]Tezcanli-Guyer G., Ince N.H., Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrason. Sonochem., 2003, 10: 235-240.
    [35]Hu H., Yang M., Dang J., Treatment of strong acid dye wastewater by solvent extraction. Sep. Purif. Technol., 2005, 42:129-136.
    [36]刘梅红,纳滤膜技术处理印染废水试验研究水.处理技术, 2002, 28(1): 42-44.
    [37]Koyuncu I., Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity. Desalination, 2002, 143: 243-253.
    [38]浙江欧美环境工程有限公司,全膜法使印染废水达到纯水标准.纺织服装周刊, 2007, 20: 38.
    [39]张治宏,王彩花,王晓昌,高级氧化技术在印染废水处理中的研究进展.工业安全与环保, 2008, 34(8): 19-21.
    [40]孙应届,徐迪民,刘辉,超临界水氧化技术研究与应用进展.中国给水排水, 2002, 18(2): 35-37.
    [41]林春绵,袁细宁,沈雁,王侃,戎顺熙,ε-酸在超临界水中的氧化降解.高校化学工程学报, 2000,14(5): 480-483.
    [42]马承愚,姜安玺,彭英利,杨云升,超临界水氧化法处理偶氮染料生产废水的实验研究.黑龙江大学自然科学学报,2005, 22(4): 525-527.
    [43]Carey J.H., Lawrence J., Tosine H.M., Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxical., 1976, 16: 697-701.
    [44]De Jongh P.E., Vanmaekelbergh D., Kelly J.J., Cu_2O: a catalyst for the photochemical decomposition of water? Chem. Commun., 1999: 1069-1070.
    [45]马丽丽,可见光响应的纳米Cu_2O、CdS的制备及其光催化性质研究,华中师范大学博士学位论文, 2008.
    [46]Luo Y., Yu B., Tu Y., Liang Y., Zhang Y., Liu J., Li J., Jia Z., Self-assembly synthesis of cactuslike Cu_2O 3D nanoarchitectures via a low-temperature solution approach. Mater. Res. Bull., 2008, 43: 2166-2171.
    [47]Xu H., Wang W., Zhu W., A facile strategy to porous materials: coordination-assisted heterogeneous dissolution route to the spherical Cu_2O single crystallites with hierarchical pores. Micropor. Mesopor. Mat., 2006, 95: 321-328.
    [48]Xu H., Wang W., Zhu W., Shape evolution and size-controllable synthesis of Cu_2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B, 2006, 110: 13829-13834.
    [49]陈金毅,纳米光催化剂用于污水处理研究.华中师范大学硕士学位论文, 2002.
    [50]Tang A., Xiao Y., Ouyang J., Nie S., Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes. J. Alloy. Compd., 2008, 457: 447-451.
    [51]Kuo C., Huang M., Facile synthesis of Cu_2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C, 2008, 112: 18355-18360.
    [52]Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95: 69-96.
    [53]魏明真,霍建振,伦宁,马西骋,温树林,一种新型的半导体光催化剂-氧化亚铜.材料导报, 2007, 21: 130-133.
    [54]Wood B. J., Wise H., Yolles R. S., Selectivity and stoichiometry of copper oxide in propylene oxidation. J. Catalys., 1969, 15: 355-362.
    [55]Zhang Y.G., Ma L.L., Li J.L., Yu Y., In situ fenton reagent generated from TiO_2/Cu_2O composite film: a new way to utilize TiO_2 under visible light irradiation. Environ. Sci. Technol., 2007, 41: 6264-6269.
    [56]Bessekhouad Y., Robert D., Weber J.V., Photocatalytic activity of Cu_2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions. Catal. Today, 2005, 101: 315-321.
    [57]Xu Y.H., Liang D.H., Liu M.L., Liu D.Z., Preparation and characterization of Cu_2O-TiO_2: Efficient photocatalytic degradation of methylene blue. Mater. Res. Bull., 2008, 43: 3474-3482.
    [1]Kormann C., Bahnemann D. W., Hoffmann M. R., Photocatalytic production of H2O_2 and organic peroxides in aqueous suspensions of TiO_2, ZnO, and desert sand. Environ. Sci. Technol., 1988, 22: 798-806.
    [1] Garuthara R., Siripala W., Photoluminescence characterization of polycrystalline n-type Cu_2O films. J. Lumin., 2006, 121: 173-178.
    [2] White B., Yin M., Hall A., Le D., Stolbov S., Rahman T., Turro N., O’Brien S., Complete CO Oxidation over Cu_2O Nanoparticles Supported on Silica Gel. Nano Lett., 2006, 6: 2095-2098.
    [3] Tang B.X., Wang F., Li J. H., Xie Y.X., Zhang M. B., Reusable Cu_2O/PPh3/TBAB system for the cross-couplings of aryl halides and heteroaryl halides with terminal alkynes. J. Org. Chem., 2007, 72: 6294-6297.
    [4]Grugeon S., Laruelle S., Urbina R.H., Dupont L., Poizot P., Tarascona J.M., Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc., 2001, 148: A285-A292.
    [5]Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499.
    [6]Zhang C.Q., Tu J.P., Huang X.H., Yuan Y.F., Chen X.T., Mao F., Preparation and electrochemical performances of cubic shape Cu_2O as anode material for lithium ion batteries. J. Alloy. Compd., 2007, 441: 52-56.
    [7]Li X., Gao H., Murphy C.J., Gou L., Nanoindentation of Cu_2O Nanocubes. Nano Lett., 2004, 4: 1903-1907.
    [8]Shishiyanu S.T., Shishiyanu T.S., Lupan O.I., Novel NO_2 gas sensor based on cuprous oxide thin films. Sensor. Actuat. B-Chem., 2006, 113: 468-476.
    [9]Petra E.J., Daniel V., John J.K., Cu_2O: a catalyst for the photochemical decomposition of water? Chem. Commun., 1999, 1069-1070.
    [10]Xu H., Wang W., Zhu W., Shape evolution and size-controllable synthesis of Cu_2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B, 2006, 110: 13829-13834.
    [11]Kuo C., Huang M., Facile synthesis of Cu_2O nanocrystals with systematic shapeevolution from cubic to octahedral structures. J. Phys. Chem. C, 2008, 112: 18355-18360.
    [12]Xu H., Wang W., Zhu W., A facile strategy to porous materials: coordination-assisted heterogeneous dissolution route to the spherical Cu_2O single crystallites with hierarchical pores. Micropor. Mesopor. Mat., 2006, 95: 321-328.
    [13]Hong X., Wang G., Zhu W., Shen X., Wang Y., Synthesis of sub-10 nm Cu_2O Nanowires by Poly(vinyl pyrrolidone)-Assisted Electrodeposition. J. Phys. Chem. C 2009, 113: 14172-14175.
    [14]Wang W., Wang G., Wang X., Zhan Y., Liu Y., Zheng C., Synthesis and characterization of Cu_2O nanowires by a novel reduction route. Adv. Mater., 2002, 14: 67-69.
    [15]Kuo C., Huang M., Fabrication of truncated rhombic dodecahedral Cu_2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc., 2008, 130: 12815-12820.
    [16]Teo J.J., Chang Y., Zeng H.C., Fabrications of hollow nanocubes of Cu_2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir, 2006, 22: 7369-7377.
    [17]Xu H., Wang W., Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed., 2007, 46: 1489-1492.
    [18]Wang Z., Wang H., Wang L., Pan L., Controlled synthesis of Cu_2O cubic and octahedral nano- and microcrystals. Cryst. Res. Technol., 2009, 44: 624-628.
    [19]Liang X., Gao L., Yang S., Sun J., Facile synthesis and shape evolution of single-crystal cuprous oxide. Adv. Mater., 2009, 21: 2068-2071.
    [20]Gou L., Murphy C. J., Solution-phase synthesis of Cu_2O nanocubes. Nano Lett., 2003, 3: 231-234.
    [21]Kuo C., Huang M., Facile synthesis of Cu_2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C, 2008, 112: 18355-18360.
    [22]Yu S., Colfen H., Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem., 2004, 14: 2124-2147.
    [23]Chen S.J., Chen X. T., Xue Z.L., Li L.H., You X.Z., Solvothermal preparation ofCu_2O crystalline particles. J. Cryst. Growth., 2002, 246: 169-175.
    [24]Gou L.F., Murphy C.J., Controlling the size of Cu_2O nanocubes from 200 to 25 nm. J. Mater. Chem., 2004, 14: 735-738.
    [25]Kumar R.V., Mastai Y., Diamant Y., Gdanken A., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu_2O embedded in a polyaniline matrix. J. Mater. Chem., 2001, 11: 1209-1213.
    [26]Qu Y.L., Li X.Y., Chen G.H., Zhang H.J., Chen Y.Y., Synthesis of Cu_2O nano-whiskers by a novel wet-chemical route. Mater. Lett., 2008, 62: 886-888.
    [27]Sharma P., Bhatti H. S., Synthesis of quasi-1D cuprous oxide nanostructure and its structural characterizations. J. Phys. Chem. Solids., 2008, 69: 1718-1727.
    [28]Wang D.B., Yu D.B., Mo M.S., Liu X.M., Qian Y.T., Seed-mediated growth approach to shape-controlled synthesis of Cu_2O particles. J. Colloid. Interf. Sci., 2003, 261: 565-568.
    [29]Xu Y.Y., Chen D.R., Jiao X.L., Xue K.Y., Nanosized Cu_2O/PEG400 composite hollow spheres with mesoporous shells. J. Phys. Chem. C., 2007, 111: 16284-16289.
    [30]Katsifaras A., Spanos N., Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite. J. Cryst. Growth, 1999, 204: 183-190.
    [31]Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J.N., Domen K., Cu_2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun., 1998: 357-358.
    [32]Zhu Y.J., Qian Y.T., Zhang M.W., Chen Z.Y., Xu D.F., Preparation and characterization of nanocrystalline powders of cuprous oxide by usingγ-radiation. Mater. Res. Bull., 1994, 29: 377-383.
    [33]Borgohain K., Murase N., Mahamuni S., Synthesis and properties of Cu_2O quantum particles. J. Appl. Phys., 2002, 92: 1292-1297.
    [34] Murphy C. J., Nanocubes and nanoboxes. Science, 2002, 298: 2139-2141.
    [35]Wang Z.L., Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B, 2000, 104: 1153-1175.
    [36]Wang D.B., Mo M.S., Yu D.B., Xu L.Q., Li F.Q., Qian Y.T., Large-scale growth and shape evolution of Cu_2O cubes. Cryst. Growth Des., 2003, 3: 717-720.
    [37]Chang T., Teo J.J., Zeng H.C., Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu_2O nanospheres. Langmuir, 2005, 21: 1074-1079.
    [38]Ilisz I., Dombi A., Investigation of the photodecomposition of phenol in near-UVirradiated aqueous TiO_2 suspensions. II. Effect of charge-trapping species on product distribution. Appl. Catal. A: Gen., 1999, 180: 35-45.
    [39]Wood B. J., Wise H., Yolles R. S., Selectivity and stoichiometry of copper oxide in propylene oxidation. J. Catalys., 1969, 15: 355-362.
    [40]De Jongh P.E., Vanmaekelbergh D., Kelly J.J., Photoelectrochemistry of Electrodeposited Cu_2O. J. Electrochem. Soc., 2000, 147: 486-489.
    [41] Zhang L.S., Li J.L., Chen Z.G., Tang Y.W., Yu Y., Preparation of Fenton reagent with H2O_2 generated by solar light-illuminated nano-Cu_2O/MWNTs composites. Appl. Catal. A: Gen., 2006, 299: 292–297.
    [42]De Jongh P.E., Vanmaekelbergh D., Kelly J.J., Cu_2O: a catalyst for the photochemical decomposition of water? Chem. Commun., 1999: 1069-1070.
    [43]Li J.L., Liu L., Yu Y., Tang Y.W., Li H.L., Du F.P., Preparation of highly photocatalytic active nano-size TiO_2–Cu_2O particle composites with a novel electrochemical method. Electrochem. Commun., 2004, 6: 940-943.
    [44]马丽丽,可见光响应的纳米Cu_2O、CdS的制备及其光催化性质研究.华中师范大学博士学位论文, 2008.
    [45]程传煊,金章岩,庄锦树,苏英草.铜氨溶液浸渍法制备铜(Ⅱ)—聚乙烯醇配位聚合物及催化作用研究.化学物理学报, 1993, 6 (1): 54-61.
    [46]Jiao S., Xu L., Jiang K., Xu D.S., Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu_2O crystal templating. Adv. Mater., 2006, 18: 1174-1177.
    [47] Liu D.F., Yang S.H., Lee S.T., Preparation of novel cuprous oxide?fullerene [60] core?shell nanowires and nanoparticles via a copper(I)-assisted fullerene-polymerization reaction. J. Phys. Chem. C, 2008, 112: 7110-7118.
    [48]Roosen A.R, Carter W.C., Simulations of microstructural evolution: anisotropic growth and coarsening. Phys. A, 1998, 261: 232-247.
    [49]Mullin J.W., Crystallization, 3rd ed. London (UK): Butterworth-Heinemann press, 1997, 288.
    [50]Siegfried M.J., Choi K.S., Elucidating the Effect of Additives on the Growth and Stability of Cu_2O Surfaces via Shape Transformation of Pre-Grown Crystals. J. Am. Chem. Soc., 2006, 128: 10356-10357.
    [51]Vargeese A.A., Joshi S.S., Krishnamurthy V.N., Role of poly(vinyl alcohol) in the crystal growth of ammonium perchlorate. Cryst. Growth. Des., 2008, 8: 1060 -1066.
    [52]Oaki Y., Imai H., Experimental demonstration for the morphological evolution of crystals grown in gel media. Cryst. Growth. Des., 2003, 3: 711-716.
    [53]Kim W., Robertson R.E., Zand R., Effects of some nonionic polymeric additives on the crystallization of calcium carbonate. Cryst. Growth. Des., 2005, 5: 513-522.
    [54]Wong J.C.S., Linsebigler A., Lu G., Fan J., Yates J.T., Photooxidation of CH3Cl on TiO_2(110) single crystal and powdered TiO_2 surfaces. J. Phys. Chem., 1995, 99: 335-344.
    [55]Schwitzgebel J., Ekerdt J.J., Gerischer H., Heller A., Role of the oxygen molecule and of the photogenerated electron in TiO_2-photocatalyzed air oxidation reactions. J. Phys. Chem., 1995, 99: 5633-5638.
    [56]邓舜扬.金属防腐蚀对话.北京:冶金工业出版社, 1987, 153.
    [57]何益艳,杜仕国.铜系复合涂料的制备及导电性能.化工新型材料, 2004, 32 (6): 49-51.
    [58]Uhm Y.R., Park J.H., Kim W.W., Lee M.K., Rhee C.K., Novel synthesis of Cu_2O nano cubes derived from hydrolysis of Cu nano powder and its high catalytic effects. Mater. Sci. Eng. A, 2007, 449-451: 817-820.
    [59]Bernard Ng C.H., Fan W.Y., Shape evolution of Cu_2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B, 2006, 110: 20801-20807.
    [60]Luo Y.S., Tu Y.C., Ren Q.F., Dai X.J., Xing L.L., Li J.L., Surfactant-free fabrication of Cu_2O nanosheets from Cu colloids and their tunable optical properties. J. Solid State Chem., 2009, 182: 182–186.
    [61]Arai T., Horiguchi M., Yanagida M., Gunji T., Sugihara H., Sayama K.,Reaction mechanism and activity of WO3-catalyzed photodegradation of organic substances promoted by a CuO cocatalyst. J. Phys. Chem. C, 2009, 113: 6602–6609.
    [62]Wang W., Zhan Y., Wang X., Liu Y., Zheng C., Wang G., Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant. Mater. Res.Bull., 2002, 37: 1093-1100.
    [63]Xu J.F., Ji W., Shen Z.X., Tang S.H., Ye X.R., Jia D. Z., Xin X.Q., Preparation and characterization of CuO nanocrystals. J. Solid State Chem., 1999, 147: 516-519.
    [64]Wang L., Wei G., Qi B., Zhou H.L., Liu Z.G., Song Y.H., Yang X.R., Li Z., Electrostatic assembly of Cu_2O nanoparticles on DNA templates. Appl. Surf. Sci., 2006, 252: 2711-2716.
    [65]Ko E., Choi J., Okamoto K., Lee T.Y, Cu_2O nanowires in an alumina template: electrochemical conditions for the synthesis and photoluminescence characteristics. J. Chem. Phys. Chem., 2006, 7: 1505-1509.
    [1]Ishizuka S., Kato S., Okamoto Y., Akimoto K., Control of hole carrier density of polycrystalline Cu_2O thin films by Si doping. Appl. Phys. Lett., 2001, 80: 950-952.
    [2]Wang Y.Q., Nikitin K., McComb D. W., Fabrication of Au-Cu_2O core-shell nanocube heterostructures. Chem. Phys. Lett., 2008, 456: 202-205.
    [3]Pan Q.M., Wang M., Wang H.B., Zhao J.W, Yin G.P., Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries. Electrochim. Acta, 2008, 54: 197-202.
    [4]Pierson J.F., Rolin E., Clément-Gendarme C., Petitjean C., Horwat D., Effect of the oxygen flow rate on the structure and the properties of Ag-Cu-O sputtered films deposited using a Ag/Cu target with eutectic composition. Appl. Surf. Sci., 2008, 254: 6590-6594.
    [5]Kumar R.V., Mastai Y., Diamant Y., Gdanken A., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu_2O embedded in a polyaniline matrix. J. Mater. Chem., 2001, 11: 1209-1213.
    [6]Chen J.Y., Zhou P.J., Li J.L., Li S.Q., Depositing Cu_2O of different morphology on chitosan nanoparticles by an electrochemical method. Carbohyd. Polym., 2007, 67: 623-629.
    [7]Reddy K.R., Sin B.C., Yoo C.H., Park W.J, Ryu K.S., Lee J.S., Sohn D., Lee Y., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater., 2008, 58: 1010-1013.
    [8] Zhang L.S., Li J.L., Chen Z.G., Tang Y.W., Yu Y., Preparation of Fenton reagent with H2O_2 generated by solar light-illuminated nano-Cu_2O/MWNTs composites. Appl. Catal. A: Gen., 2006, 299: 292–297.
    [9]Hsueh T.J., Hsu C.L., Chang S.J., Guo P.W., Hsieh J.H., Chen I.C., Cu_2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates. Scripta. Mater., 2007, 57: 53-56.
    [10]Zhang Y.G., Ma L.L., Li J.L., Yu Y., In situ fentonreagent generated from TiO_2/Cu_2O composite film: a new way to utilize TiO_2 under visible light irradiation. Environ. Sci. Technol., 2007, 41: 6264-6269.
    [11]Bessekhouad Y., Robert D., Weber J.V., Photocatalytic activity of Cu_2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions. Catal. Today, 2005, 101: 315-321.
    [12]Xu Y.H., Liang D.H., Liu M.L., Liu D.Z., Preparation and characterization of Cu_2O-TiO_2: Efficient photocatalytic degradation of methylene blue. Mater. Res. Bull., 2008, 43: 3474-3482.
    [13]Tsoncheva T., Nickdov R., Vankova S., Mehandjiev D., CuO-activated carobn catalysts for methanol decomposition to hydrogen and carbon monoxide. Can. J. Chem., 2003, 81: 1096-1100.
    [14]Li X.Z., Li F.B., Study of Au/Au3+-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol., 2001, 35: 2381-2387.
    [15]Borgohain K., Murase N., Mahamuni S., Synthesis and properties of Cu_2O quantum particles. J. Appl. Phys., 2002, 92: 1292-1297.
    [16]Murray B.J., Li Q., Newberg J.T., Menke E.J., Hemminger J.C., Penner R.M., Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Lett., 2005, 5: 2319-2324.
    [17]Moudler J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer: Eden Prairie, MN, 1992.
    [18]Zheng Y.H., Chen C.Q., Zhan Y.Y., Lin X.Y., Zheng Q., Wei K.M., Zhu J.F., Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property. J. Phys. Chem. C, 2008, 112: 10773-10777.
    [19]Li J.X., Xu J.H., Dai W.L., Fan K.N., Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO_2 with Twistlike Helix Structure. J. Phys. Chem. C, 2009, 113: 8343-8349.
    [20]Córdoba G., Viniegra M., Fierro J.L.G., Padilla J., Arroyo R.J., TPR, ESR, and XPS study of Cu2+ ions in sol-gel-derived TiO_2. Solid State Chem., 1998, 138: 1-6.
    [21]Espinós J.P., Morales J., Barranco A., Caballero A., Holgado J.P., Gonzaález-Elipe A.R., Interface effects for Cu, CuO, and Cu_2O deposited onSiO_2 and ZrO_2. XPS determination of the valence state of copper in Cu/SiO_2 and Cu/ZrO_2 catalysts. J. Phys. Chem. B, 2002, 106: 6921-6929.
    [22]Morales J., Caballero A., Holgado J.P., Espinós J.P., Gonzaález-Elipe A.R., X-ray Photoelectron Spectroscopy and Infrared Study of the Nature of Cu Species in Cu/ZrO_2 de-NOx Catalysts. J. Phys. Chem. B, 2002, 106: 10185-10190.
    [23]Yates H.M., Brook L.A., Sheel D.W., Ditta I.B., Steele A., Foster H.A., The growth of copper oxides on glass by flame assisted chemical vapour deposition. Thin Solid Films, 2008, 517: 517-521.
    [24]Wang L., Wei G., Qi B., Zhou H.L., Liu Z.G., Song Y.H., Yang X.R., Li Z., Electrostatic assembly of Cu_2O nanoparticles on DNA templates. Appl. Surf. Sci., 2006, 252: 2711-2716.
    [25]Teo J.J., Chang Y., Zeng H.C., Fabrications of hollow nanocubes of Cu_2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir, 2006, 22: 7369-7377.
    [26] Narisawa M., Ono K., Murakami K., Interaction and structure of PVA-Cu(II) complex: 1. Binding of a hydrophobic dye toward PVA-Cu(II) complex. Polymer, 1989, 30: 1540-1545.
    [27]He J.H., Kunitake T., Formation of silver nanoparticles and nanocraters on silicon wafers. Langmuir, 2006, 22: 7881-7884.
    [28] Kim W., Robertson R.E., Zand R., Effects of some nonionic polymeric additives on the crystallization of calcium carbonate. Cryst. Growth. Des., 2005, 5: 513-522.
    [29] D.B. Wang, C.X. Song, Z.S. Hu, X.D. Zhou, Synthesis of silver nanoparticles with flake-like shapes. Mater. Lett., 2005, 59: 1760-1763.
    [30]Ozer R.R., Ferry J.L., Investigation of the photocatalytic activity of TiO_2-polyoxometalate systems. Environ. Sci. Technol., 2001, 35(15): 3242-3246.
    [31]Mu Y., Yu H., Zheng J., TiO_2-mediated photocatalytic degradation of OrangeⅡwith the present of Mn2+ in solution. J. Photochem. Photobio. A, 2004, 163: 8313-8316.
    [32]Qi X.H., Wang Z.H., Zhang Y.Y., Yu Y., Li J.L., Study on the photocatalysisperformance and degradation kinetics of X-3B over modified titanium dioxide. J. Hazard. Mater., 2005, 118: 219-225.
    [1]Tan T.T.Y., Yip C.K., Beydoun D., Amal R., Effects of nano-Ag particles loading on TiO_2 photocatalytic reduction of selenate ions. Chem. Engin. J., 2003, 95:179-186.
    [2]Choi W., Termin A., Hoffmann M.R., The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [3]Bessekhouad Y., Robert D., Weber J.V., Bi2S3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A: Chem., 2004, 163: 569-580.
    [4]Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E., Hidaka H., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2- chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A: Chem., 1995, 85: 247-255.
    [5]Bessekhouad Y., Robert D., Weber J.V., Photocatalytic activity of Cu_2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions. Catal. Today, 2005, 101: 315-321.
    [6]Levin E.M., Roth R.S., Polymorphism of bismuth sesquioxide. J. Res. Natl. Bur. Stand., 1964, 68: 189-195.
    [7]Xu Y.H., Liang D.H., Liu M.L., Liu D.Z., Preparation and characterization of Cu_2O-TiO_2: Efficient photocatalytic degradation of methylene blue Mater. Res. Bull., 2008, 43: 3474-3482.
    [8]Colón G., Maicu M., Hidalgo M.C., Navío J.A., Cu-doped TiO_2 systems with improved photocatalytic activity. Appl. Catal. B-Environ., 2006, 67: 41-51.
    [9]Tseng I., Wu J.C.S., Chou H., Effects of sol-gel procedures on the photocatalysis of Cu/TiO_2 in CO_2 photoreduction. J. Catal., 2004, 221: 432-440.
    [10]Celik E., Gokcen Z., Ak Azem N.F., Tanoglu M., Emrullahoglu O.F., Processing, characterization and photocatalytic properties of Cu doped TiO_2 thin films onglass substrate by sol-gel technique. Mater. Sci. Eng. B, 2006, 132: 258-265.
    [11]Slamet, Hosna W. Nasution H.W., Ezza Purnama E., Kosela S., Gunlazuardi J., Photocatalytic reduction of CO_2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun., 2005, 6: 313-319.
    [12]J. Ara?a, J.M. Do?a-Rodríguez, J.A.H. Melián, E.T. Rendón, O.G. Díaz, Role of Pd and Cu in gas-phase alcohols photocatalytic degradation with doped TiO_2. J. Photochem. Photobiol. A: Chem., 2005, 174: 7-14.
    [13]Park H.S., Kim D.H., Kim S.J., Lee K.S., The photocatalytic activity of 2.5 wt% Cu-doped TiO_2 nano powders synthesized by mechanical alloying. J. Alloys Compd., 2006, 415: 51-55.
    [14]Hsiung T.L., Wang H.P., Lu Y.M., Hsiao M.C., In situ XANES studies of CuO/TiO_2 thin films during photocatalytic degradation of CHCl3. Radiat. Phys. Chem., 2006, 75: 2054-2057.
    [15]Zhang Y.G., Ma L.L., Li J.L., Yu Y., In situ fentonreagent generated from TiO_2/Cu_2O composite film: a new way to utilize TiO_2 under visible light irradiation. Environ. Sci. Technol., 2007, 41: 6264-6269.
    [16]Kim D.W., Kim T.G., Hong K.S., Low-firing of CuO-DOPED anatase. Mater. Res. Bull., 1999, 34: 771-781.
    [17]Han W., An Introduction to Catalysis Chemistry. Beijing: Sci. Press, 2003.
    [18]Teo J.J., Chang Y., Zeng H.C., Fabrications of hollow nanocubes of Cu_2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir, 2006, 22: 7369-7377.
    [19]Ghodselahi T., Vesaghi M.A., Shafiekhani A., Baghizadeh A., Lameii M., XPS study of the Cu@Cu_2O core-shell nanoparticles. Appl. Surf. Sci., 2008, 255: 2730-2734
    [20]Wang L., Wei G., Qi B., Zhou H.L., Liu Z.G., Song Y.H., Yang X.R., Li Z., Electrostatic assembly of Cu_2O nanoparticles on DNA templates. Appl. Surf. Sci., 2006, 252: 2711-2716.
    [21]Lin K.L., Wang H.P., Byproduct shape selectivity in supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-5. Langmuir, 2000, 16: 2627-2631.
    [22]Kormann C., Bahnemann D.W., Hoffmann M.R., Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol., 1988, 22: 798-806.
    [23]Nozik A.J., Memming R., Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem., 1996, 100: 13061-13078.
    [24]Ikeda S., Takata T., Kondo T., Hitoki G., Hara M., Kondo J.N., Domen K., Hosono H., Kawazoe H., Tanaka A., Mechano-catalytic overall water splitting, Chem. Commun., 1998, 20: 2185-2186.
    [25]孙明,余林,郝志峰,孙建. SnO_2纳米粒子的制备与表征.无机化学学报,2005, 21(6): 925-928.
    [26]Wang C., Wang X. M., Xu B.Q., Zhao J.C., Mai B.X., Peng P. A., Sheng G. Y., Fu J. M., Enhanced photocatalytic performance of nanosized coupled ZnO/SnO_2 photocatalysts for methyl orange degradation. J. Photochem. Photobiol. A: Chem., 2004, 168: 47-52.
    [27]Cao Y.A., Zhang X.T., Yang W.S., Yang W., Du H., Bai Y., Li T., Yao J.A., A bicomponent TiO_2/SnO_2 particulate film forphotocatalysis. Chem. Mater., 2000, 12(11): 3445-3448.
    [28]夏慧丽,新型纳米催化剂的制备、表征及其性能研究.东华大学博士学位论文, 2007.
    [29]Ma L., Lin Y., Wang Y., Li J., Wang E., Qiu M., Yu Y., Aligned 2-D nanosheet Cu_2O film: oriented deposition on Cu foil and its photoelectrochemical property. J. Phys. Chem. C, 2008, 112: 18916-18922.
    [30]Gervasini A., Carniti P., Bennici S., Messi C., Influence of the chemical nature of the support (niobic acid and niobium phosphate) on the surface and catalytic properties of supported CuO. Chem. Mater., 2007, 19: 1319-1328.
    [31]Gervasini A., Manzoli M., Martra G., Ponti A., Ravasio N., Sordelli L., Zaccheria F., Dependence of copper species on the nature of the support for dispersed CuO catalysts. J. Phys. Chem. B, 2006, 110: 7851-7861.
    [32]Guo L., Chen F., Fan X., Cai W., Zhang J., S-doped -Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 andphenol. Appl. Catal. B-Environ., 2010, 96: 162-168.
    [33]Cao J., Wang Y., Yu X., Wang S., Wu S., Yuan Z., Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B-Environ., 2008, 79: 26-34.
    [34]杜卫平, (羟基)氧化铁光催化降解有机物的反应机理.浙江大学博士学位论文, 2007, p24.
    [35]He Y.P., Miao Y.M., Li C.R., Wang S.Q., Cao L., Xie S.S., Yang G.Z., Zou B.S., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B, 2005, 71: 125411-125419.
    [1]郑小明,周仁贤,环境保护中的催化治理技术,化学工业出版社,北京,2002, p275.
    [2]Cheng S., Tsai S., Lee Y., Photocatalytic decomposition of phenol over titanium oxide of various structures. Catal. Today, 1995, 26: 87-96.
    [3]Zhang M., An T., Fu J., Sheng G., Wang X., Hu X., Ding X., Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO_2/SiO_2 photocatalyst using a fluidized bed reactor. Chemosphere, 2006, 64: 423-431.
    [4]Kang M., Hong W., Park M., Synthesis of high concentration titanium-incorporated nanoporous silicates (Ti-NPS) and their photocatalytic performance for toluene oxidation. Appl.Catal. B-Environ, 2004, 53:195-205.
    [5]Guan K., Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO_2/SiO_2 films. Surf. Coat. Tech., 2005, 191:155-160.
    [6]Anderson C., Bard A.J., Improved photocatalytic activity and characterization of mixed TiO_2/SiO_2 and TiO_2/Al2O3 materials. J. Phys. Chem. B, 1997, 101: 2611-2626.
    [7]Anderson C., Bard A.J., An improved photicatalyst of TiO_2/SiO_2 prepared by a sol-gel synthesis. J. Phys. Chem., 1995: 99: 9882-9885.
    [8]Ingo G.M., Riccucci C., Bultrini G., Thermal and microchemical characterization of sol-gel SiO_2, TiO_2 and xSiO_2(1-x )TiO_2 ceramic materials. J. Therm. Anal. Calorim., 2001, 66: 37-46.
    [9]Espinos J.P., Morales J., Barrnco A., Caballero A., Holgado J.P., Gonzalez-Elipe A.R., Interface effects for Cu, CuO, and Cu_2O deposited on SiO_2 and ZrO_2. XPS determination of the valence state of copper in Cu/SiO_2 and Cu/ZrO_2 catalysts. J. Phys. Chem. B, 2002, 106: 6921-6929.
    [10]Switzer J.A., Liu R., Bohannan R.W., Ernst F., Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon. J. Phys. Chem. B, 2002, 106: 12369-12372.
    [11]Armelao L., Barreca D., Bottaro G., Gasparotto A., Tondello E., Ferroni M., Polizzi S., Chem. Mater., 2004, 16: 3331-3338.
    [12]Zhang X., Zhang D., Ni X., Zheng H., Synthesis and optical properties of Cu_2O /SiO_2 composite films via gamma-irradiation route. Mater. Lett., 2007, 61: 248-250.
    [13]Brookshier M.A., Chusuei C.C., Goodman D.W., Control of CuO Particle Size on SiO_2 by Spin Coating. Langmuir, 1999, 15: 2043-2046.
    [14]Finster J., Schulze D., Bechstedt F., Meisel A., Interpretation of XPS core level shifts and structure of thin silicon oxide layers. Surf. Sci., 1985, 152/153: 1063-1070.
    [15]He J.W., Xu X., Corneille J.S., Goodman D.W., X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface. Surf. Sci., 1992, 279: 119-126.
    [1]Wong J.C.S., Linsebigler A., Lu G., Fan J., Yates J., Photooxidation of CH3Cl on TiO_2(110) single crystal and powdered TiO_2 surfaces. J. Phys. Chem., 1995, 99: 335-344.
    [2]Gerischer H., Heller A., The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem., 1991, 95: 5261-5267.
    [3]Schwitzgebel J., Ekerdt J.J., Gerischer H., Heller A., Role of the oxygen molecule and of the photogeneratedelectron in TiO_2-photocatalyzed air oxidation reactions. J. Phys. Chem., 1995, 99, 5633.
    [4]Gerischer H., Heller A., Photocatalytic oxidation of organic molecules at TiO_2 particles by sunlight in aerated water. J. Electrochem. Soc., 1992, 139, 113-118.
    [5]郑小明,周仁贤,环境保护中的催化治理技术.化学工业出版社,北京, 2002, p275.
    [6]Gao R., Stark J., Bahnemann D.W., Rabani J., Quantum yields of hydroxyl radicals in illuminated TiO_2 nanocrystallite layers. J. Photochem. Photobiol A: Chem., 2002, 148: 387-391.
    [7]Zhang D., Qiu R., Song L., Eric B., Mo Y., Huang X., Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO_2 under visible light irradiation. J. Hazard. Mater., 2009, 163: 843-847.
    [8]Liu G., Zhao J., Hidaka H., ESR spin-trapping detection of radical intermediates in the TiO_2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J. Photochem. Photobiol. A: Chem., 2000, 133: 83-88.
    [9]Kim K., Lee E., Kim Y., Lee M., Kim K., Shin D., A relation between the non-stoichiometry and hydroxyl radical generated at photocatalytic TiO_2 on 4CP decomposition. J. Photochem. Photobiol. A: Chem., 2003, 159: 301-310.
    [10]Nakamura R., Nakato Y., Primary intermediates of oxygen photoevolution reaction on TiO_2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc., 2004, 126: 1290-1298.
    [11]Cho Y., Choi W., Lee C.H., Hyeon T., Lee H.I., Visible light-induced degradationof carbon tetrachloride on dye-sensitized TiO_2. Environ. Sci. Technol., 2001, 35: 966-970.
    [12]Wu T., Lin T., Zhao J., Hidaka H., Serpone N., TiO_2-assisted photodegradation of dyes. 9. photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ. Sci. Technol., 1999, 33: 1379-1387.
    [13]Petra E.J., Daniel V., John J.K., Cu_2O: a catalyst for the photochemical decomposition of water? Chem. Commun., 1999, 1069-1070.
    [14]Mrowetz M., Balcerski W., Colussi A. J., Hoffmann M.R., Oxidative power of nitrogen-doped TiO_2 photocatalysts under visible illumination. J.Phys. Chem. B, 2004, 48: 17269-17273.
    [15]Liu G., Zhao J., Hidaka H., ESR spin-trapping detection of radical intermediates in the TiO_2-assisted photo-oxidation of sulforhodamine B under visible irradiation. J. Photochem. Photobiol. A: Chem., 2000, 133: 83-88.
    [16]Sawyer D.T., Valentine J.S., How super is superoxide? Acc. Chem. Res., 1981, 14: 393-400.
    [17]M.J. Davies, T.F. Slater, Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents. Biochem. J., 1986, 240: 789-795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700