二甲醚喷雾特性与燃烧过程的实验和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲醚作为一种理想的柴油机替代燃料,近年来受到了众多研究者的广泛关注。针对其与柴油不同的特点,本文采用先进的激光测试手段与多维数值模拟相结合的方法,对二甲醚喷雾混合和燃烧的发展变化历程进行了深入的研究。研究内容和取得的成果主要体现在以下几个方面:
     为了提高喷雾模拟的精度,对O’Rourke液滴碰撞模型的网格依赖性问题进行了分析,提出了以交错网格和碰撞限制角相结合的CMC液滴碰撞改进算法。分别在定容燃烧室和发动机气缸内,从喷雾结构、索特平均半径(SMR)和喷雾贯穿距三个方面,分析了网格型式、网格精度以及喷雾粒子数对改进算法计算结果的影响。结果表明:CMC液滴模型在极坐标网格和直角坐标网格下,均具有较低的网格依赖性,和较低的网格精度和粒子数敏感性;但在喷雾贯穿距预测方面,CMC液滴算法只是略好于O’Rourke液滴碰撞算法。这主要是由于CMC算法设计用来较好的解决液滴碰撞的径向分量,而喷雾贯穿距是液滴轴向运动的测量。
     在综合研究了二甲醚喷雾的有关实验文献后,发现二甲醚喷射过程中易于出现闪急沸腾现象。以TSI公司的数字PIV系统为基础,构建了适用于喷雾研究的PIV喷雾测试系统。根据CCD照相机捕获的喷雾图像,分析了单孔直喷式柴油喷嘴形成的二甲醚闪急沸腾喷雾的结构及其发展过程。结果发现:按照喷雾轴线方向,闪急沸腾喷雾的结构可以分为喷雾初始核区,闪急沸腾喷雾的主体区和涡环形成区。根据涡环结构的形成与发展,其喷雾发展过程可以分为以下四个主要阶段,即涡环结构的形成阶段,涡环结构的发展与变形阶段,涡环结构的破碎阶段,以及充分发展的闪急沸腾喷雾阶段。另外,由于微爆效应的作用,二甲醚闪急沸腾喷雾与柴油喷雾在宏观特性方面也表现出较大的不同。
     借助于PIV喷雾测试系统,对二甲醚普通喷雾的内部特性及其相应的机理进行了研究。与柴油喷雾相似,二甲醚喷雾体内存在着不均匀的枝状结构;但喷雾体内燃油的分布特性则与柴油存在着较大的差别,二甲醚喷雾体内存在着清晰可分的高浓度燃油区和低浓度燃油区。随后,对二甲醚喷雾的速度场和涡量场等流动信息进行了测量,并将不同截面二甲醚喷雾平均轴向速度的无因次速度分布与阿勃拉莫维奇速度分布剖面进行了对比,发现在喷雾体中间部分两者吻合的较好,但在喷雾体边缘处阿勃拉莫维奇经验公式预测的值偏小;为了在准维燃烧模型中更为准确的描述二甲醚喷雾混合及其燃烧过程,给出了一个新的适用于二甲醚喷雾的速度分布公式。另外,还就撞壁对二甲醚喷雾的影响进行了研究。
     以ZS195单缸直喷式柴油机为原型机,通过对其燃油系统进行改装和调试,建立了直喷式二甲醚发动机的试验台架。在三种不同工况条件下,对柴油机燃用二甲醚的燃烧过程进行了试验研究。试验结果表明,对于ZS195柴油机来说,采用27°CA BTDC的供油提前角更为合适;并分析了进气温度和压缩比对二甲醚发动机燃烧与排放的影响。另外,采用类似于多点喷射式汽油机的混合气组织方式,建立了燃用DME的HCCI发动机试验台架。在三种发动机部分负荷工况条件下,对DME HCCI发动机的燃烧过程和排放特性进行了研究。在HCCI模式下二甲醚燃烧呈现出明显的两阶段放热特性,燃烧过程中存在的爆燃现象阻碍了发动机运行工况向中高负荷范围的扩展。
     为了深刻认识直喷式二甲醚发动机着火燃烧的机理,判明二甲醚发动机与柴油机在燃烧特性与排放方面存在较大差异的根本原因,本文采用改进的KIVA程序,对ZS195单缸直喷柴油机燃用二甲醚的着火燃烧过程进行了数值模拟与参数分析研究。结果表明:二甲醚发动机的着火燃烧过程之所以与柴油机表现出较大的不同,主要是由于二甲醚具有良好的雾化和蒸发特性。在缸内气流运动的影响下,二甲醚可燃混合气易于在燃烧室壁面附近涡旋运动的下游区域聚集而发生自燃着火;随后在缸内卷吸气流的作用下,从燃烧室壁面附近开始向气缸中心线方向移动,燃烧区域的火焰也随之向气缸中心线方向扩展,最终充满整个燃烧室空间。
Recently, as an ideal alternative fuel for diesel engine, dimethyl ether(DME) has been attracting much attention from many researchers. Because the properties of DME are large different from diesel fuel, the spray mixture and combustion processes of DME are investigated in detail using advanced laser technique and multi-dimensional simulation in this paper. The main contents and achievements of this research are as following.
     In order to improve accuracy of spray simulation, the grid dependency of O’Rourke droplet collision model is analyzed, and proposed a cross mesh droplet collision(CMC) algorithm which is a combination of cross mesh method and collision limit angle. In constant volume apparatus and D.I. diesel engine, the effects of mesh schemes, mesh resolutions and parcel numbers to the calculation results using modified algorithm are checked from spray structure, Sauter mean radius(SMR) and spray penetration, respectively. The results show that: CMC droplet model is less mesh-dependent and less sensitive to mesh resolution and parcel number in both polar mesh and Cartesian mesh. However, the predicted spray penetration using CMC droplet model is only slightly better than that of O’Rourke algorithm. The main reason is that the CMC method is designed to better resolve the radial component of the droplet collision, the spray penetration is a measure of axial motion.
     Through completely analyzing the papers about DME spray, found that flash boiling phenomena are easily occurred in DME spray. Based on the digital particle image velocimetry (PIV) system of TSI Company, a PIV test bench for DME spray investigation is set up. According to the spray images captured by CCD camera, the spray structure and developing process of DME flash boiling spray formed by a single-hole D.I. diesel injector are analyzed. The results show that: according to the axial direction, the spray structure of flash boiling spray can be classified into follows: spray initial core region; main body region of flash boiling spray; vortex ring formation region. Based on the process of vortex ring structure formation and development, the flash boiling spray development can be classified into four stages: vortex ring structure forming stage; vortex ring structure developing and distorting stage; vortex ring structure breaking up stage; full development stage of flash boiling spray. In addition, due to the effect of micro-explosion the spray macro-characteristics of DME flash boiling spray are large different from diesel fuel.
     The internal characteristics and forming mechanisms of DME conventional spray are investigated using the above PIV test bench. Similar with diesel fuel spray, there are non-homogeneous“branch-like structures”in DME spray. However, the fuel distribution characteristics of DME spray are large different from diesel fuel, and there are apparent high concentration fuel region and low concentration fuel region in DME spray body. Subsequently, the velocity and vorticity of DME spray are measured, and compared the dimensionless velocity distributions at each cross section with Abramovich distribution. It is found that the dimensionless velocity of DME spray is better consistent with the predicted value using Abramovich distribution in the middle of spray, but the predicted value using Abramovich function is less than the experimental results at the edge of spray. In order to improve the simulation accuracy of mixture and combustion process of DME spray using quasi- dimensional combustion model, a new velocimetry distribution function which is suitable for DME spray is proposed. In addition, the influence of spray impingement against the wall on DME spray is investigated.
     Based on a single cylinder diesel engine ZS195, the test bench of D.I. DME engine is set up through the modification of fuel system. In three different conditions, the combustion processes of diesel engine fuelled with DME are analyzed. It is found that the advance angle of oil supply of 27°CA BTDC is better for ZS195 diesel engine fuelled with DME, and investigated the effects of intake air temperature and compression ratio on the combustion and emission of DME engine. In addition, the test bench of DME HCCI engine is set up using the mixture formation method similar with M.P.I. gasoline engine. In three partly engine loads, the combustion process and emission characteristic of DME HCCI engine are investigated. In HCCI condition the DME combustion shows clear“two stages”heat release, and the detonation phenomena in combustion process impede the expansion of engine performance to medium or high load.
     In order to profoundly understand the ignition and combustion mechanics of D.I. DME engine, and clear the essential reason that there are large difference in combustion and emission characteristics between DME engine and diesel engine, this work analyzes the ignition and combustion processes of single cylinder diesel engine ZS-195 fuelled with DME using modified KIVA code. The results show that: The main reason that the ignition and combustion processes of D.I. DME engine are large different from diesel engine is that DME has better atomization or evaporation characteristics. In the influence of flow in cylinder, the combustible mixtures of DME easily accumulate at the wall of combustion chamber and downstream of vortex, and complete auto-ignition. Subsequently, the combustible mixtures are moved from the wall of combustion chamber to the axis of cylinder by the action of entrainment flow in cylinder, and the flames of combustion region are also expanded to the axis of cylinder and finally overflow the whole combustion chamber.
引文
[1]史绍熙.汽车发动机燃烧技术的新进展.燃烧科学与技术, 2001, 7(1): 1-14.
    [2]赵新顺,曹会智,温茂禄,等. HCCI技术的研究现状与展望.内燃机工程, 2004, 25(4): 73-77.
    [3]汪映,周龙保,蒋德明.均质充量压缩燃烧方式的研究进展及存在问题.车用发动机, 2002, (5): 6-9.
    [4]汪卫东.替代能源:未来汽车工业发展的新方向.中国内燃机学会2005年学术年会暨APC2005年学术年会论文集,中国武汉, 2005, 529-533.
    [5] Eirich J, Chapman E. Development of a Dimethyl Ether (DME) Fueled Shuttle Bus. SAE 2003-01-0756, 2003.
    [6] Hansen K F, Ristola T. Demonstration of a DME (Dimethyl Ether) Fuelled City Bus. SAE 2000-01-2005, 2000.
    [7]新型燃料“二甲醚”公交车明年在上海问世, http://news.sina.com.cn, 2005.
    [8] the IDA(International DME Association) website news paper. http://www.vs.ag, 2005.
    [9] John B?gild Hansen, Bodil Voss, et al. Large Scale Manufacture of Dimethyl Ether– a New Alternative Diesel Fuel from Natural Gas. SAE 950063, 1995.
    [10] Myrayama T, Chikahiro T, et al. A Study of a Compression Ignition Methanol Engine with Converted Dimethyl Ether as an Ignition Improver. SAE 922212, 1992.
    [11] Guo J, Chikahisa T, et al. Improvement of Performance and Emissions of a Compression Ignition Methanol Engine with Dimethyl Ether. SAE 941908, 1994.
    [12] Sorenson S C, Svend-Erik Mikkelsen. Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fuelled with Neat Dimethyl Ether. SAE 950064, 1995.
    [13] Theo Fleisch, Chris McCarthy, Arun Basu, et al. A New Clean Diesel Technology: Demonstration of ULEV Emissions on a Navistar Diesel Engine Fueled with Dimethyl Ether. SAE 950061, 1995.
    [14] Paul Kapus, Herwig Ofner. Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethyl Ether. SAE 950062, 1995.
    [15] Kapus P E, Cartellieri W P. ULEV Potential of a DI/TCI Diesel Passnger Car Engine Operated on Dimethyl Ether. SAE 952754, 1995.
    [16] Rasmus Christensen, Sorenson S C, Michael G. Jensen, et al. Engine Operation onDimethyl Ether in a Naturally Aspirated, DI Diesel Engine. SAE 971665, 1997.
    [17] Kajitani S, Chen Z L, Konno M, et al. Engine Performance and Exhaust Characteristics of Direct-Injection Diesel Engine Operated with DME. SAE 972973, 1997.
    [18] Ofner H, Gill D W, and Krotschec C. Dimethyl Ether as Fuel for CI Engines– A New Technology and its Environmental Potential. SAE 981158, 1998.
    [19] Rolf Egnell. Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel. SAE 2001-01-0651, 2001.
    [20] Seemoon Yang, Yong Kil Kim, and YoungJae Lee. Studies on the Optimization with Regard to Relationships between Performance and Emission Characteristics in Dimethyl Ether (DME) Fueled Engines Using Common Rail Fuel Injection System. JSAE 20030259, SAE 2003-01-1927, 2003.
    [21] Yoshio Sato, Akira Noda, Takashi Sakamoto, et al. Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR and Supercharging. SAE 2000-01-1809, 2000.
    [22] Mitsuharu Oguma, Shinichi Goto, Tomoko Watanbe. Engine Performance and Emission Characteristics of DME Diesel Engine with Inline Injection Pump Developed for DME. SAE 2004-01-1863, 2004.
    [23]尧命发,许斯都,罗毅.直喷式柴油机燃用二甲基醚(DME)试验研究.燃烧科学与技术, 2002, 8(3): 252-257.
    [24] Wang H W, Huang Z H, Zhou L B, et al. Investigation on Emission Characteristics of a Compression Ignition Engine with Oxygenated Fuels and Exhaust Gas Recirculation. Proc. IMechE., Part D: J. Automobile Engineering, 2000, 214: 503-508.
    [25] Kensuke Wakai, Keiya Nishida, Takuo Yoshizaki, et al. Spray and Ignition Characteristics of Dimethyl Ether Injected by a D.I. Diesel Injector. COMODIA 1998, 1998.
    [26] Lee Seang-wock, Kusaka Jin, Daisho Yasuhiro. Spray Characteristics of Alternative Fuels in Constant Volume Chamber (Comparison of the Spray Characteristics of LPG, DME and n-Dodecane). JSAE Review, 2001, 22: 271-276.
    [27] Lee S W, Murata Y, Daisho Y. Spray and Combustion Characteristics of Dimethyl Ether Fuel. Proc. IMechE., Part D: J. Automobile Engineering, 2005, 219: 97-102.
    [28] Lim Jaeman, Kim Yongrae, Min Kyoungdoug. Characteristics of the Spray andCombustion Process of DME under Engine Conditions. COMODIA 2004, 2004.
    [29] Spencer C. Sorenson, Michael Glensvig, and Duane L. Abata. Dimethyl Ether in Diesel Fuel Injection Systems. SAE 981159, 1998.
    [30] Kensuke Wakai, Takuo Yoshizaki, Keiya Nishida, et al. Numerical and Experimental Analyses of the Injection Characteristics of Dimethyl Ether with a D.I. Diesel Injection System. SAE 1999-01-1122, 1999.
    [31] Mitsuru Konno, Shuichi Kajitani, Zhili Chen, et al. Investigation of the Combustion Process of a DI CI Engine Fueled with Dimethyl Ether. SAE 2001-01-3504, 2001.
    [32] No Soo-Young, Hwang Jin-Sik, Kim Sun-Cheol, et al. Spray Characteristics of Dimethyl Ether for Diesel Engine Application. SAE 2003-01-1926, 2003.
    [33] Yu J and Bae C. Dimethyl Ether (DME) Spray Characteristics in a Common-Rail Fuel Injection System. Proc. IMechE., Part D: J. Automobile Engineering, 2003, 217: 1135- 1144.
    [34] Yu Jun, Lee JookWang, and Bae Choongsik. Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System. SAE 2002-01-2898, 2002.
    [35] Mitsuharu Oguma, Gisoo Hyun, Shinichi Goto, et al. Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME). SAE 2002-01-1711, 2002.
    [36] Masaaki Kato, Hisaharu Takeuchi, Kazutoshi Koie, et al. A Study of Dimethyl Ether (DME) Flow in Diesel Nozzle. SAE 2004-01-0081, 2004.
    [37] ?ivind Andersson, Robert Collin, Marcus Alden, et al. Quantitative Imaging of Equivalence Ratios in DME Sprays Using a Chemically Preheated Combustion Vessel. SAE 2000-01-2785, 2000.
    [38] Yao Mingfa, Xu Si-du, Jin Ping, et al. An Experimental Study of the Dimethyl Ether (DME) General Spray Characteristics. Transactions of CSICE, 2001, 19(1): 10-14.
    [39]尧命发,许斯都,郑尊清.二甲基醚(DME)碰壁喷雾特性和燃烧特性试验研究.燃烧科学与技术, 2002, 8(2): 126-129.
    [40] Li Jun, Yoshio Sato, Akira Noda. An Experimental Study on DME Spray Characteristics and Evaporation Processes in a High Pressure Chamber. SAE 2001-01-3635, 2001.
    [41]张光德,黄震,乔信起,等.二甲醚燃料喷射过程的试验研究.内燃机学报, 2002, 20(5): 395-398.
    [42]王贺武,周龙保.二甲醚喷雾特性的研究.西安交通大学学报, 2001, 35(9): 918- 921.
    [43]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟. [博士学位论文],武汉:华中科技大学, 2004.
    [44]魏明锐.二甲基醚发动机喷射雾化的理论及试验研究. [博士学位论文],武汉:华中科技大学, 2004.
    [45] Rajshekhar D Oza, James F Sinnamon. An Experimental and Analytical Study of Flash- Boiling Fuel Injection. SAE 830590, 1983.
    [46] Zeng YangBing. Modeling of Multicomponent Fuel Vaporization in Internal Combustion Engines. [Ph.D. Thesis], Urbana Illinois: University of Illinois at Urbana-Champaign, 2000.
    [47] Chang Dar-Long. Modeling of Air-Assisted and Flash Boiling Sprays in Gasoline Direct Injection Engines. [Ph.D. Thesis], Urbana Illinois: University of Illinois at Urbana- Champaign, 2003.
    [48] Senda Jiro, Hojyo Yoshiyuki, Fujimoto Hajime. Modeling of Atomization Process in Flash Boiling Spray. SAE 941925, 1994.
    [49] Adachi Masayuki, McDonell G Vincent, Tanaka Daisuke, et al. Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray. SAE 970871, 1997.
    [50] Zuo B, Gomes A M, Rutland C J. Modeling Superheated Fuel Sprays and Vaporization. Int J Engine Research, 1(4): 321-336.
    [51] Kawano D, Goto Y, Odaka M, et al. Modeling Atomization and Vaporization Processes of Flash-Boiling Spray. SAE 2004-01-0534, 2004.
    [52] Senda J, Fujimoto H. Fuel Design Approach for Low Emission Spray Combustion Fields. Compatibility between the strategy for Emissions Reduction Panal, SAE Fuels & Lubricants Meeting SFL42, June 16, 2004.
    [53] Jiro Senda, Koji Hashimoto, Yoshiharu Ifuku, et al. CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine, SAE 970319, 1997.
    [54]黄震,大圣泰弘,姜高植.溶有CO2燃油的闪急沸腾喷射过程研究.内燃机学报, 2000, 18(4): 335-339.
    [55] Charles Aquino, William Plensdorf, George Lavoie, et al. The Occurrence of Flash Boiling in a Port Injected Gasoline Engine. SAE 982522, 1998.
    [56] Ingo Schmitz, Wolfgang Ipp, Alfred Leipertz. Flash Boiling Effects on the Development of Gasoline Direct-Injection Engine Sprays. SAE 2002-01-2661, 2002.
    [57] Kawano D, Senda J, Wada Y, et al. Modeling of Evaporation Process of Multi- Component Fuel Spray.日本机械学会论文集(B), 2004, 70(696): 2213-2219.
    [58] Oda Y, Kajitani S, Suzuki S. Characteristics of a Spray Formation and Combustion in Diesel Engines Operated with Dimethyl Ether. SAE 2003-01-1925, 2003.
    [59] Zheng Z Q, Shi C T, Yao M F, Experimental Study on Dimethyl Ether Combustion Process in Homogeneous Charge Compression Ignition Mode, Transcations of Tianjin University, 2004, 10(4): 241-246.
    [60] Nobuyuki Yamazaki, Noboru Miyamoto, Tadashi Murayama. The Effects of Flash Boiling Fuel Injection on Spray Characteristics, Combustion, and Engine Performance in DI and IDI Diesel Engines. SAE 850071, 1985.
    [61] Michal Zeigerson-Katz, Eran Sher. Fuel Atomization by Flashing of a Volatile Liquid in a Liquid Jet. SAE 960111, 1996.
    [62] Erasmus Mhina PETER, Akira TAKIMOTO, Yujiro HAYASHI. Flashing and Shattering Phenomena of Superheated Liquid Jets. JSME International Journal, Series B, 1994, 37(2): 313-321.
    [63]张煜盛,张培榕,范鸿宾.燃油热强化在涡流式柴油机上的应用研究及其机理探讨.小型内燃机, 1993, 22(6): 25-29.
    [64]段树林,冯林,宋永臣,等.闪急沸腾喷雾场粒度分布规律及燃烧特性的研究.内燃机学报, 1999, 17(1): 54-58.
    [65]魏建勤,傅维镳.柴油混合闪蒸喷雾的探索研究.工程热物理学报, 1998, 19(4): 509- 513.
    [66] Bradley L Edgar, Robert W Dibble, et al. Autoignition of Dimethyl Ether and Dimethoxy Methane Sprays at High Pressure. SAE 971677, 1997.
    [67] Wakai K, Nishida K, et al. Ignition Delays of DME and Diesel Fuel Sprays Injected by a D.I. Diesel Injector. SAE 1999-01-3600, 1999.
    [68] Kajitani S, Chen Z, Oguma M, et al. A Study of Low-Compression-Ratio Dimethyl Ether Diesel Engines. Int J Engine Research, 2002, 3(1): 1-12.
    [69] Insu Kim, and Shinichi Goto. The Prediction of Autoignition in a DME Direct Injection Diesel Engine. SAE 2000-01-1827, 2000.
    [70] Ho Teng, James C McCandless, et al. Compression Ignition Delay (Physical +Chemical) of Dimethyl Ether– An Alternative Fuel for Compression-Ignition Engines. SAE 2003-01-0759, 2003.
    [71] Mitsuharu Oguma, Gisoo Hyun, et al. Combustion Radicals Observation of DME Engine by Spectroscopic Method. SAE 2002-01-0863, 2002.
    [72] Susumu SATO, Norimasa IIDA. Analysis of DME Homogeneous Charge Compression Ignition Combustion. SAE 2003-01-1825, 2003.
    [73] Mitsuharu Oguma, Shinichi Goto, et al. Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine. SAE 2003-01-3192, 2003.
    [74] Mitsuharu Oguma, Shinichi Goto, et al. Spectroscopic Analysis of Combustion Flame Fueled with Dimetyl Ehter (DME), SAE 2003-01-1797, 2003.
    [75] Alam M, Fujita O, Ito K, et al. Performance of NOx Catalyst in a DI Diesel Engine Operated with Neat Dimethyl Ether, SAE 1999-01-3599, 1999.
    [76] Konno M, Kajitani S, Oguma M, et al. NO Emission Characteristics of a CI Engine Fueled with Neat Diemthyl Ether, SAE 1999-01-1116, 1999.
    [77] Sorenson S C. Dimethyl Ether in Diesel Engines: Progress and Perspectives. ASME, Journal of Engineering for Gas Turbines and Power, 2001, 213: 652-658.
    [78] Curran H J, Pitz W J, et al. A Wide Range Modeling Study of Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 1998, 30: 229-241.
    [79] Fischer S L, Dryer F L, et al. The Reaction Kinetics of Dimethyl Ether. I: High- Temperature Pyrolysis and Oxidation in Flow Reactors. Int J of Chemical Kinetics, 2000, 32: 713-740.
    [80] Curran H J, Fischer S L, et al. The Reaction Kinetics of Dimethyl Ether. II: Low- Temperature Oxidation in Flow Reactors. Int J of Chemical Kinetics, 2000, 32: 741-759.
    [81] Yoshiaki Hidaka, Kazutaka Sato, et al. High-Temperature Pyrolysis of Diemthyl Ether in Shock Waves. Combustion and Flame, 2000, 123: 1-22.
    [82] Hiroyuki Hamada, Hideki Sakanashi, et al. Simplified Oxidation Mechanism of DME Applicable for Compression Ignition. SAE 2003-01-1819, 2003.
    [83]解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社, 2005.
    [84] O’Rourke P J, Bracco F V. Modeling of Drop Interactions in Thick Sprays and Comparisons with Experiments. Proc. I. Mech. Eng., 1980, 9: 101-116.
    [85] O’Rourke P J. Collective Drop Effects on Vaporizing Liquid Sprays. Los Alamos Scientific Laboratory Report: LA-9069, 1981.
    [86]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社, 2001.
    [87] Wu K J, Goghe A, et al. LDV Measurements of Drop Velocity in Diesel Type Sprays. AIAA J, 1984, 22: 1263-1270.
    [88] Koo J Y, Martin J Y. Comparisons of Measured Drop Sizes and Velocities in a Transient Fuel Spray with Stability Criteria and Computed PDF. SAE 910179, 1991.
    [89] Glanpletro E Cossall, et al. LDV Characterization of Air Entrainment in Transient Diesel Sprays. SAE 910178, 1991.
    [90]史春涛.柴油机高压喷雾雾场LDV测速及数值模拟. [博士学位论文],天津:天津大学, 1995.
    [91]张仁惠,乔信起,黄震.柴油机喷雾速度场的激光相位多普勒测试.现代车用动力, 2002, 1: 30-32.
    [92]许振忠,彭志军,龚允怡.柴油机高压喷雾碰壁前后粒子速度的LDA试验研究.内燃机学报, 2001, 19(4): 349-355.
    [93] Gilles Bruneaux, et al. High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine. SAE 1999-01-3648, 1999.
    [94]史绍熙,苏万华,汪洋,等.一种测量柴油机喷雾SMD分布的新方法–荧光/散射光图像处理法.内燃机学报, 1996, 14(3): 221-228.
    [95] Felton P G, et al. On the Quantitative Application of Exciplex Fluorescence to Engine Sprays. SAE 930870, 1993.
    [96] Bardsley M E A, et al. 2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine. SAE 880521, 1988.
    [97] Adrian R J. Multi-Point Optical Measurement of Simultaneous Vectors in Unsteady Flow Review. Int. J Heat & Fluid Flow, 1986, 7: 127-145.
    [98] Adrian R J. Particle Imagine Techniques for Experimental Fluid Mechanics. Ann Rev Fluid Mech., 1991, 23: 261-304.
    [99] Lee Jeekuen, Nishida Keiya. Insight on Early Spray Formation Process of a High- Pressure Swirl Injector for DISI Engines. SAE 2003-01-1809, 2003.
    [100] Ryan B Wicker, Hugo I Loya, P Aaron Hutchison, et al. SIDI Fuel Spray Structure Investigation Using Flow Visualization and Digital Particle Image Velocimetry. SAE1999-01-3535, 1999.
    [101] Cao Z M, Nishino K, Mizuno S, et al. PIV Measurement of Internal Structure of Diesel Fuel Spray. Experiments in Fluids [suppl.], 2000, S211-S219.
    [102] Wu Zhijun, Zhu Zhiyong, Huang Zhen. An Experimental Study on the Spray Structure of Oxygenated Fuel Using Laser-Based Visualization and Particle Image Velocimetry. Fuel, 2006, 85: 1458-1464.
    [103] Rottenkolber G, Gindele J, Raposo J, et al. Spray Analysis of a Gasoline Direct Injector by Means of Two-Phase PIV. Experiments in Fluids, 2002, 32: 710-721.
    [104] Masahisa Yamakawa, Seiji Isshiki, Lee Jeekuen, et al. 3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray. SAE 2001-01-2669, 2001.
    [105]成晓北.柴油机燃油喷射雾化过程的机理与试验研究. [博士学位论文],武汉:华中科技大学, 2002.
    [106] Crowe C T. The Particle Source in Cell Model for Gas Droplet Flow. ASME, 1975, 75: 7-25.
    [107] Dukowicz J K. A Particle Fluid Numerical Model for Liquid Sprays. J. Comp. Phys., 1980, 35(2): 229-253.
    [108] Kruger C, Steiner R, Kraus E. Demands on CFD Models of Mixture Preparation and Combustion in IC Engines for Industrial Purposes. 5th World Congress on Computational Mechanics, Vienna, Austria, 2002.
    [109] O’Rourke D J, Amsden A A. The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE 872089, 1987.
    [110] Tanner F X. Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays. SAE 970050, 1997.
    [111] Rotondi R, et al. Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model. SAE 2001-01-1070, 2001.
    [112] Reitz R D. Modeling Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Sprays, 1987, 3: 309-337.
    [113] Amsden A A, O’Rourke P J, Butler T D. KIVA: A Computer Program for 2 and 3 Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays, Los Alamos National Laboratory Report: LA-10245-MS, 1985.
    [114] Amsden A A, O’Rourke P J, Butler T D. KIVA-II: A Computer Program for ChemicallyReactive Flows with Sprays. Los Alamos National Laboratory Report: LA-11560-MS, 1989.
    [115] Amsden A A. KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries. Los Alamos National Laboratory Report: LA-12503-MS, 1993.
    [116] Amsden A A. KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves. Los Alamos National Laboratory Report: LA-13313-MS, 1997.
    [117] Amsden A A. KIVA-3V Release 2: Improvements to KIVA-3V. Los Alamos National Laboratory Report: LA-UR-99-915, 1999.
    [118] Torres D, O’Rourke P J. KIVA-4. 14th International Multidimensional Engine Modeling User’s Group Meeting, Detroit. MI. USA., 2004.
    [119] O’Rourke P J. Collective Drop Effects on Vaporizing Liquid Sprays. [Ph.D. thesis], Princeton: Princeton University, 1981.
    [120] Gavaises M, Theodorakakos A, Bergeles G, et al. Evaluation of the Effect of Droplet Collisions on Spray Mixing. Proc. IMechE., 1996, 210: 465-475.
    [121] Brazier-Smith P, Jenning S, Latham J. The Interaction of Falling Rain Drops: Coalescence. Proceedings of the Royal Society of London A, 1972, 326: 393-408.
    [122] Jiang Y, Umemura A, Law C K. An Experimental Investigation on the Collision Behavior of Hydrocarbon Droplets. Journal of Fluid Mechanics, 1992, 234: 171-190.
    [123] Qian J, Law C K. Regimes of Coalescence and Separation in Droplet Collision. Journal of Fluid Mechanics, 1997, 331: 58-80.
    [124] Estrade J P, Carentz H, Lavergne G. Experimental Investigation of Dynamic Binary Collision of Ethanol Droplets– a Model for Droplet Coalescence and Bouncing. International Journal of Heat and Fluid Flow, 1999, 20: 486-491.
    [125] Scott L P, John A. Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays. International Journal of Multiphase Flow, 2002, 28: 997-1019.
    [126] Bird G A, Perception of Numerical Methods in Rarefied Gas Dynamics. Progress of Astronautical Aeronautical, 1989, 118: 211-226.
    [127] Kitron A, Elperin T, Tamir A. Stochastic Modeling of the Effects of Liquid Droplet Collisions in Impinging Streams Absorbers and Combustor. International Journal of Multiphase Flow, 1991, 17: 247-261.
    [128] David P. Schmidt and Rutland C J. A New Droplet Collision Algorithm. Journal ofComputational Physics, 2000, 164: 62-80.
    [129] Takashi A. Generalized Scheme of the No-Time-Counter Scheme for the DSMC in Rarefied Gas Flow Analysis. Computational Fluids, 1993, 22: 253-269.
    [130] Alexander F J, Garcia A J. The Direct Simulation Monte Carlo Method. Computational Physics, 1997, 11: 6-17.
    [131] David P. Schmidt, Christopher J. Rutland. Reducing Grid Dependency in Droplet Collision Modeling. ASME, Journal of Engineering for Gas Turbines and Power, 2004, 127: 227-233.
    [132] Nordin N P. A Complex Chemistry Modeling of Diesel Spray Combustion. [Ph.D. thesis], Chalmers: Chalmers University of Technology, 2000.
    [133] Hieber Simone. An Investigation of the Mesh Dependence of the Stochastic Droplet Model Applied to Dense Liquid Sprays. [Master thesis], Michigan: Michigan Technical University.
    [134] Post S L and Abraham J. Modeling Collision among Drops with a Non-Uniform Spatial Distribution. 15th ILASS Americas, Madison, WI.
    [135]徐海涛.直喷式柴油喷雾混合机理、建模及三维数值模拟. [博士学位论文],武汉:华中科技大学图书馆, 1998.
    [136] Béard P, Duclos J M, Habchi C, et al. Extension of Lagrangian-Eulerian Spray Modeling: Application to High Pressure Evaporating Diesel Sprays. SAE 2000-01-1893, 2000.
    [137] Barker D B, Fourney M E. Measuring Fluid Velocities with Speckle Patterns. Opt Lett, 1977, 1: 135-137.
    [138] Dudderar T D, Simpkins P G. Laser Speckle Photography in a Fluid Medium. Nature, 1977, 270: 45-47.
    [139] Grousson R, Mallick S. Study of Flow Pattern in a Fluid by Scattered Laser Light. Appl Opt, 1977, 16: 2334-2336.
    [140] Adrian R J. Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry vs. Particle Image Velocimetry. Appl Opt, 1984, 23: 1690-1691.
    [141] Pickering C J D, Halliwell N. LSP and PIV: Photographic Film Noise. Appl Opt, 1984, 23: 2961-2969.
    [142] Kompenhans J, Reichmuth J. Particle Imaging Velocimetry in a Low Turbulent WindTunnel and Other Flow Facilities. Proceedings of the IEEE Montech’86 Conference, Montreal, Canada, 1986, 399: 35.
    [143] Nishino K, Kasagi K, Hirata M. Three-Dimensional Particle Tracking Velocimetry Based on Automated Digital Image Processing. ASME, Part J, 1989, 111: 384-391.
    [144] Barnhart D H, Adrian R J, Papen G C. Phase Conjugate Holographic System for High Resolution Particle Image Velocimetry. Appl Optics, 1994, 33: 7159-7170.
    [145] Trolinger J D, Rottenkolber M, Elandaloussi F. Development and Application of Particle Image Velocimetry Techniques for Microgravity Applications. Meas Sci Technol, 1997, 8: 1573-1580.
    [146] Zhang H Y, Zhang Y S, Zhou G M. Experimental Study on DME Flash Boiling Spray Characteristics Using Digital Particle Image Velocimetry (DPIV). SAE 2006-32-0075, 2006.
    [147] Azetsu A, Dodo S, Someya T, et al. A Study on the Structure of Diesel Spray (2-D Visualization of the Non-Evaporating Spray). COMODIA 1990, 1990: 199-204.
    [148] Panchagnula M V, Sojka P E. Spatial Droplet Velocity and Size Profiles in Effervescent Atomizer-Produced Sprays. Fuel, 1999, 78: 729-741.
    [149] Obokata T, Long W Q, Ishima T. PDA and LDA Measurements of Large Angle Hollow Cone Spray Proposed for Hot-Premixed Combustion Type Diesel Engine. SAE 960772, 1996.
    [150] Doudou A. Turbulent Flow Study of an Isothermal Diesel Spray Injected by a Common Rail System. Fuel, 2005, 84: 287-298.
    [151] Georjon T, Chale H G, Champoussin J C, et al. A Droplet Tagging Method to Investigate Diesel Spray. SAE 970351, 1997.
    [152] Jeekuen Lee, Keiya Nishida, and Masahisa Yamakawa. An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique. SAE 2002-01-2662, 2002.
    [153] Wang L P, Maxey M. Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence, J Fluid Mech, 1993, 256: 27-68.
    [154] Squires K D, Eaton J K. Preferential Concentration of Particles by Turbulence. Phys Fluids, 1990, A3: 1169-1178.
    [155]乔信起,张光德,王嘉松,等.稳态闪急沸腾喷雾速度分布的试验研究.汽车工程.2003, 25(2): 108-110+170.
    [156] Montajir R M, Tsunemoto H, Ishitani H, et al. Fuel Spray Behavior in a Small DI Diesel Engine: Effect of Combustion Chamber Geometry. SAE 2000-01-0946, 2000.
    [157] Park S W, and Lee C S. Macroscopic and Microscopic Characteristics of a Fuel Spray Impinged on the Wall. Experiments in Fluids. 2004, 37: 745-762.
    [158] Kato S. Mixture Formation Technology of Direct Fuel Injection Stratified Charge SI Engine (OSKA)– Test Result with Gasoline Fuel. SAE 881241, 1988.
    [159] Sakata I, Ishisaka K. Development of TOYOTA Reflex Burn (TRB) System in D.I. Diesel Engine. SAE 900658, 1900.
    [160]裴毅强,苏万华,林铁坚.一种基于稀扩散燃烧的BUMP燃烧室及其对柴油机碳烟和NOx排放影响的实验研究.内燃机学报. 2002, 20(5): 381-386.
    [161]何旭,刘卫国,高希彦,等. TR燃烧系统混合气形成过程的数值模拟研究.燃烧科学与技术. 2006, 12(3): 263-268.
    [162] Cartellieri W, Chmela F G, Kapus P E, et al. Mechanisms Leading to Stable and Efficient Combustion in Lean Burn Gas Engines. COMODIA 94, 1994.
    [163] Van Ling J A N, Seppen J J, De Haas J. Stoichiometric City Bus with Optimized Part-Load Efficiency, High Mean Effective Pressure and Low Emissions. ATA, Florence, 1994.
    [164] Scholl K W, Sorenson S C. Combustion of Soybean Oil Methyl Ester in a Direct Injection Diesel Engine. SAE 930934, 1993.
    [165]张煜盛,莫春兰,张辉亚,等.二甲醚发动机燃烧特性的试验与数值模拟研究.内燃机学报. 2005, Vol..23(4): 336-342.
    [166]刘永长主编.内燃机原理.武汉:华中科技大学出版社, 2001.
    [167] Milovanovic N, Chen R, Dowden R, et al. An Investigation of Using Various Diesel-Type Fuels in Homogeneous Charge Compression Ignition Engines and Their Effects on Operational and Controlling Issues. Int. J. Engine Res., 2004, Vol.5(4): 297-316.
    [168] Chen Zhili, Konno Mitsuru, Oguma Mitsuharu, et al. Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine. SAE 2000-01-0329, 2000.
    [169] Hu Tiegang, Liu Shenghua, Zhou Longbao, et al. Combustion and Emission Characteristics of a Homogeneous Charge Compression Ignition Engine. Proc. IMechE,Part D: J. Automobile Engineering, 2005, Vol.219: 1133-1139.
    [170]黄震,李德钢,乔信起,等. DME/LPG燃料比例实时优化的HCCI燃烧控制新方法.中国内燃机学会2005年学术年会暨APC2005年学术年会论文集.武汉, 2005:1-5.
    [171] Yao M F, Zheng Z Q, Xu S D, et al. Experimental Study on the Combustion Process of Dimethyl Ether (DME). SAE 2003-01-3194, 2003.
    [172] Yakhot V, Orszag S A. Renormalization Group Analysis of Turbulence. I. Basic Theory J. Sci. Comput., 1986, 1: 1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700