进气道喷油式汽油机油气混合过程三维瞬态数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着不可再生资源的日益枯竭以及环保法规的日益严格,对汽油机的综合性能提出了更高的要求。新技术如稀薄分层燃烧、电控技术、排放后处理技术等都先后得到运用。其中,电控技术因为涉及对进气系统、燃油喷射系统两大系统在内的精准控制,对燃烧质量和排放特性产生极为关键的影响,所以一直被看作是世界汽车领域难度最大、水平最高的核心技术。
     深透地理解汽油机气体流动机理、燃油喷射机理以及油气混合机理是掌握汽油机电控技术的重要保证,而数值模拟是实现这一过程最有效的工具。本文运用三维瞬态数值模拟方法模拟了进气道喷油式汽油机气道及缸内油气混合的气液两相热力学运动过程,分析了油气混合过程中气相运动特性以及液相燃油运动特性,为进一步深入探究油气混合机理提供了理论依据。
     本文针对进气道喷油式汽油机工作状态下存在附壁油膜的特点,发展了附壁油膜动力学运动模型,完善了包括燃油液滴、附壁油膜在内的液相燃油动力学运动模型,使气道-缸内油气混合过程的三维瞬态数值模型能够更为真实地反映出进气道喷油式汽油机的实际工作状况。
     网格处理是三维瞬态数值模拟的关键技术之一。文中以CV20汽油机为例,建立了包括气道、气门和气缸在内的具有屋脊型燃烧室、平顶活塞的4气门汽油机初始计算网格,并在计算过程中对缸内的计算网格实施了有效的动态调整,使得计算网格能够完成整个发动机三维工作过程计算的需要。
     汽油机的油气混合过程是包含气液两相的热力学流动过程,其中气相流动占主导地位,对油气混合质量起到关键的影响作用。本文计算了从进气初始时刻到点火时刻气道-缸内的气体流动过程。分析了缸内流场特性以及缸内气流涡旋运动的运动特点。
     在气体流动分析的基础上,进行了油气混合过程的三维瞬态数值模拟,分析比较了不同工况以及不同燃油喷射模式下液相燃油分布以及燃油蒸气浓度分布的特点。
     在数值模拟的基础上,对模拟的应用进行了推广,把析因试验设计强大的数据分析功能与数值模拟能够反映工作过程、预测工作性能的特点结合起来,针对CV20汽油机进气门接近关闭时刻存在气体从气缸向气道回流的现象,分析了配气相位对容积效率的影响,为参数优化设计提供了一条新思路。
The whole performance of the internal combustion engine should be improved because of the draining energy sources and rigorous law of conservancy of environment. New technologies as lean burn combustion, electronic control and exhaust after treatment are applied in the design of engines. Among these technologies electronic control is regarded as the core technology for its precise control on air intake system and fuel injection system.
     One of the essential theories of electronic control system of gasoline engine is the air fuel mixing mechanics inside the internal combustion engine. Three dimensional transient simulation can help to understand the mechanics well by simulating the thermodynamic and hydrodynamic process of the mixture process inside the engine.
     The thesis developed three dimensional transient numerical model of air fuel mixing process of port-fuel-injected gasoline engine. Based on the mechanics of the motion of wall film in the port and valve back of the PFI gasoline engine, wall film dynamic model and valve seat liquid expelling model are developed.
     The generation of the initial computational grids is also crucial for the three dimensional transient simulation. Block-structured grids of a four valve gasoline engine with a pentroof shaped combustion chamber and a flat head piston are constructed. Adjustment techniques for the moving grid are applied to make the computational grid fit the needs of calculation of a closed engine cycle calculation.
     In order to execute further analysis of in-cylinder air motion of tumble and swirl, calculations are taken on the in-cylinder air motion under transient pressure boundary condition from the beginning of the intake process to the ignition moment. The different influence of transient pressure boundary and steady pressure boundary on in-cylinder fluid field are analyzed.
     Simulations of mixture formation process are executed with closed-valve- injection mode under two kinds of working conditions, 3500r/min full load condition and 800r/min idle condition. Distributions are analyzed for both the gas phase fuel and liquid phase fuel. In order to compare the difference between open-valve-injection mode and closed-valve-injection mode, Calculations under two working conditions are taken again for the open-valve-injection mode. Comparisons are made on the distributions of the mixture under different fuel injection mode and different working conditions.
     Factorial experimental design is an extension to the application of simulation calculation. It provides a new way for the multi-parameter optimal design of gasoline engine with the powerful data analysis function of factorial design combined with precise prediction ability of simulation. The thesis presents the basic theories of simulation suited factorial design, and executes examples of valve timing optimization to illustrate the application of the new method.
引文
[1] Peter Lynwood Kelly-Zion. Fuel Preparation in the Cylinder of a Port Injected, Spark Ignition Engine. phD thesis, University of Illinois at Urbana-Champaign, 1998.
    [2] Werlberger, P., Rokita, R., and Chmela, F. Observation of Fuel Injection and Combustion by Use of an Endoscopic Video System. Proceedings of ImechE Seminar—Measurement and Observation Analysis of Combustion in Engines, pp.39-56.
    [3] Vannobel, F., Arnold, A., Buschmann, A., Sick, V., Wolfrum,J., Cousyn,B., and Decker,M. Simultaneous Imaging of Fuel and Hydroxyl Radicals in an In-Line Four Cylinder SI Engine. SAE Paper 932696, 1993.
    [4]刘书亮,宫卫东,许振忠等.电控汽油喷射4气门发动机稀燃的试验研究.内燃机学报,Vol.17 No.2,pp.156-160,1999.
    [5]裴普成,刘书亮,范永健等.进气道燃油喷射汽油机稀燃优化技术.内燃机工程,Vol.23 No.3,pp.36-38,2002.
    [6] Tang-Wei Kuo. Multidimensional Port-and-Cylinder Gas Flow, Fuel Spray, and Combustion Calculations for a Port-Fuel-Injection Engine. SAE Paper 920515, 1992.
    [7] Jianwen Yi, Zhiyu Han, and Jialian Yang et al. Modeling of the Interaction of Intake Flow and Fuel Spray in DISI Engines. SAE Paper 2000-01-0656, 2000.
    [8] Brad A. VanDerWege, Todd H. Lounsberry and Simone Hochgreb. Numerical Modeling of Fuel Sprays in DISI Engines under Early-Injection Operating Conditions. SAE Paper 2000-01-0273, 2000.
    [9]王燕军,王建昕,帅石金等.GDI汽油机喷雾模型的改进和数值模拟.清华大学学报, Vol.42 No.8,pp.1110-1112,2002.
    [10] A.A.Amsden, P.J.O’Rourke, T.D.Butler. KIVA-Ⅱ: A Computer Program for Chemically Reactive Flows with Sprays. LA-11560-MS, 1989.
    [11] Anthony A. Amsden. KIVA-3: A KIVA Program with Block-Structured Meshfor Complex Geometries. LA-12503-MS, 1993.
    [12] Anthony A. Amsden. KIVA-3V: A Block-Structured KIVA Program for Engine with Vertical or Canted Valves. LA-13313-MS, 1997.
    [13] P. J. O’Rourke and A.A. Amsden. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model. SAE Paper 2000-02-0271, 2000
    [14] P. J. O’Rourke and A. A. Amsden. A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines. SAE Paper 961961, 1996.
    [15]罗马吉.进气道-气门-缸内系统进气过程三维瞬态模拟研究.华中科技大学博士学位论文,2002.
    [16]文华,基于CFD的柴油机喷雾混合过程的多维数值模拟.华中科技大学博士学位论文,2004.
    [17]魏明锐,二甲基醚发动机喷射雾化的理论和实验研究.华中科技大学博士学位论文,2004.
    [18]帕坦卡SV著,张政译.传热与流体流动的数值计算.北京:科学出版社,1986.
    [19]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004.
    [20]解茂昭.内燃机计算燃烧学(第二版).大连:大连理工大学出版社,2005.
    [21]王晓瑜,陈国华,蒋炎坤.2k析因试验设计及其在发动机排放中的运用.内燃机工程,Vol.25(2004)No.2,pp.18-22.
    [22] Wang Xiaoyu, Chen Guohua and Jiang Yankun. Non-Replicated Factorial Experimental Design and its Use in the Analysis of SI Engine Simulation. SAE Paper2004-01-1459.
    [23] Fu-Quan Zhao, Ming-Chia Lai, and David L. Harrington. The Spray Charactertistics of Automotive Port Fuel Injection—A Critical Review. SAE Paper 950506, 1995.
    [24] Fozo,S.R. and Aquino, C.F. Transient A/F Charactericstics for Cold Operation of a 1.6 Liter Engine with Sequential Fuel Injection. SAE Paper 880691, 1988.
    [25] Hamburg, D.R. and Klick,D. The Measurement and Improvement of the Transient A/F Characteristics of an Electric Fuel Injection System. SAE Paper 820766, 1982.
    [26] Iwata, M., Furuhashi, M., and Ujihashi, M. Two-Hole Injector Improves Transient Performance and Exhaust Emission of 4-valve Engines. SAE Paper 870125, 1987.
    [27] Martins, J. J. G. and Finlay, I.C. Fuel Preparation in Port-Injected Engines. SAE Paper 920518, 1992.
    [28] Matsushita, S., Inoue, T., Nakanishi, K., Kato, K., and Kobayashi, N. Development of the Toyata Lean Combustion System. SAE Paper 850044, 1985.
    [29] Nemecek, L.M., Wagner, R. M., and Drallmeier, J.A. Fuel Droplet Entrainment Studies for Minimization of Cold-Start Wall-Wetting. SAE Paper 950508, 1995.
    [30] Nogi, T., Ohyama, Y. and Yamaguchi, T. Effects of Mixture Formation of Fuel Injection Systems in Gasoline Engine, SAE Paper 891961, 1989.
    [31] Posylkin, M., Taylor, A. M. K. P., Vannobel. F. and Whitelaw, J. H. Fuel Droplets Inside a Firing Spark-Ignition Engine. SAE Paper 941989, 1994.
    [32] Senda, J., Nishikori, T., Tsukamoto, T., and Fujimoto, H. Atomization of Spray under Low-Presure Field from Pintle Type Gasoline Injector. SAE Paper 920382, 1992.
    [33] Sendar, J., Hojyo, Y., and Fujimoto, H. Modelling of Atomization Process in Flash Boiling Spray. SAE Paper 941925, 1994.
    [34] Yang, J., Kaiser, E.W., Seigl, W.O., Anderson, R.W. Effects of Port-Injection Timing and Fuel Droplet Size on Total and Speciated Exhaust Hydrocarbon Emissions. SAE Paper 930711, 1993.
    [35] G?ran Almkvist and S?ren Eriksson. An Analysis of Air to Fuel Ratio Response in a Multi Point Fuel Injeted Engine under Transient Conditions. SAE Paper 932753. 1993.
    [36] J. W. Fox, K. D. Min, W. K. Cheng and J. B. Heyhood. Mixture Praparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up. SAE Paper 922170, 1992.
    [37] G..Brenn, J. Domnick, V.Dorfner et al. Unsteady Gasoline Injection Experiments: Comparison of Measurements in Quiescent Air and in a Model Intake Port. SAE Paper 950512, 1995.
    [38] Q. Huang, B. Jones and N. J. Leighton. Evaluation of Engine Operating Characteristics on a Fluidic Device Based Fuel Injection System. SAE Paper930324, 1993.
    [39] Lisa M. Nemecek, Robert M. Wagner, and James A. Dralimeier. Fuel Droplet Entrainment Studies for Minimization of Cold-Start Wall-Wetting. SAE Paper 950508, 1995.
    [40]裴普成,刘书亮,任立红等.汽油机分层废气再循环与稀薄混合气燃烧.清华大学学报(自然科学版),Vol.42 No.4,pp.520-522,2002.
    [41]王军,张付军,黄英等,电控多点汽油喷射系统在F8B汽油机上的试验研究.内燃机学报,Vol.16 No.3,pp.375-376,1998.
    [42]倪计民,周华富.汽油喷射技术的发展概况.小型内燃机,Vol.25 No.2,pp.17-22,1996.
    [43]何文华,徐航,朱崇基等.SY492Q-4型单点电控汽油喷射发动机.内燃机工程,第15卷第4期,pp.41-46,1994.
    [44]王新雷,何文华,徐航等.采用激光全息技术对电控多点汽油喷嘴喷雾特性的实验研究.内燃机工程,第15卷第3期,pp.38-42,1994.
    [45]陆际清.汽车发动机燃料供给与调节.北京:清华大学出版社,2002.
    [46]刘德新,刘书亮,王莉等.稀薄燃烧在TJ376QE二气门汽油机上的实现.燃烧科学与技术,Vol.9 No.3,pp.267-273,2003.
    [47]冯明志,许振忠,李玉峰等.四气门火花点火式发动机缸内的空气运动.天津大学学报, Vol.33 No.3,pp.355-359,2000.
    [48]刘书亮,刘伍权,刘德新等.四气门发动机可变涡流稀薄燃烧特性研究.工程热物理学报, Vol.23 No.4,pp.509-512,2002.
    [49]刘书亮,路明.汽油机气缸内滚流比的预测.内燃机学报,Vol.16 No.2,pp.161-167,1998.
    [50]冯明志,李玉蜂,刘书亮等.四气门发动机缸内空气运动的试验和多维数值模拟计算.内燃机学报,Vol.17 No.4,pp.330-334,1999.
    [51]宋永臣.燃油喷雾气液两相三维浓度的同步激光测量.大连理工大学学报,第37卷第1期,pp.78-82,1997.
    [52]龚允怡,齐通澜,梁旋铭.柴油机高压喷雾雾场的温度测量.燃烧科学与技术,Vol.4 No.1, pp.45-50,1998.
    [53]贺萍,刘永长,宋军.KIVA燃油喷雾多维模型的研究.性能研究,第3期,pp.27-33,1994.
    [54]孙小团,张平.KIVA程序在固体火箭发动机内流场数值模拟中的应用.燃烧科学与技术, Vol.3 No.1,pp.34-41,1997.
    [55]王海刚,陈石,刘石.内燃机进气道和缸内三维流场数值模拟.工程热物理学报,Vol.23 No.3,pp.312-314,2002.
    [56]周松,戴景民.切向进气道内燃机进气系统流场的数值模拟.哈尔滨工业大学学报,Vol.35 No.1,pp.49-53,2003.
    [57]李芳,解茂昭.压缩对内燃机缸内湍能的影响.内燃机学报,Vol.17 No.3,pp.285-290,1999.
    [58]韩占忠,赵福堂,刘耀峰.发动机进气门处气体流动数值模拟.车辆与动力技术,第2期,pp.49-53,2001.
    [59]罗马吉,黄震,蒋炎坤等.进气门布置对汽油机进气过程的影响.华中科技大学学报(自然版)Vol.32 No.2,pp.74-76,2004.
    [60]王桂芝,赵长禄.汽油机工作过程数值模拟的研究进展.车辆与动力技术,第2期,pp.56-59,2004.
    [61] Rory Sinclair, Tim Strauss and Peter Schindler. Code Coupling, a New Approach to Enhance CFD Analysis of Engines. SAE Paper 2000-01-0660, 2000.
    [62] George Papageorgakis and Dennis N. assanis. Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k ?εModel. SAE Paper 980135, 1998.
    [63] Gisoo Hyun, Daeyup Lee and Shinichi Goto. KIVA Simulation for Mixture Formation Processes in an In-Cylinder Injected LPG SI Engine. SAE Paper 2000-01-2805, 2000.
    [64] Jason Smith, Aytekin Gel and Ismail Celik. Improvement of the Pressure Solver in KIVA. SAE Paper 1999-01-1187, 1999.
    [65] Norihiko Nakamura, Kenichi Nomura, and Makoto Suzuki. Key Factors of Fuel Injection System to Draw Out Good Response in 4-Valve Engines. SAE Paper 870126, 1987.
    [66]蒋坚,高希彦.汽油缸内直喷式技术的研究与应用.内燃机工程,Vol.24 No.5,pp.39-44,2003.
    [67]夏淑敏,邱先文,赵新顺等.车用汽油机缸内直喷技术的研究现状与展望.农业机械学报, Vol.34 No.5,pp.168-171,2003.
    [68]于善颖,孙立星,刘德新等.车用汽油机稀燃技术及其NO排放控制分析.小型内燃机与摩托车,Vol.32 No.2,pp.25-28,2003.
    [69]雷小呼,王燕军,王建昕等.缸内直喷汽油机燃烧控制策略及实现.内燃机工程,Vol.25 No.3,pp.4-7,2004.
    [70]阮观强,孙嗣炎.缸内直喷式汽油机及其关键技术.上海电机技术高等专科学校学报,Vol.7 No.3,pp.160-162,2004.
    [71]梁夫友,许伯彦.纵向直进气道电喷天然气发动机进气过程的数值模拟.上海交通大学学报,Vol.37 No.9,pp.1402-1406,2003.
    [72]胡军军,周龙保,黄勇诚.缸内直喷式汽油机工作过程三维数值模拟.车用发动机,2003年第3期,pp.43-47.
    [73]高剑,蒋德明,黄佐华等.缸内直喷(GDI)汽油机燃油喷雾和分层燃烧的数值研究.内燃机学报,Vol.23 No.4,pp.297-306,2005.
    [74]黄佐华,曾科,杨中乐.喷射方式对直喷汽油分层燃烧的影响研究.内燃机学报,Vol.20 No.1, pp.13-20,2002.
    [75]索文超,韩树,张晶.CFD技术在内燃机设计中的应用.车辆与动力技术,pp.37-40,2006年第1期.
    [76]帅石金,王志,王建昕.发动机CAD/CFD设计技术.汽车工程,Vol.26 No.5, pp.581-584, 2004.
    [77]孙勇,帅石金.汽油缸内二阶段喷雾参数的优化.车用发动机,2003年第3期,pp.11-14.
    [78]许元默,帅石金,王燕军.发动机缸内数值模拟现状及发展方向.小型内燃机与摩托车,Vol.31 No.5,pp.36-41,2002.
    [79]刘国俊.计算流体力学的地位、发展情况和发展趋势.航空计算技术,1994年第1期, pp.15-21.
    [80]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用.河北理工学院学报,Vol.27 No.2,pp.115-117,2005.
    [81]史春涛,王韬,孙立星.国内内燃机数字化仿真技术应用现状.拖拉机与农用运输车.2005年第6期.
    [82] Joe F. Thompson, Z. U. A. Warsi, C. Wayne Mastin. Numerical Grid Generation Foundations and Applications. North-Holland, New York, 1985.
    [83]陶文铨,数值传热学(第2版).西安:西安交通大学出版社,2001.
    [84]陶文铨,计算传热学的近代进展.北京:科学出版社,2000.
    [85] Jianwen Yi.Rapid Mesh Generation and Dynamic Mesh Management for KIVA-3V.Ford Research Laboratories,2001
    [86] Robert Beran and Adreas Wimmer. Application of 3D-CFD Methods to Optimize a Gaseous Fuelled Engine with Respect to Charge Motion, Combustion and Knocking. SAE Paper 2000-01-0277, 2000.
    [87] John Abraham and Vinicio Magi. Computations of Transient Jets: RNG k-e Model Versus Standard k-e Model. SAE Paper 970885, 1997.
    [88] Jiro Senda, Tomohiro Higaki, Yasuyuki Sagane et al. Modeling and Measurement on Evaporation Process of Multicomponent Fuels. SAE Paper 2000-01-0280, 2000.
    [89] Z. Han. Numetical Study of Air-Fuel Mixing in Direct-Injection Spark-Ignition and Diesel Engines. phD thesis, University of Wisconsin-Madison, 1996.
    [90] R. P. Hessel. Numerical Simulation of Valved Intake Port and In-Cylinder Flows Using KIVA-3. phD thesis, University of Wisconsin-Madison, 1993.
    [91]张兆顺,崔桂香,许春晓.湍流理论与模拟.北京:清华大学出版社,2005.
    [92]刘永长.内燃机原理.武汉:华中理工大学出版社,1992.
    [93]沈维道,郑佩芝,蒋淡安.工程热力学(第二版).高等教育出版社,1989.
    [94]蒋炎坤.CFD辅助发动机工程的理论与应用.北京:科学出版社,2005.
    [95] M.F.Harrison, R.Perez Arenas. A Hybrid Boundary for the Prediction of Intake Wave Dynamics in IC engines. Journal of Sound and Vibration 270 (2004) pp.111-136.
    [96] ZHIYU HAN and ROLF D.REITZ. A Temperature Wall Function Formulation for Variable-Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling. Int.J.Heat Mass Transfer. Vol.40, No.3, pp.613-625,1997.
    [97] Franz X. Tanner, Guang-Sheng Zhu and Rolf D. Reitz. A Turbulence Dissipation Correction to the k-epsilon Model and Its Effect on Turbulence Length Scales in Engine Flows. International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress. Detroit, March 4, 2001.
    [98]王海刚,刘石.不同湍流模型在内燃机缸内流动过程数值模拟中的应用和比较.燃烧科学与技术,Vol.10 No.1,pp.66-71,2004.
    [99]祖炳锋,康秀玲,付光琦.车用四气门汽油机气道及缸内流场的瞬态模拟.天津大学学报, Vol.38 No.11,pp.975-980,2005.
    [100]舒小恩.进气道角度对内燃机引擎气缸内流场影响之研究.中原大学硕士学位论文,2001.
    [101]徐斌,史艳彬.发动机进气系统流动模拟与优化.内燃机工程,Vol.26 No.4,pp.12-15,2005.
    [102]刘瑞林,马康,刘增勇等.进气道型式对四气门汽油机进气流动特性的影响.燃烧科学与技术,Vol.11 No.5,pp.407-410,2005.
    [103]董伟.汽油机谐振进气管设计的研究.吉林大学硕士学位论文,2003.
    [104]刘德新,冯洪庆,李万众.汽油机缸内反滚流辅助气道的流动特性.燃烧科学与技术,Vol.11 No.5,pp.411-414,2005.
    [105]马贵阳,杜礼明,解茂昭.内燃机缸内几种湍流流动涡粘度模型的比较.内燃机学报,Vol.20 No.5,pp.433-437,2002.
    [106] Liu J P, Bingham J F, A Study on the Intake Pressure Wave Actions and Volumetric Efficiency_Speed Characteristics of MultiCylinder Engines. Transactions of CSICE. Vol.15 No.2, pp.135-150, 1997.
    [107] J. R. Arias, E. Moreno, E. Navarro and E.Varela, Using 1-D and 3-D Models for the Simulation of Gas Exchange Processes. SAE Paper 2000-01-0658, 2000.
    [108] R. Alsemgeest and C. T. Shaw et al. Modeling the Time-Dependent Flow Through a Throttle Valve. SAE Paper 2000-01-0659, 2000.
    [109] Rose Pursifull, Allan J. Kotwickl and Sulgi Hong, Throttle Flow Characterization. SAE Paper 2000-01-0571, 2000.
    [110] Ather A. Quader. The Axially-Stratified-Charge Engine. SAE Paper 820131,1982.
    [111] E. Mattarelli and A. Valentini, On the Flow Modeling through the Valve Assembly in Engine Cycle Simulations. SAE Paper 2000-01-0570, 2000.
    [112] J. F. O’Connor and N. R. McKinley, CFD Simulations of Intake Port Flow Using Automatic Mesh Generation: Comparison With Laser Sheet, Swirl and LDA Measurements for Steady Flow Conditions. SAE Paper 980129, 1998.
    [113] N. Sinha, H. Affes and D.Chu, Novel CFD Techniques for In-Cylinder Flows On Tetrahedral Grids. SAE Paper 980138, 1998.
    [114] Ken Naitoh, Hiroyuki Fujii and Kunio Kuwahara. Numerical Simulation of the Detailed Flow in Engine Ports and Cylinders. SAE Paper 900256, 1990.
    [115] Peter J. O’Rourke and Anthony A. Amsden. Three Dimensional Numerical Simulations of the UPS-292 Stratified Charge Engine. SAE Paper 870597, 1987.
    [116] L.Spiegel and U. Spicher. Mixture Formation and Combustion in a Spark Ignition Engine with Direct Fuel Injection. SAE Paper 920521, 1995.
    [117] Zhiyu Han, Li Fan, and Rolf D. Reitz. Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine. SAE Paper 970884, 1997.
    [118] Donald W. Stanton and Christopher J. Rutland. Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays. SAE Paper 980132, 1998.
    [119] H. Foucart, C. Habchi and J.F.Le Coz. Development of a Three Dimensional Model of Wall Fuel Liquid Film for Internal Combustion Engines. SAE Paper 980133, 1998.
    [120] R.Diwakar, Todd D. Fansier and Donald T. French. Liquid and Vapor Fuel Distributions from an Air-Assist Injector– An Experimental and Comutational Study. SAE Paper 920422, 1992.
    [121] Yasuo Yoshikawa, Terufumi Kawasaki et al. Numetical Simulation System for Analyzing Fuel Film in Gasoline Engine. SAE Paper 930326, 1993.
    [122] Gang Chen, Michael T. Vincent and Terry R. Gutermuth. The Behavior of Multiphase Fuel-Flow in the Intake Port. SAE Paper 940445, 1994.
    [123] Donald W. Stanton and Christopher J. Rutland. Modeling Fuel Film Formation and Wall Interaction in Diesel Engines. SAE Paper 960628, 1996.
    [124] B. ahmadi-Befrui, A. D. Gosman. Modeling and Simulation of Thin Liquid Films Formed by Spray-Wall Interaction. SAE Paper 960627, 1996.
    [125] Jeffrey D. Naber and Patrick V. Farrell. Hydrodynamics of Droplet Impingement on a Heated Surface. SAE Paper 930919, 1993.
    [126] Makoto Nagaoka, Hiromitsu Kawazoe and Naomi Nomura Modeling Fuel Spray Impingment on a Hot Wall for Gasoline Engines. SAE Paper 940525, 1994.
    [127] Michael R. Simons, Marzio Locatelli et al. A Nonlinear Wall-Wetting Model for the Complte Operating Region of a Sequential Fuel Injected SI engine. SAE Paper 2000-01-1260, 2000.
    [128] A.A.Amsden, T.Daniel Butler, and Peter J.O. Rourke. The KIVA-ⅡComputer Program for Transient Multidimensional Chemically Reactive Flows with Sprays. SAE Paper 872072, 1987.
    [129] A.A.Amsden, T.Daniel Butler, and Peter J.O. Rourke et al. KIVA-A Comprehensive Model for 2-D and 3-D Engine Simulation. SAE Paper 850554, 1985.
    [130] Alex B. Liu, Daniel Mather and Rolf D. Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Paper 930072, 1993.
    [131] Bruce D. Peters. Fuel Droplets inside the Cylinder of a Spark Ignition Engine with Axial Stratification. SAE Paper 820132, 1982.
    [132] Edward S. Suh and Christopher J. Rutland. Numetical Study of Fuel/Air Mixture Preparation in a GDI Engine. SAE Paper 1999-01-3657, 1999.
    [133] Jan Guerquin. The Development of an IC Engine Model-Based Fuel Injection Controller with Fuel Film Compensation. Master thesis of University of Toronto, 2003.
    [134] Yong-Jin Kim, Sang H. Lee and Nam-Hyo Cho. Effect of Air Motion on Fuel Spray Characteristics in a Gasoline Direct Injection Engine. SAE Paper 1999-01-0177, 1999.
    [135] Donald W. Stanton and Crhistopher J. Rutland. Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting from Impinging Sprays. Internatioanl Journal of Heat and Mass Transfer 41 (1998) 3037-3054.
    [136] Terutoshi Tomoda, Masato Kubota and Rio Shimizu. Numerical Analysis of Mixture Formation of a Direct Injection Gasoline Engine. The FifthInternational Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Nagoya, July, 2001.
    [137] F. Maroteaux. Liquid Film Atomization on Wall Edges-Separation Criterion and Droplets Formation Model. Journal of Fluids Engineering, Vol.124, pp.565-575, 2002.
    [138] Rossella Rotondi and Gino Bella. Gasoline Direct Injection Spray Simulation. International Journal of Thermal Sciences, No.45, pp.168-179, 2006.
    [139] Seong Hyuk Lee and Hong Sun Ryou. Development of a New Spray/Wall Interaction Model. International Journal of Multiphase Flow, No.26, pp.1209-1234, 2000.
    [140] Taketoshi Fujikawa, Tatsuo Kobayashi et al. Analysis of Cycle-By-Cycle Variation in a Direct-Injection Gasoline Engine Using Laser-Induced Fluorescence Technique. The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Nagoya, July, 2001.
    [141] K..H. Lee, C.H. Lee and C.S. Lee. An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method. Fuel, No.83, pp.971-980, 2004.
    [142] [美]Montgomery, D.C.著,汪仁官等译.实验设计与分析(第三版).北京:中国统计出版社,1998.
    [143] [美]S. Weisberg著,王静龙等译.应用线性回归(第二版).北京:中国统计出版社,1998.
    [144]范大茵,陈永华.概率论与数理统计.杭州:浙江大学出版社,1996.
    [145] S.P.Edwards, A.D.Pilley, S.Michon and G.Fournier. The Optimization of Common Rail FIE Equipped Engines Through the Use of Statistical Experimental Design, Mathemetical Modelling and Genetic Algorithms. SAE 970346, 1997.
    [146] Gustavo Gonzalez. Two Level Factorial Experimental Designs Based On Multiple Linear Regression Models: A Tutorial Digest Illustrated by Case Studies. Analytica Chimica Acta No. 360, pp. 227-241, 1998.
    [147] Gene L.Stevens, Jeffrey L.Willers, Ronaldo A.Sequeira and Patrick D.Gerard. Analysis of Deterministic Simulation Model Performance UsingNon-replicated Factorial Two-level Experiments. Agricultural Systems, Vol.52, No.2/3,pp. 293-315,1996.
    [148] John Lawson, Scott Grimshaw, Jason Burt.“A Quantitative Method for Identifying Active Contrasts in Unreplicated Factorial Designs Based on the Half-normal Plot.”Computational Statistics & Data Analysis 26 (1998) 425-436.
    [149] R.L.J. Coetzer, M.J.Keyser. Experimental Design and Statistical Evaluation of a Full-scale Gasification Project. Fuel Processing Technology No.80, pp.263-278, 2003.
    [150] F.Veglio. Factorial Experiments in the Development of a Kaolin Bleaching Process Using Thiourea in Sulphuric Acid Solutions. Hydrometallurgy, No.45 pp.181-197, 1997.
    [151] L.A.Schipper, B.R.Clarkson, M.Vojvodic-Vukovic, R.Webster. Restoring Cut-Over Restiad Peat Bogs: A Factorial Experiment of Nutrients, Seed and Cultivation. Ecological Engineering, No.19, pp.29-40, 2002.
    [152] Dubravka Rocak, Marija Kosec, Andrej Degen. Ceramic Suspension Optimization Using Factorial Design of Experiments. Journal of the European Ceramic Society, No.22, pp.391-395, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700