持液气固流化床中多温区的构建、调控及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多温区流化床反应器,由于其突破了传统流化床中温度或浓度分布均匀的限制,已应用于流化催化裂化、煤气化、干燥及造粒等化工过程。从多温区/多流型共存的角度出发,研究此类反应器的共性问题,能帮助揭示多温区流化床反应器的流化特性及其调控机制。众多成熟工艺技术已证明,向单个流化床中喷液是构建多温区流化床反应器的有效手段。故本文针对气相法流化床聚乙烯工艺,向流化床反应器中喷入大量冷凝液,提出了一种新型的多温区流化床聚合反应器,可以生产高性能的聚乙烯产品,为反应器的设计开发和产品结构的优化提供了新思路。然而,持液操作将显著影响流化床中流体力学行为及流化稳定性。在保证流化状况良好的前提下,如何在持液气固流化床中构建稳定共存的多温区并对其进行有效调控,是一个极富挑战性的研究课题,具有重大的理论意义和工业价值。本文围绕多温区流化床反应器的构建、调控及稳定性开展如下五方面的研究工作。
     1.提出了液滴蒸发、液滴-颗粒碰撞和覆液膜颗粒碰撞的时间尺度分析与力平衡分析相结合的研究方法,建立了液桥诱导聚团的稳定性分析模型。稳定性分析模型由两步骤组成:根据液滴相关过程的时间尺度分析,对覆液膜颗粒能否发生有效团聚进行判断,认为当液滴蒸发时间尺度大于碰撞时间尺度时,可能发生液桥诱导团聚;进一步,采用力平衡分析,对流体曳力与液桥力、颗粒聚团重力进行比较,进而对颗粒聚团是否导致流化失稳进行准确判断。基于稳定性分析模型,获得了不同的液固接触状态下气液固三相流型谱图、各流型下颗粒聚团的表现形式和主导作用机制。
     2.建立了声波、压力脉动及摄像多种测量手段相结合的多层次表征方法,首次对持液气固流化床中的颗粒、气泡及整体流化状态进行多层次分析,揭示了颗粒、气泡以及流化状态随液体含量的变化规律。研究表明,当声波测量所反映的颗粒尺寸呈现显著变化时,比颗粒尺度更大的气泡尺度(压力脉动测量反映)及整体流化状态尺度(摄像法所反映)行为也会相应发生显著变化,比如气泡变小并最终出现气体沟流。进一步对声信号进行Hurst和V统计分析,首次分辨出了液体增加过程中出现的周期行为的信号特征,此周期成分的循环时间为2.5ms,对应的频率为400Hz,此频率处于颗粒和气泡之间的特征频段,故推断其为微观的颗粒尺度和宏观的反应器尺度之间的介尺度作用行为。三种测量方法相互间存在验证和互补,且均能有效地反映液体增加所导致的颗粒团聚、气体沟流等不稳定流化状态。
     3.在自行设计的热态流化床装置中,研究发现,相比于下部喷液方法,上部喷液方法构建的多温区具有更大的温区间温差和更高的流化稳定性,为优选的多温区构建方式,且液体流率、静床高和进气温度等操作参数对多温区的温区间温差和流化稳定性影响最为显著。研究同时表明,多温区流化床中液体蒸发和液体架桥是相互竞争的两种液体调控作用,两者的强弱将显著影响多温区的区间温差及流化稳定性。通过分析多温区流化床内的液体作用机制与颗粒聚团特性,发现稳定共存的多温区流化床反应器可看作是由液体架桥和液体蒸发作用相制约平衡的气液固三相流型(动态聚团机制)和由液体蒸发作用主导的气液固三相流型(聚团破碎机制)共存的模式。
     4.在多温区流化床反应器中,研究并揭示了液体对颗粒、气泡及颗粒循环模式的作用规律。研究发现,液体流率增加和气速降低均导致液体作用强度增加,气流/液体蒸发作用主导的流化机制会向液体架桥作用主导的流化机制转变;与此对应的是,气流/液体蒸发作用主导时的中心向上、壁面向下的颗粒循环模式逐渐转变为液桥作用主导时的颗粒聚团向下流动的颗粒循环模式,最终导致颗粒聚团无法循环,出现流化失稳等不稳定现象,此时相应的颗粒及气泡行为也发生显著变化。研究提出的通过床层温度分布测量来反映颗粒循环模式的方法,为揭示流化床内颗粒循环提供了新手段。
     5.针对工业多温区流化床聚合反应器,基于气液固和气固多流型共存的思想,结合液体蒸发模型,建立了改进的乳化相-气泡相模型,较为准确模拟了工业聚合反应器冷凝态操作下的温度分布,具有明显的多温区特征,证实了工业多温区流化床聚合反应器中气液固和气固双流型/双温区复合假设的合理性,最后采用流程模拟的方法,发现复合流型的反应器能够实现产品的高性能化。
Multiple temperature zones fluidized bed reactors (MTZFBRs) can overcome the limitations of uniform temperature in traditional gas-solid fluidized beds, and thus are widely used in numerous chemical engineering processes, such as fluid catalytic cracking, coal gasification, drying and granulation to mention a few. Investigations of the common scientific problems from the perspective of multiple temperature zones and multiple fluidization patterns coexistence, will greatly enhance the understanding of the fluidization characteristics and control mechanism of MTZFBR. Various mature technologies have shown that spraying liquid into a fluidized bed is one of the most effective means to realize MTZFBR. Therefore, this thesis proposes a novel MTZFBR by means of liquid-spraying within a fluidized bed reactor based on gas-phase fluidized bed polyethylene condensed mode operation process. Due to its optimization and improvement in the fluidized bed reactor process, high performance polyethylene products can be expected, which provides a new research direction and realization for product optimization and reactor process development. However, liquid-containing operation significantly affects hydrodynamic behavior and fluidization stability of fluidized beds. Realization and control of multiple temperature zones in liquid-containing gas-solid fluidized beds on the premise of stable fluidization states, is an extremely challenging research task which possesses great theoretical significance and industrial value. This thesis focuses on realization, control and stability of the MTZFBR and thus the research work has been carried out from the following five aspects:
     1. A new research methodology, with combination of time scale analysis and force balance analysis, has been proposed in this thesis and thus the stability analysis model for liquid-bridge induced particle agglomerations is acquired. Firstly, the judgment of the effective particle agglomerations among liquid-coating particles is made based on time scale analysis of liquid-related key processes (such as droplet evaporation, droplet-particle collision and liquid-coating particles collision). To be specific, the particle agglomerations are induced by the liquid bridge when the droplet evaporation time scale is greater than the collision time scale among liquid-coating particles. Furthermore, the accurate judgment of fluidization instability caused by particle agglomerations is made according to the proposed force balance analysis and important criterion. Finally, based on results of stability analysis model, the spectrums of gas-liquid-solid (G-L-S) three phases fluidization patterns under different liquid-solid contact states are obtained as well as the particle agglomeration behaviors and the dominant mechanisms during the liquid-containing fluidization processes.
     2. Multi-scale characterization method has been established with multiple measurement techniques including acoustic emission, pressure fluctuation and camera, which has been used for the first time to reveal the variation law of particle, bubble behavior and overall fluidization states simultaneously in the liquid-containing gas-solid fluidized bed reactor. Results demonstrate that when particle size reflected by acoustic signal varies significantly, the bubble scale (from pressure fluctuation) and overall fluidization state scale (from camera) behaviors show regular variation trends, such as formation of bubble shrinkage and gas channeling. Moreover, through Hurst and V-statistics analysis of the acoustic signal, the cyclic behavior characteristics induced by increased liquid in the fluidized bed are distinguished for the first time. The frequency of the characteristic cycle component is400Hz and thus the cycle time is2.5ms, which indicates the newly formed characteristic behavior is correlated to motion behavior of the meso-scale particle agglomeration. There are verification and complementarity among three kinds of measurements results, and all the three techniques can reflect the unstable fluidization states such as agglomerations and gas channeling during the liquid addition process.
     3. With a self-designed hot mode fluidized bed apparatus, systematic experiments have been performed to realize MTZFBR. Results demonstrate that compared with the bottom liquid-spraying scheme, the upper liquid-spraying scheme shows larger temperature differences between upper zone and bottom zone, as well as higher fluidization stability, and thus the upper liquid-spraying scheme is preferable in the realization of MTZFBR. Based on upper liquid-spraying scheme, liquid flow-rate, bed height and gas inlet temperature are found to be the most significant operating parameters to affect multiple temperature zones. Moreover, studies have shown that liquid evaporation and liquid bridge are the two competitive factors during liquid-containing fluidization and thus the relative intensity of these two factors will significantly affect the temperature differences and fluidization stability. Furthermore, based on the stability analysis method proposed in the Chapter4, two different three phases fluidization patterns are found to coexist in the stable MTZFBR. One is G-L-S three phases fluidization pattern with dynamic particle agglomerations mechanism dominated by a balanced action between liquid evaporation and liquid bridge, and the other is G-L-S three phases fluidization pattern with agglomeration breakup mechanism dominated by liquid evaporation action.
     4. In the MTZFBR, the action law of particle, bubble and particle circulation pattern induced by increased liquid flow-rate have been revealed. The study shows that both increases in liquid flow-rate and decreases in gas velocity cause lower gas-liquid relative action intensity, and thus the liquid-containing fluidization process dominant mechanism shifts from gas flow (or liquid evaporation) controlling mechanism to liquid bridge controlling mechanism. As a result, the particle circulation pattern changes from one mode (particles move upward in the center and particles move downward in the wall) to another mode (downward motion of agglomerations has been enhanced significantly), meanwhile the particle and bubble motion behaviors also change with regular trends. Besides, the minimum fluidization velocity of particles is found to increase with liquid content increase. Based on temperature profile measurements, one feasible method is proposed to reflect particle circulation modes in the fluidized beds, which helps to provide a new means to study particle circulation modes.
     5. For industrial multiple temperature zones fluidized bed polymerization reactor, based on the concept of G-L-S and G-S fluidization patterns coexistence, an improved emulsion-bubble two phase fluidized bed model has been proposed with help of the liquid evaporation model. The model can simulate accurately the temperature profile of industrial reactor, which proved that the industrial MTZFBR can be studied by means of two fluidization patterns coexistence. Finally, the process simulation results show that high performance products can be realized by using the reactor with composite fluidization patterns.
引文
[1]Fan, L.-S., Gas-Liquid-Solid Fluidization Engineering. Butterworth-Heinemann:Boston,1989.
    [2]Wormsbecker, M. Study of hydrodynamic behaviour in a conical fluidized bed dryer using pressure fluctuation analysis and X-ray densitometry. University of Saskatchewan, Saskatoon,2008.
    [3]Seville, J. P. K.; Clift, R., The effect of thin liquid layers on fluidization characteristics. Powder Technol.1984,37(1):117-129
    [4]Mikami, T.; Kamiya, H.; Horio, M., Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci.1998,53(10):1927-1940
    [5]Wright, P. C.; Raper, J. A., Examination of dispersed liquid-phase three-phase fluidized beds Part 1. Non-porous, uniform particle systems. Powder Technol.1998,97(3):208-226
    [6]McLaughlin, L. J.; Rhodes, M. J., Prediction of fluidized bed behaviour in the presence of liquid bridges. Powder Technol.2001,114(1-3):213-223
    [7]Yang, W.-C., Modification and re-interpretation of Geldart's classification of powders. Powder Technol.2007,171(2):69-74
    [8]Wormsbecker, M.; Pugsley, T.; Tanfara, H., Interpretation of the hydrodynamic behaviour in a conical fluidized bed dryer. Chem Eng Sci.2009,64(8):1739-1746
    [9]Bergstra, M. F.; Weickert, G., Ethylene polymerization kinetics with a heterogeneous metallocene catalyst-Comparison of gas and slurry phases. Macromolecular Materials and Engineering.2005, 290(6):610-620
    [10]Hustad, P. D., Frontiers in olefin polymerization:reinventing the world's most common synthetic polymers. Science.2009,325(5941):704-707
    [11]Covezzi, M.; Mei, G., The multizone circulating reactor technology. Chem Eng Sci.2001,56(13): 4059-4067
    [1]郭慕孙,流态化技术在冶金中之应用.科学出版社:北京,1958.
    [2]郭慕孙;李洪钟,流态化手册.化学工业出版社:北京,2008.
    [3]Davidson, J. F.; Harrison, D., Fluidization. Academic Press Inc:1971.
    [4]Kunii, D.; Levenspiel, O., Fluidization Engineering (2nd edition). Butterworth-Heinemann:London, 1991.
    [5]王垚;魏飞;钱震;袁学民;周华群;刘家强.流化床催化裂解生产丙烯的方法及反应器.ZL200610144290.2,2007.
    [6]Miserlis, C. D. Process for the production ofphthalic anhydride. US4435581,1984.
    [7]杨玉芬;陈清如;黎强,空气重介质流化床分选技术分析.淮南工业学院学报.2002,(1):36-39
    [8]骆广海;阳永荣;魏舸裔;吴文清;韩国栋;王树芳;王靖岱.一种烯烃聚合的多区循环反应装置和反应方法.ZL200910222301.8,2009.
    [9]Gupta, A.; Rao, D. S., Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization. Chem Eng Sci.2001,56(15):4489-4503
    [10]Behjat, Y.; Shahhosseini, S.; Marvast, M. A., Simulation study of droplet vaporization effects on gas-solid fluidized bed. Journal of the Taiwan Institute of Chemical Engineers.2011,42(3):419-427
    [11]Covezzi, M.; Mei, G., The multizone circulating reactor technology. Chem Eng Sci.2001,56(13): 4059-4067
    [12]Gupta, A.; Rao, D. S., Effect of feed atomization on FCC performance:simulation of entire unit. Chem Eng Sci.2003,58(20):4567-4579
    [13]Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L. F., Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science.2012,38(2): 215-282
    [14]Lyngfelt, A.; Leckner, B.; Mattisson, T., A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci.2001,56(10):3101-3113
    [15]Adanez, J.; Gayan, P.; Celaya, J.; de Diego, L. F.; Garcia-Labiano, F.; Abad, A., Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier:Effect of operating conditions on methane combustion. Ind Eng Chem Res.2006,45(17):6075-6080
    [16]Kronberger, B.; Johansson, E.; Loffler, G.; Mattisson, T.; Lyngfelt, A; Hofbauer, H., A two-compartment fluidized bed reactor for CO2 capture by chemical-looping combustion. Chem Eng Technol.2004,27(12):1318-1326
    [17]Zafar, Q.; Mattisson, T.; Gevert, B., Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Ind Eng Chem Res.2005,44(10):3485-3496
    [18]徐承恩,催化重整工艺与工程.中国石化出版社:北京,2009.
    [19]许友好;张久顺;龙军,生产清洁汽油组分的催化裂化新工艺MIP.石油炼制与化工.2001,32(8):1-5
    [20]许世森;张东亮;任永强,大规模煤气化技术化学工业出版社:北京,2006.
    [21]陈寒石;徐奕丰,灰熔聚流化床粉煤气化技术.石油和化工节能.2005,(4):15-20
    [22]Higman, C.; van der Burgt, M., Gasification (2nd edition). Gulf Professional Publishing: Burlington,2007.
    [23]Yang, Z.; Wang, Z.; Wu, Y.; Wang, J.; Lu, J.; Li, Z.; Ni, W., Dynamic model for an oxygen-staged slagging entrained flow gasifier. Energ Fuel.2011,25(8):3646-3656
    [24]Dudukovic, M. P., Frontiers in reactor engineering. Science.2009,325(5941):698-701
    [25]Gascon, J.; Tellez, C.; Herguido, J.; Menendez, M., Fluidized bed reactors with two-zones for maleic anhydride production:Different configurations and effect of scale. Ind Eng Chem Res.2005, 44(24):8945-8951
    [26]Swift, W. M.; Wheelock, T. D., Decomposition of calcium sulfate in a two-zone reactor. Industrial & Engineering Chemistry Process Design and Development.1975,14(3):323-327
    [27]Fan, L.-S., Gas-Liquid-Solid Fluidization Engineering. Butterworth-Heinemann:Boston,1989.
    [28]Geldart, D., Types of gas fluidization. Powder Technol.1973,7(5):285-292
    [29]Yang, W.-C., Modification and re-interpretation of Geldart's classification of powders. Powder Technol.2007,171(2):69-74
    [30]Molerus, O., Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces. Powder Technol.1982,33(1):81-87
    [31]Seville, J. P. K.; Clift, R., The effect of thin liquid layers on fluidization characteristics. Powder Technol.1984,37(1):117-129
    [32]McLaughlin, L. J.; Rhodes, M. J., Prediction of fluidized bed behaviour in the presence of liquid bridges. Powder Technol.2001,114(1-3):213-223
    [33]Wormsbecker, M.; Pugsley, T., The influence of moisture on the fluidization behaviour of porous pharmaceutical granule. Chem Eng Sci.2008,63(16):4063-4069
    [34]Mikami, T.; Kamiya, H.; Horio, M., Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci.1998,53(10):1927-1940
    [35]Tardos, G.; Mazzone, D.; Pfeffer, R., Destabilization of fluidized beds due to agglomeration part I: Theoretical model. Can J Chem Eng.1985,63(3):377-383
    [36]Tardos, G.; Mazzone, D.; Pfeffer, R., Destabilization of fluidized beds due to agglomeration part II: Experimental verification. Can J Chem Eng.1985,63(3):384-389
    [37]Kuwagi, K.; Takano, K.; Horio, M., The effect of tangential lubrication by bridge liquid on the behavior of agglomerating fluidized beds. Powder Technol.2000,113(3):287-298
    [38]Darabi, P.; Pougatch, K.; Salcudean, M.; Grecov, D., DEM investigations of fluidized beds in the presence of liquid coating. Powder Technol.2011,214(3):365-374
    [39]Jain, K.; Shi, D. L.; McCarthy, J. J., Discrete characterization of cohesion in gas-solid flows. Powder Technol.2004,146(1-2):160-167
    [40]Chuan Lim, E. W.; Hee Tan, R. B.; Xiao, Z., Mixing behaviors of wet granular materials in gas fluidized bed systems. AIChEJ.2013,59(11):4058-4067
    [41]Simons, S. J. R.; Fairbrother, R. J., Direct observations of liquid binder-particle interactions:the role of wetting behaviour in agglomerate growth. Powder Technol.2000,110(1-2):44-58
    [42]Becher, R. D.; Schlunder, E. U., Fluidized bed granulation - the importance of a drying zone for the particle growth mechanism. Chem Eng Process.1998,37(1):1-6
    [43]Schaafsma, S. H.; Vonk, P.; Segers, P.; Kossen, N. W. F., Description of agglomerate growth. Powder Technol.1998,97(3):183-190
    [44]Wright, P. C.; Raper, J. A., Examination of dispersed liquid-phase three-phase fluidized beds Part 1. Non-porous, uniform particle systems. Powder Technol.1998,97(3):208-226
    [45]Wright, P. C.; Raper, J. A., Role of liquid bridge forces in cohesive fluidization. Chem Eng Res Des.1998,76(A6):753-760
    [46]Du, B.; Warsito, W.; Fan, L.-S., Flow dynamics of gas-solid fluidized beds with evaporative liquid injection. China Particuology.2006,4(1):1-8
    [47]McDougall, S.; Saberian, M.; Briens, C.; Berruti, F.; Chan, E., Effect of liquid properties on the agglomerating tendency of a wet gas-solid fluidized bed. Powder Technol.2005,149(2-3):61-67
    [48]McDougall, S.; Saberian, M.; Briens, C.; Berruti, F.; Chan, E., Using dynamic pressure signals to assess the effects of injected liquid on fluidized bed properties. Chem Eng Process.2005,44(7): 701-708
    [49]Mohagheghi, M.; Hamidi, M.; Briens, C.; Berruti, F.; McMillan, J., The effects of liquid properties and bed hydrodynamics on the distribution of liquid on solid fluidized particles in a cold-model fluidized bed. Powder Technol.2014,256:5-12
    [50]Weber, S.; Briens, C.; Berruti, F.; Chan, E.; Gray, M., Agglomerate stability in fluidized beds of glass beads and silica sand. Powder Technol.2006,165(3):115-127
    [51]Weber, S.; Briens, C.; Berruti, F.; Chan, E.; Gray, M., Effect of agglomerate properties on agglomerate stability in fluidized beds. Chem Eng Sci.2008,63(17):4245-4256
    [52]Weber, S.; Briens, C.; Berruti, F.; Chan, E.; Gray, M., Stability of agglomerates made from fluid coke at ambient temperature. Powder Technol.2011,209(1-3):53-64
    [53]Parveen, F.; Berruti, F.; Briens, C.; McMillan, J., Effect of fluidized bed particle properties and agglomerate shape on the stability of agglomerates in a fluidized bed. Powder Technol.2013,237: 46-52
    [54]Parveen, F.; Briens, C.; Berruti, F.; McMillan, J., Effect of particle size, liquid content and location on the stability of agglomerates in a fluidized bed. Powder Technol.2013,237:376-385
    [55]Wormsbecker, M.; Pugsley, T.; Tanfara, H., Interpretation of the hydrodynamic behaviour in a conical fluidized bed dryer. Chem Eng Sci.2009,64(8):1739-1746
    [56]Zhou, Y. F.; Huang, Z. L.; Ren, C. J.; Wang, J. D.; Yang, Y. R., Agglomeration detection in horizontal stirred bed reactor based on autoregression model by acoustic emission signals, Ind Eng Chem Res.2012,51(36):11629-11635
    [57]Zhou, Y. F.; Dong, K. Z.; Zhengliang, H.; Wang, J. D.; Yang, Y. R., Fault detection based on acoustic emission-early agglomeration recognition system in fluidized bed reactor. Ind Eng Chem Res. 2011,50(14):8476-8484
    [58]Portoghese, F.; House, P.; Berruti, F.; Briens, C.; Adamiak, K.; Chan, E., Electric conductance method to study the contact of injected liquid with fluidized particles. AIChE J.2008,54(7): 1770-1781
    [59]Portoghese, F.; Ferrante, L.; Berruti, F.; Briens, C.; Chan, E., Effect of injection-nozzle operating parameters on the interaction between a gas-liquid jet and a gas-solid fluidized bed. Powder Technol. 2008,184(1):1-10
    [60]Portoghese, F.; Ferrante, L.; Berruti, F.; Briens, C.; Chan, E., Effect of the injection-nozzle geometry on the interaction between a gas-liquid jet and a gas-solid fluidized bed. Chemical Engineering and Processing:Process Intensification.2010,49(6):605-615
    [61]Berruti, F.; Dawe, M.; Briens, C., Study of gas-liquid jet boundaries in a gas-solid fluidized bed. Powder Technol.2009,192(3):250-259
    [62]Briens, C.; Dawe, M.; Berruti, F., Effect of a draft tube on gas-liquid jet boundaries in a gas-solid fluidized bed. Chemical Engineering and Processing:Process Intensification.2009,48(4):871-877
    [63]Sabouni, R.; Leach, A.; Briens, C.; Berruti, F., Enhancement of the liquid feed distribution in gas-solid fluidized beds by nozzle pulsations (induced by solenoid valve). AIChE J.2011,57(12): 3344-3350
    [64]Leach, A.; Sabouni, R.; Berruti, F.; Briens, C., Use of pulsations to enhance the distribution of liquid injected into fluidized particles with commercial-scale nozzles. AIChE J.2013,59(3):719-728
    [65]Jiang, Y.; McAuley, K. B.; Hsu, J. C. C., Nonequilibrium modeling of condensed mode cooling of polyethylene reactors. AIChEJ.1997,43(1):13-24
    [66]Jiang, Y.; McAuley, K. B.; Hsu, J. C. C., Effects of operating conditions on heat removal from polyethylene reactors. AIChE J.1997,43(8):2073-2082
    [67]Jiang, Y.; McAuley, K. B.; Hsu, J. C. C., Heat Removal from gas-phase polyethylene reactors in the supercondensed mode. Ind Eng Chem Res.1997,36(4):1176-1180
    [68]Mirzaei, A.; Kiashemshaki, A.; Emami, M., Fluidized bed polyethylene reactor modeling in condensed mode operation. Macromolecular Symposia.2007,259:135-144
    [69]Wang, Z. L.; Chen, W.; Yang, Y. R.; Rong, S. X., Adsorption equilibrium of volatile in condensed mode polyethylene process. Chinese Journal of Chemical Engineering.2000,8(1):41-45
    [70]Novak, A.; Bobak, M.; Kosek, J.; Banaszak, B. J.; Lo, D.; Widya, T.; Harmon Ray, W.; de Pablo, J. J., Ethylene and 1-hexene sorption in LLDPE under typical gas-phase reactor conditions:Experiments. Journal of Applied Polymer Science.2006,100(2):1124-1136
    [71]Yao, W.; Hu, X.; Yang, Y, Modeling the solubility of ternary mixtures of ethylene, iso-pentane, n-hexane in semicrystalline polyethylene. Journal of Applied Polymer Science.2007,104(6): 3654-3662
    [72]Alizadeh, A.; McKenna, T. F. L., Condensed mode cooling for ethylene polymerization:The influence of the heat of sorption. Macromolecular Reaction Engineering.2013,8 (5):419-433.
    [73]Namkajorn, M.; Alizadeh, A.; Somsook, E.; McKenna, T. F. L., Condensed-mode cooling for ethylene polymerization:The influence of inert condensing agent on the polymerization rate. Macromolecular Chemistry and Physics.2014,215(9):873-878.
    [74]Botros, K. K.; Price, G.; Ker, V; Jiang, Y; Goyal, S. K., Effects of hydrocarbon liquid feed in polyethylene polymerization process on particle surface temperature. Chemical Engineering Communications.2006,193(12):1612-1634
    [75]Alizadeh, A.; McKenna, T. F. L., Condensed mode cooling in ethylene polymerisation:Droplet evaporation. Macromolecular Symposia.2013,333(1):242-247
    [76]Utikar, R. P.; Harshe, Y. M.; Mehra, A.; Ranade, V. V., Modeling of a fluidized bed propylene polymerization reactor operated in condensed mode. Journal of Applied Polymer Science.2008,108(4): 2067-2076
    [77]Marc L.DeChellis; Griffin., J. R. Process for polymerizing monomers in fluidized beds. US5352749,1994.
    [78]Yang, Y. R.; Yang, J. Q.; Chen, W.; Rong, S. X., Instability analysis of the fluidized bed for ethylene polymerization with condensed mode operation. Ind Eng Chem Res.2002,41(10):2579-2584
    [79]吴文清;阳永荣;骆广海;王靖岱;蒋斌波;王树芳;韩国栋.流化床聚合反应器.ZL201110290787.6,2011.
    [80]吴文清;阳永荣;骆广海;王靖岱;蒋斌波;王树芳;韩国栋.一种蒯备聚合物的方法.ZL201110290783.8,2012.
    [81]陈美娟.基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用,浙江大学,杭州,2014.
    [1]阳永荣;王靖岱;蒋斌波;刘城午.一种流化床反应器的橙测方法.ZL200610049599.3,2008.
    [2]胡广书,数字信号处理论算法与实现(第二版).清华大学出版社:北京,2003.
    [3]van der Schaaf, J.; Schouten, J. C.; Johnsson, F.; van den Bleek, C. M., Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. Int J Multiphas Flow.2002,28(5):865-880
    [4]van Ommen, J. R.; van der Schaaf, J.; Schouten, J. C.; van Wachem, B. G. M.; Coppens, M.-O.; van den Bleek, C. M., Optimal placement of probes for dynamic pressure measurements in large-scale fluidized beds. Powder Technol 2004,139(3):264-276
    [5]Chilekar, V. P.; Warnier, M. J. F.; van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C.; van Ommen, J. R., Bubble size estimation in slurry bubble columns from pressure fluctuations. AIChE J.2005,51 (7): 1924-1937
    [6]Zhang, Y.; Bi, H. T.; Grace, J. R.; Lu, C., Comparison of decoupling methods for analyzing pressure fluctuations in gas-fluidized beds. AIChE J.2010,56(4):869-877
    [7]Mandelbrot, B. B.; Wallis, J. R., Robustness of the rescaled range R/S in the measurement of noncyclic longrun statistical dependence. Water Resour. Res.1969,5:967-988
    [1]Buchanan, J. S., Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers. Ind Eng Chem Res.1994,33(12):3104-3111
    [2]Yan-Peng, L.; Huan-Ran, W., Three-dimensional direct simulation of a droplet impacting into a solid sphere with low-impact energy. Can J Chem Eng.2011,89(1):83-91
    [3]Ge, Y.; Fan, L. S., Three-dimensional direct numerical simulation for film-boiling contact of moving particle and liquid droplet. Physics of Fluids.2006,18(11):117104
    [4]Ge, Y.; Fan, L. S., Droplet-particle collision mechanics with film-boiling evaporation. Journal of Fluid Mechanics.2007,573:311-337
    [5]Bird, J. C.; Dhiman, R.; Kwon, H.-M.; Varanasi, K. K., Reducing the contact time of a bouncing drop. Nature.2013,503(7476):385-388
    [6]Alizadeh, A.; McKenna, T. F. L., Condensed mode cooling in ethylene polymerisation:Droplet evaporation. Macromolecular Symposia.2013,333(1):242-247
    [7]Mirgain, C.; Briens, C.; Del Pozo, M.; Loutaty, R.; Bergougnou, M., Modeling of feed vaporization in fluid catalytic cracking. Ind Eng Chem Res.2000,39(11):4392-4399
    [8]孙其诚;王光谦,颗粒物质力学导论.科学出版社:北京,2009.
    [9]Lian, G.; Thornton, C.; Adams, M. J., A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science.1993,161(1):138-147
    [10]Mikami, T.; Kamiya, H.; Horio, M., Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci.1998,53(10):1927-1940
    [11]魏明锐;文华;刘永长;张煜盛,喷雾过程液滴碰撞模型研究.内燃机学报.2005,(6):518-523
    [12]Seville, J. P. K.; Willett, C. D.; Knight, P. C., Interparticle forces in fluidisation:a review. Powder Technol.2000,113(3):261-268
    [13]Ennis, B. J.; Li, J.; Gabriel I, T.; Robert, P., The influence of viscosity on the strength of an axially strained pendular liquid bridge. Chem Eng Sci.1990,45(10):3071-3088
    [14]Adamsand M. J.; Perchard, V, The cohesive forces between particles with interstitial liquid. Inst. Chem. Eng. Symp. Series.1985,91147
    [15]Popov, V. L., Contact Mechanics and Friction-Physical Principles and Applications. Springer: Berlin,2010.
    [16]Weigert, T.; Ripperger, S., Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Particle & Particle Systems Characterization.1999,16(5):238-242
    [17]McLaughlin, L. J.; Rhodes, M. J., Prediction of fluidized bed behaviour in the presence of liquid bridges. Powder Technol.2001,114(1-3):213-223
    [18]郭慕孙;李洪钟,流态化手册.化学工业出版社:北京,2008.
    [19]Lamb, H., Hydrodynamics. Dover:New York,1932.
    [20]岑可法;樊建人,工程气固多相流动的理论及计算.浙江大学出版社:杭州,1990.
    [21]Wen, C. Y; Yu, Y. H., Mechanics of fluidization. Chemical Engineering Progress Symposium Series.1966,62:100-111
    [22]Sun, J.; Zhou, Y.; Ren, C.; Wang, J.; Yang, Y, CFD simulation and experiments of dynamic parameters in gas-solid fluidized bed. Chem Eng Sci.2011,66(21):4972-4982
    [23]Hamzehei, M.; Rahimzadeh, H.; Ahmadi, G., Study of heat transfer and hydrodynamics in a gas-solid fluidized bed reactor experimentally and numerically. In Mechanical and Aerospace Engineering, Pts 1-7, Fan, W, Ed. Trans Tech Publications Ltd:Stafa-Zurich,2012; Vol.110-116, 4187-4197.
    [1]Utikar, R. P.; Harshe, Y. M.; Mehra, A.; Ranade, V. V., Modeling of a fluidized bed propylene polymerization reactor operated in condensed mode. Journal of Applied Polymer Science.2008,108(4): 2067-2076
    [2]Wormsbecker, M. Study of hydrodynamic behaviour in a conical fluidized bed dryer using pressure fluctuation analysis and X-ray densitometry. University of Saskatchewan, Saskatoon,2008.
    [3]Gupta, A.; Rao, D. S., Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization. Chem Eng Sci.2001,56(15):4489-4503
    [4]Tsujimoto, H.; Yokoyama, T.; Huang, C. C.; Sekiguchi, I., Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technol.2000,113(1-2):88-96
    [5]McDougall, S.; Saberian, M.; Briens, C.; Berruti, F.; Chan, E., Effect of liquid properties on the agglomerating tendency of a wet gas-solid fluidized bed. Powder Technol.2005,149(2-3):61-67
    [6]McDougall, S.; Saberian, M.; Briens, C.; Berruti, F.; Chan, E., Using dynamic pressure signals to assess the effects of injected liquid on fluidized bed properties. Chem Eng Process.2005,44(7): 701-708
    [7]Weber, S.; Briens, C.; Berruti, F.; Chan, E.; Gray, M., Agglomerate stability in fluidized beds of glass beads and silica sand. Powder Technol.2006,165(3):115-127
    [8]Weber, S.; Briens, C.; Berruti, F.; Chan, E.; Gray, M., Effect of agglomerate properties on agglomerate stability in fluidized beds. Chem Eng Sci.2008,63(17):4245-4256
    [9]Book, G.; Albion, K.; Briens, L.; Briens, C.; Berruti, F., On-line detection of bed fluidity in gas-solid fluidized beds with liquid injection by passive acoustic and vibrometric methods. Powder Technol.2011,205(1-3):126-136
    [10]Vervloet, D.; Nijenhuis, J.; van Ommen, J. R., Monitoring a lab-scale fluidized bed dryer:A comparison between pressure transducers, passive acoustic emissions and vibration measurements. Powder Technol.2010,197(1-2):36-48
    [11]Werther.J., Measurement techniques in fluidized beds. Powder Technol.1999,102(1):15-36
    [12]Boyd, J. W. R.; Varley, J., The uses of passive measurement of acoustic emissions from chemical engineering processes. Chem Eng Sci.2001,56(5):1749-1767
    [13]van Ommen, J. R.; Mudde, R. F., Measuring the gas-solids distribution in fluidized beds-A review. International Journal of Chemical Reactor Engineering.2008,6:1-32
    [14]Johnsson, F.; Zijerveld, R. C.; Schouten, J. C.; van den Bleek, C. M.; Leckner, B., Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int J Multiphas Flow.2000, 26(4):663-715
    [15]van Ommen, J. R.; Sasic, S.; van der Schaaf, J.; Gheorghiu, S.; Johnsson, F.; Coppens, M.-O., Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review. Int J Multiphas Flow.2011,37(5):403-428
    [16]Cody, G. D.; Johri, J.; Goldfarb, D., Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes. Powder Technol.2008,182(2):146-170
    [17]He, Y. J.; Wang, J. D.; Cao, Y. J.; Yang, Y. R., Resolution of Structure Characteristics of AE Signals in Multiphase Flow System-From Data to Information. AIChE J.2009,55(10):2563-2577
    [18]Jiang, X. J.; Wang, J. D.; Jiang, B. B.; Yang, Y. R.; Hou, L. X., Study of the power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Ind Eng Chem Res.2007,46(21): 6904-6909
    [19]Wang, J. D.; Ren, C. J.; Yang, Y. R., Characterization of Flow Regime Transition and Particle Motion Using Acoustic Emission Measurement in a Gas-Solid Fluidized Bed. AIChE J.2010,56(5): 1173-1183
    [20]Zhao, G. B.; Yang, Y. R., Multiscale resolution of fluidized-bed pressure fluctuations. AIChE J. 2003,49(4):869-882
    [21]Bi, H. T., A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chem Eng Sci.2007,62(13):3473-3493
    [22]Svensson, A.; Johnsson, F.; Leckner, B., Fluidization regimes in non-slugging fluidized beds:The influence of pressure drop across the air distributor. Powder Technol.1996,86(3):299-312
    [23]Park, S. H.; Kang, Y.; Kim, S. D., Wavelet transform analysis of pressure fluctuation signals in a pressurized bubble column. Chem Eng Sci.2001,56(21-22):6259-6265
    [24]Bi, H.; Chen, A., Pressure fluctuations in gas-solids fluidized beds. China Particuology.2003,1(4): 139-144
    [25]Ren, C. J.; Wang, J. D.; Song, D.; Jiang, B. B.; Liao, Z. W.; Yang, Y. R., Determination of particle size distribution by multi-scale analysis of acoustic emission signals in gas-solid fluidized bed. Journal of Zhejiang University-Science A.2011,12(4):260-267
    [26]Kunii, D.; Levenspiel, O., Fluidization Engineering (2nd edition). Butterworth-Heinemann: London,1991.
    [27]Mandelbrot, B. B.; Wallis, J. R., Robustness of the rescaled range R/S in the measurement of noncyclic longrun statistical dependence. Water Resour. Res.1969,5:967-988
    [28]Mandelbrot, B. B.; Wallis, J. R., Some long-run properties of geophysical records. Water Resour. Res.1969,5(2):321-340
    [29]Fan, L. T.; Kang, Y; Neogi, D.; Yashima, M., Fractal analysis of fluidized particle behavior in liquid-solid fluidized beds. AIChE J.1993,39(3):513-517
    [30]Peters, E. E., Applying Chaos to Investment and Economics. Wiley:New York,1994.
    [31]Marc L. DeChellis; Griffin, J. R. Process for polymerizing monomers in fluidized beds. US5352749,1994.
    [1]Kunii, D.; Levenspiel, O., Fluidization Engineering (2nd edition). Butterworth-Heinemann:London, 1991.
    [2]Kwauk, M.; Li, H., Handbook of fluidization. Chemical Industry Press:Beijing,2008.
    [3]Kannan, C. S.; Rao, S. S.; Varma, Y. B. G., A study of stable range of operation in multistage fluidised beds. Powder Technol.1994,78(3):203-211
    [4]Iliuta, I.; Leclerc, A.; Larachi, F., Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - New reactor concept. Bioresource Technology.2010,101(9):3194-3208
    [5]Covezzi, M.; Mei, G., The multizone circulating reactor technology. Chem Eng Sci.2001,56(13): 4059-4067
    [6]Cover, A. E.; Schreiner, W. C.; Skaperdas, G. T., Coal gasification:Kellogg's coal gasification process. Chem. Eng. Prog.1973,69(3):31
    [7]Waldie, B.; Wilkinson, D.; Zachra, L., Kinetics and mechanisms of growth in batch and continuous fluidized bed granulation. Chem Eng Sci.1987,42(4):653-665
    [8]Fan, L.-S., Gas-Liquid-Solid Fluidization Engineering. Butterworth-Heinemann:Boston,1989.
    [9]吴文清;阳永荣;骆广海;王靖岱;蒋斌波;王树芳;韩国栋.流化床聚合反应器.ZL201110290787.6,2011.
    [10]Chen, J., Catalytic Craking Technology and Engineering (2nd edition). China Petrochemical Press: Beijing,2005.
    [11]Higman, C.; van der Burgt, M., Gasification (2nd edition). Gulf Professional Publishing: Burlington,2007.
    [12]Maronga, S. J.; Wnukowski, P., The use of humidity and temperature profiles in optimizing the size of fluidized bed in a coating process. Chem Eng Process.1998,37(5):423-432
    [13]Bi, H.; Chen, A., Pressure fluctuations in gas-solids fluidized beds. China Particuology.2003,1(4): 139-144
    [14]Bi, H. T., A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chem Eng Sci.2007,62(13):3473-3493
    [15]Zhou, Y.; Shi, Q.; Huang, Z.; Wang, J.; Yang, Y; Liao, Z.; Yang, J., Effects of interparticle forces on fluidization characteristics in liquid-containing and high-temperature fluidized beds. Ind Eng Chem Res.2013,52(47):16666-16674
    [16]杨荆泉.气相法聚乙烯冷凝模式操作流化床反应器的传热特性和稳定性研究.浙江大学,杭州,1999.
    [17]Weigert, T.; Ripperger, S., Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Particle & Particle Systems Characterization.1999,16(5):238-242
    [1]Kunii, D.; Levenspiel,O., Fluidization Engineering (2nd edition). Butterworth-Heinemann:London, 1991.
    [2]Leva, M., Proc. Symp. on Interaction between Fluids and Particles. Inst. Chem. Engineers:London, 1962.
    [3]Marsheck, R. M.; Gomezpla.A, Particle flow patterns in a fluidized bed. AIChE J.1965,11(1): 167-173
    [4]Ohki, K.; Shirai, T., Particle velocity in fluidized bed. In Fluidization Technology, Keairns, D., Ed. McGraw-Hill:Washington,1975; Vol.1,95.
    [5]Werther, J.; Molerus, O., The local structure of gas fluidized beds —Ⅱ. The spatial distribution of bubbles. Int J Multiphas Flow.1973,1(1):123-138
    [6]Lin, J. S.; Chen, M. M.; Chao, B. T., A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChEJ.1985,31(3):465-473
    [7]Fan, X. F.; Yang, Z. F.; Parker, D. J., Impact of solid sizes on flow structure and particle motions in bubbling fluidization. Powder Technol.2011,206(1-2):132-138
    [8]Laverman, J. A.; Fan, X.; Ingram, A.; Annaland, M. v. S.; Parker, D. J.; Seville, J. P. K.; Kuipers, J. A. M., Experimental study on the influence of bed material on the scaling of solids circulation patterns in 3D bubbling gas-solid fluidized beds of glass and polyethylene using positron emission particle tracking. Powder Technol.2012,224:297-305
    [9]Wang, J. D.; Ren, C. J.; Yang, Y. R.; Hou, L. X., Characterization of particle fluidization pattern in a gas solid fluidized bed based on acoustic emission (AE) measurement. Ind Eng Chem Res.2009, 48(18):8508-8514
    [10]Zhou, Y; Ren, C.; Wang, J.; Yang, Y.; Dong, K., Effect of hydrodynamic behavior on electrostatic potential distribution in gas-solid fluidized bed. Powder Technol.2013,235:9-17
    [11]Maronga, S. J.; Wnukowski, P., The use of humidity and temperature profiles in optimizing the size of fluidized bed in a coating process. Chem Eng Process.1998,37(5):423-432
    [12]Jimenez, T.; Turchiuli, C.; Dumoulin, E., Particles agglomeration in a conical fluidized bed in relation with air temperature profiles. Chem Eng Sci.2006,61(18):5954-5961
    [13]Hosseini, S. H.; Ahmadi, G.; Rahimi, R.; Zivdar, M.; Esfahany, M. N., CFD studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Powder Technol.2010,200(3): 202-215
    [14]Ahuja, G. N.; Patwardhan, A. W., CFD and experimental studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Chem Eng J.2008,143(1-3):147-160
    [15]Hassani, M. A.; Zarghami, R.; Norouzi, H. R.; Mostoufi, N., Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas-solid fluidized beds. Powder Technol.2013,246: 16-25
    [16]Yang, W. C.; Ettehadieh, B.; Haldipur, G. B., Solids circulation pattern and particles mixing in a large jetting fluidized bed. AIChE J.1986,32(12):1994-2001
    [17]Patterson, E. E.; Halow, J.; Daw, S., Innovative method using magnetic particle tracking to measure solids circulation in a spouted fluidized bed. Ind Eng Chem Res.2010,49(11):5037-5043
    [18]Zhu, R. R.; Zhu, W. B.; Xing, L. C.; Sun, Q. Q., DEM simulation on particle mixing in dry and wet particles spouted bed. Powder Technol.2011,210(1):73-81
    [19]Seville, J. P. K.; Clift, R., The effect of thin liquid layers on fluidization characteristics. Powder Technol.1984,37(1):117-129
    [20]Ennis, B. J.; Tardos, G.; Pfeffer, R., A microlevel-based characterization of granulation phenomena. Powder Technol.1991,65(1-3):257-272
    [21]Iveson, S. M.; Litster, J. D., Growth regime map for liquid-bound granules. AIChE J.1998,44(7): 1510-1518
    [22]Mikami, T.; Kamiya, H.; Horio, M., Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci.1998,53(10):1927-1940
    [23]Wright, P. C.; Raper, J. A., Examination of dispersed liquid-phase three-phase fluidized beds Part 1. Non-porous, uniform particle systems. Powder Technol.1998,97(3):208-226
    [24]Seville, J. P. K.; Willett, C. D.; Knight, P. C., Interparticle forces in fluidisation:a review. Powder Technol.2000,113(3):261-268
    [25]Iveson, S. M.; Litster, J. D.; Hapgood, K.; Ennis, B. J., Nucleation, growth and breakage phenomena in agitated wet granulation processes:a review. Powder Technol.2001,117(1-2):3-39
    [26]McLaughlin, L. J.; Rhodes, M. J., Prediction of fluidized bed behaviour in the presence of liquid bridges. Powder Technol.2001,114(1-3):213-223
    [27]Passos, M. L.; Mujumdar, A. S., Effect of cohesive forces on fluidized and spouted beds of wet particles. Powder Technol.2000,110(3):222-238
    [28]Cody, G. D.; Goldfarb, D. J.; Storch, G. V.; Norris, A. N., Particle granular temperature in gas fluidized beds. Powder Technol.1996,87(3):211-232
    [29]Wang, J. D.; Ren, C. J.; Yang, Y. R., Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas-solid fluidized bed. AIChE J.2010,56(5):1173-1183
    [30]Zhou, Y; Shi, Q.; Huang, Z.; Wang, J.; Yang, Y.; Liao, Z.; Yang, J., Effects of interparticle forces on fluidization characteristics in liquid-containing and high-temperature fluidized beds. Ind Eng Chem Res.2013,52(47):16666-16674
    [1]Xie, T. Y.; McAuley, K. B.; Hsu, J. C. C.; Bacon, D. W., Gas-Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling, Ind Eng Chem Res.1994,33(3): 449-479
    [2]Mirzaei, A.; Kiashemshaki, A.; Emami, M., Fluidized bed polyethylene reactor modeling in condensed mode operation. Macromolecular Symposia.2007,259:135-144
    [3]Utikar, R. P.; Harshe, Y. M.; Mehra, A.; Ranade, V. V., Modeling of a fluidized bed propylene polymerization reactor operated in condensed mode. Journal of Applied Polymer Science.2008,108(4): 2067-2076
    [4]Alizadeh, A.; McKenna, T. F. L., Condensed mode cooling in ethylene polymerisation:Droplet evaporation. Macromolecular Symposia.2013,333(1):242-247
    [5]Alizadeh, A.; McKenna, T. F. L., Condensed mode cooling for ethylene polymerization:The influence of the heat of sorption. Macromolecular Reaction Engineering.2013,8(5):419-433.
    [6]Namkajorn, M.; Alizadeh, A.; Somsook, E.; McKenna, T. F. L., Condensed-mode cooling for ethylene polymerization:The influence of inert condensing agent on the polymerization rate. Macromolecular Chemistry and Physics.2014,215(9):873-878.
    [7]Toomey, R. D.; Johnstone, H. F., Gaseous fluidization of solid particles. Chemical Engineering Progress.1952,48(5):220-226
    [8]Choi, K. Y; Ray, W. H., The dynamic behaviour of fluidized bed reactors for solid catalysed gas phase olefin polymerization. Chem Eng Sci.1985,40(12):2261-2279
    [9]McAuley, K. B.; Talbot, J. P.; Harris, T. J., A comparison of two-phase and well-mixed models for fluidized-bed polyethylene reactors. Chem Eng Sci.1994,49(13):2035-2045
    [10]Fernandes, F. A. N.; Lona, L. M. F., Heterogeneous modeling for fluidized-bed polymerization reactor. Chem Eng Sci.2001,56(3):963-969
    [11]Davidson, J. F., The two-phase theory of fluidization:Successes and opportunities. In AICHE Symposium Series:1992; Vol.87,1-12.
    [12]Alizadeh, M.; Mostoufi, N.; Pourmahdian, S.; Sotudeh-Gharebagh, R., Modeling of fluidized bed reactor of ethylene polymerization. Chem Eng J.2004,97(1):27-35
    [13]Kiashemshaki, A.; Mostoufi, N.; Sotudeh-Gharebagh, R., Two-phase modeling of a gas phase polyethylene fluidized bed reactor. Chem Eng Sci.2006,61(12):3997-4006
    [14]Jafari, R.; Sotudeh-Gharebagh, R.; Mostoufi, N., Modular simulation of fluidized bed reactors. Chem Eng Technol.2004,27(2):123-129
    [15]Davidson, J. F.; Harrison, D., Fluidised particles. Cambridge University Press:Cambridge,1963.
    [16]Hatzantonis, H.; Yiannoulakis, H.; Yiagopoulos, A.; Kiparissides, C., Recent developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors:The effect of bubble size variation on the reactor's performance. Chem Eng Sci.2000,55(16):3237-3259
    [17]Shamiri, A.; Hussain, M. A.; Mjalli, F. S.; Mostoufi, N., Kinetic modeling of propylene homopolymerization in a gas-phase fluidized-bed reactor. Chem Eng J.2010,161(1-2):240-249
    [18]Shamiri, A.; Hussain, M. A.; Mjalli, F. S.; Mostoufi, N.; Shafeeyan, M. S., Dynamic modeling of gas phase propylene homopolymerization in fluidized bed reactors. Chem Eng Sci.2011,66(6): 1189-1199
    [19]Choi, K. Y.; Zhao, X.; Tang, S. H., Population Balance Modeling for a continuous gas phase olefin polymerization reactor. Journal of Applied Polymer Science.1994,53(12):1589-1597
    [20]Zacca, J. J.; Debling, J. A.; Ray, W. H., Reactor residence time distribution effects on the multistage polymerization of olefins.1. Basic principles and illustrative examples, polypropylene. Chem Eng Sci.1996,51(21):4859-4886
    [21]Hatzantonis, H.; Goulas, A.; Kiparissides, C., A comprehensive model for the prediction of particle-size distribution in catalyzed olefin polymerization fluidized-bed reactors. Chem Eng Sci.1998, 53(18):3251-3267
    [22]Kim, J. Y.; Choi, K. Y., Modeling of particle segregation phenomena in a gas phase fluidized bed olefin polymerization reactor. Chem Eng Sci.2001,56(13):4069-4083
    [23]Dompazis, G.; Kanellopoulos, V.; Kiparissides, C., A multi-scale modeling approach for the prediction of molecular and morphological properties in multi-site catalyst, olefin polymerization reactors. Macromolecular Materials and Engineering.2005,290(6):525-536
    [24]Dompazis, G.; Kanellopoulos, V.; Touloupides, V.; Kiparissides, C., Development of a multi-scale, multi-phase, multi-zone dynamic model for the prediction of particle segregation in catalytic olefin polymerization FBRs. Chem Eng Sci.2008,63(19):4735-4753
    [25]Soares, J. B. P., Mathematical modelling of the microstructure of polyolefins made by coordination polymerization:a review. Chem Eng Sci.2001,56(13):4131-4153
    [26]McAuley, K. B.; Macgregor, J. F.; Hamielec, A. E., A kinetic model for industrial gas-phase ethylene copolymerization. AIChE J.1990,36(6):837-850
    [27]McAuley, K. B.; Macgregor, J. F., On-line inference of polymer properties in an industrial polyethylene reactor. AIChE J.1991,37(6):825-835
    [28]Xie, T. Y.; McAuley, K. B.; Hsu, J. C. C.; Bacon, D. W., Modeling molecular weight development of gas-phase alpha-olefin copolymerization.AICheE J.1995,41(5):1251-1265
    [29]Hutchinson, R. A.; Chen, C. M.; Ray, W. H., Polymerization of olefins through heterogeneous catalysis X:Modeling of particle growth and morphology. Journal of Applied Polymer Science.1992, 44(8):1389-1414
    [30]Kaneko, Y.; Shiojima, T.; Horio, M., DEM simulation of fluidized beds for gas-phase olefin polymerization. Chem Eng Sci.1999,54(24):5809-5821
    [31]Botros, K. K.; Price, G.; Ker, V.; Jiang, Y.; Goyal, S. K., Effects of hydrocarbon liquid feed in polyethylene polymerization process on particle surface temperature. Chemical Engineering Communications.2006,193(12):1612-1634
    [32]Behjat, Y.; Shahhosseini, S.; Hashemabadi, S. H., CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors. International Communications in Heat and Mass Transfer.2008, 35(3):357-368
    [33]Dehnavi, M. A.; Shahhosseini, S.; Hashemabadi, S. H.; Ghafelebashi, S. M., CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors. International Communications in Heat and Mass Transfer.2010,37(4):437-442
    [34]Chen, X.-Z.; Luo, Z.-H.; Yan, W.-C.; Lu, Y.-H.; Ng, I. S., Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors. AIChE J.2011,57(12): 3351-3366
    [35]Karimi, S.; Mansourpour, Z.; Mostoufi, N.; Sotudeh-Gharebagh, R., CFD-DEM study of temperature and concentration distribution in a polyethylene fluidized bed reactor. Particul Sci Technol. 2011,29(2):163-178
    [36]Rokkam, R. G.; Fox, R. O.; Muhle, M. E., Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technol.2010,203(2):109-124
    [37]Glicksman, L. R.; Lord, W. K.; Sakagami, M., Bubble properties in large-particle fluidized beds. Chem Eng Sci.1987,42(3):479-491
    [38]Floyd, S.; Choi, K. Y.; Taylor, T. W.; Ray, W. H., Polymerization of olefins through heterogeneous catalysis III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. Journal of Applied Polymer Science.1986,32(1):2935-2960
    [39]Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena. Wiley:2007; 679-683.
    [40]Geldart, D., Types of gas fluidization. Powder Technol.1973,7(5):285-292
    [41]Lucas, A.; Arnaldos, J.; Casal, J.; Puigjaner, L., Improved equation for the calculation of minimum fluidization velocity. Industrial & Engineering Chemistry Process Design and Development.1986, 25(2):426-429
    [42]Kunii, D.; Levenspiel, O., Fluidization Engineering (2nd edition). Butterworth-Heinemann: London,1991.
    [43]McAuley, K. B. Modelling, estimation and control of product properties in a gas-phase polyethylene reactor. McMaster University, Hamilton,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700