LPG压燃发动机喷雾及燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化石油气(LPG)以其良好的排放及混合气形成特性,已成为汽油和柴油重要的替代燃料,被视为“绿色能源”,并在发动机上得到了广泛的应用。然而,国内外在现有发动机上使用LPG,通常采用LPG缸外气化与空气混合后进入气缸燃烧的工作方式。这种燃料供给方式存在许多不足之处。为了充分利用LPG的蒸发潜热高和快速气化特性,降低燃烧温度,减少NOx排放并提高其动力性和燃油经济性,充分发挥压燃式内燃机压缩比大、热效率高的特点,克服进气道供气方式存在的诸多缺点,本文以液态LPG与柴油混溶后缸内直喷压燃改善发动机性能的作用机理为研究对象,通过开展理论分析与试验研究,深入探讨了LPG/柴油混合燃料的喷雾特性、变化规律、影响因素,以及LPG碰壁对缸内混合气形成及燃烧过程的影响等科学问题;借助于自行开发的液态LPG/柴油比例混合电控系统,进行了直喷式LPG/柴油双燃料压燃发动机的性能试验;并就LPG进气道喷射与二甲醚(DME)缸内直喷实现准均质压燃的技术问题开展了基础试验研究,对LPG、DME组合燃料准均质压燃所产生的常规及非常规污染物排放进行了定量测试。本文的研究工作为LPG等液化气体燃料在柴油机上的应用提供了一条新的技术途径,对我国多元化汽车能源战略的实施具有较高的学术和应用价值。
     本文的研究内容和创新点主要有以下几个方面:
     在广泛阅读国内外文献的基础上,对LPG应用研究的现状进行了综述,分析了现有发动机使用LPG存在的诸如由进、排气气门重叠角导致的燃料的短路损失、发动机容积效率和输出功率较低、NOx排放没有明显改善,以及难以得到良好的发动机综合性能等弊端。针对目前关于LPG/柴油混合燃料缸内直喷压燃的研究仍未见有深入报道的现状,提出了一种新的全面改善LPG发动机性能的技术方案,即采用LPG/柴油混合燃料缸内直喷压燃模式来优化LPG发动机的动力与排放性能。
     通过向定容室内喷射液态LPG、柴油及不同比例的LPG和柴油的混合燃料,采用高速摄影的方法,研究了喷射参数、LPG和柴油的混合比对喷雾特性的影响;对不同燃料之间的喷雾特性进行了详细的比较和分析。试验研究结果表明,在相同的喷射参数下,各种燃料中,LPG的喷雾贯穿距最短,蒸发气化的速度最快;混合燃料中LPG的含量越高,其雾化特性越好。在此基础上,采用KIVA-3V计算程序,对LPG及柴油在定容室内的喷雾过程进行了数值模拟,对燃料的喷雾场进行了详细的计算分析,并与试验结果进行了对比,计算分析结果与试验结果基本吻合。
     在分析、归纳前人关于喷雾碰壁研究成果的基础上,基于试验研究的结果,建立了喷雾碰壁的数学模型。该模型给出了离散液滴油膜铺展和撞壁飞溅等物理过程的数学描述,考虑了液滴、壁面、油膜上方气体层之间的相互作用,即动量和热量的交换过程。利用该模型对LPG碰壁过程进行了模拟计算,并与柴油进行了对比分析。研究表明,LPG液体蒸发较快,与柴油相比,油膜厚度较薄,LPG碰壁后在湿壁面效应会大为减弱,这在缸内混合气形成及燃烧过程中是非常有利的因素。燃料碰壁分析计算结果与试验结果对比表明,两者之间吻合较好。
     为了开展LPG和柴油按任意比例混合后直喷压燃的试验,设计了一套混合燃料电控供油系统。该系统使液态LPG和柴油预先在混合器中按比例混合,再通过喷油泵及喷油器向缸内喷射。液态LPG和柴油的混合比例可任意调节。为此,电路采用MCS-51系列单片机AT89C52,控制电磁阀导通时间来控制柴油和LPG流量,以实现LPG和柴油的任意混合比例。电磁阀导通时间的控制则是通过控制驱动电磁阀导通的脉宽来实现。
     借助于混合燃料电控供油系统,在ZS195发动机上实现了液态LPG和柴油混合、缸内直喷压燃的燃烧方式,研究了LPG与柴油混合燃料的燃烧情况。通过试验发现,在适当的LPG/柴油混合比例下,与纯柴油燃烧相比,在功率不下降的前提条件下,混合燃料燃烧时缸内的最高燃烧爆发压力变化不大,CO排放量有所上升,但HC、NOX及碳烟的排放则有较大幅度的下降。试验中还发现,适当比例混合燃料燃烧时,发动机的耗油率及排气温度较燃烧柴油时低,但燃烧产生的噪声则增大;当混合燃料中LPG的量超过一定比例时,燃烧恶化,甚至不能燃烧。
     在经改装的ZS195柴油机上,通过采用LPG进气道进气、DME缸内直喷引燃的方式,开展了不同比例的高辛烷值燃料(LPG)和高十六值燃料(DME)相组配的可变燃料特性准均质压燃(QHCCI)基础试验研究。试验发现,采用这种燃烧方式,可在一定程度上实现着火点的控制,并使发动机在较大的负荷范围内工作。同时,当混合气中LPG较浓时,发动机燃烧不太稳定,排放、噪声都会升高。试验中还测试了燃烧所产生的HC、CO、NOX及非常规污染物甲醛和甲酸甲酯的排放。测试结果表明,随着混合气中LPG浓度的升高,HC、NOX、甲醛及甲酸甲脂的排放都会升高,CO的排放则呈现中间高,两头低的特点。且随着负荷的增大,发动机的污染物排放量均有所下降。
The Liquefied-Petroleum Gas(LPG), which is of the better property of low exhaust emissions and rapid evaporation, is used extensively as an important substitute for the diesel and gasoline in the engines. However, the LPG is combusted in the chamber by premixing with the air in outside of the engine cylinder today, which leads to the low charge- efficiency and high exhaust emissions and can’t better use of the LPG’s capability of low exhaust emissions. In order to avoid these shortcomings, fueling the engine with the LPG injected directly into the cylinder will be the future aim of the LPG engine development. After studying most of the articles on the use of the LPG in the engine this paper researches the property on the spray and the combustion of the LPG injected directly into the cylinder in theory and experiments.
     Through spraying into the constant volume chamber with LPG or diesel or some kinds of mixtures of LPG and diesel, the effects of spray parameters and mixture ratio for LPG and diesel on the property of the spray were investigated and the characteristics of the sprays of all kinds of fuels were compared each other. The experiment shows that the penetration distance of the LPG is the shortest among the fuels and the velocity of the evaporation is the fast at the same spray parameters. It also finds that the higher the ratio of LPG in the mixture fuel, the better the spray property of the fuel. In addition of the experiment, this paper also performs the numeric simulation of the spray process for the LPG and diesel in the constant volume chamber with KIVA-3V program and analyzes the spray field in detail. Through comparison with the experiment, it finds that they are consistent with each other.
     Based on the detailed comparisons and analysis to many kinds of spray impingement models, two representative spray impingement models, wall spread and splashing, are introduced in this thesis. In the model, the exchange of heat and momentum between the wall, droplets and the gas above liquid film are modeled. The spray impingement of LPG is simulated and compared with that of diesel. Due to LPG quickly evaporating, its film thickness is much smaller than the one of diesel, which shows that the accumulation of LPG on the wall is not serious to be of advantage to combustion process.
     In order to perform the combustion experiment with the various mixture ratio of LPG and diesel injected directly into the cylinder, this paper designs a fuel supplement system, which can premix the LPG and diesel in the mixture corrector randomly. By use of the AT89C52 SCM, the system can control the open times of the electromagnetic valve through controlling the width of the electrical current pulse to determine the flux of the LPG and diesel and mix the LPG and diesel with predetermined ratio, which can be changed randomly.
     In this thesis, we study the combustion of the mixture of LPG and diesel in the ZS195 diesel engine by injecting it directly into the cylinder. It shows that with the suitable ratio of LPG, the maximum combustion pressure of the mixture and the exhaust emission of CO are higher but the HC and NOX are lower than that of the diesel. Through the experiment, it can be found that the mixture fuel consumption and the exhaust temperature are lower but the combustion noise is higher than that of the diesel and also can find that when the LPG ratio is too high, the combustion can’t occur.
     As a new manner of combustion, Homogeneous Charge-Compression Ignition(HCCI), is regarded as an important technology advancement of engine because of its great potentials of reducing the fuel consumption and the exhaust emissions. In this thesis, the homogeneous charge compression ignition of LPG in ZS195 by inducing the LPG into the cylinder through the intake pipes and injecting the DME into the cylinder as an ignition additive was conducted. Through the experiment, it can be found that the engine can run over a wide range of load and when the LPG is too high in the cylinder, the combustion can’t occur steadily and the exhaust emissions and noise would increase. In the experiment, it can also be found that the emissions of the HC, CO, NOx, HCHO and CH3OCHO would increase when the LPG concentration became high in the cylinder and all the emissions would decrease as the load became heavy.
引文
[1]全国国产乘用车保有量报告(2005版)
    [2]贺克斌,郝吉明,傅立新等.我国汽车排气污染现状与发展[J].环境科学,1996,17(4):80~83
    [3]叶东燕.代用燃料和VOLVO卡车集团的观点.山东内燃机,1984.
    [4]罗毅.代用燃料DME及其研究.小型内燃机及摩托车,2001
    [5]孙济美.天然气和液化石油气汽车.北京:北京理工大学出版社,1999.
    [6] Mtui PL, Hill PG. Ignition delay and combustion duration with natural gas fueling of diesel engines, SAE paper 961933, 1996.
    [7] Naber JD, Siebers DL, Julio D, Westbrook CK. Effects of natural gas composition on ignition delay under diesel conditions. Combust and Flame 1994;99:192–200.
    [8] Takada, Y., et al., The performance and exhaust emission of a turbo-charged lean burn natural gas engine with an intercooler (in Japanese with English Summary), J. Soc. Automot. Eng. Japan,Vol. 47, No. 10 (1993).
    [9] Ming Zheng, et al., The development of a compact reverse-flow catalytic converter for diesel dual fuel LEV, SAE Paper 99FL-288.
    [10] Shioji, M., et al., Improvement of the thermal efficiency of auto-engines(in Japanese with English Summary), Automobile Technol.,Vol. 53, No. 9 (1999).
    [11] Ergeneman M, Sorusbay C, Goktan AG. Exhaust emissions and fuel consumption of CNG/diesel fueled city buses calculated using a sample driving cycle. Engy Sources 1999;21(3):257–68.
    [12] Karim GA, Zhigang L. Examination of combustion characteristics in dual fuel engines. ASME HTD Publications, vol. 357–1, Jan 14–18; 1998.
    [13] Nwafar OMI, Rice G. Combustion characteristics and performance of natural gas in high speed indirect injection diesel engine. Renew Engy 1994;5(2):841–8.
    [14] Douvile B. Performance, emissions and combustion characteristics of natural gas fueling of diesel engines. MASc thesis, University of British Columbia, Canada, 1994.
    [15]何学良.内燃机燃烧学.机械工业出版社,1990.
    [16] Caton J A, McDermott M, et al. Development of a dedicated LPG-fueledspark-ignition engine and vehicle for the 1996 Propane Vehicle Challenge[C]. SAE Paper972692.
    [17] Sierens, R. Experimental and theoretical study of liquid LPG injection[c]. SAE Paper922363.
    [18] Luhman D J, et al. Emission Control of a Propane Fueled Small Utility Engine Utilizing Air/Fuel Ratio Control and Three-way Catalyst[C]. SAE paper932445.
    [19] Wu, T D, Chen Y N; et al. Design optimization for an LPG automobile engine[C]. International Journal of Vehicle Design, 2000,v24 n1:100~120.
    [20] Branner J L, Kamel M M, et al. B5.9 Propane gas engine development[C]. ICE of ASME, 1999,V32(2):9~15.
    [21] Raina A, Midkiff K C, et al. Characterization of the effects of methane and propane mixtures on performance and emissions in a spark-ignited engine[C].ICE of ASME. 1998,V30(3):67~74.
    [22]高卫民,周毅等.桑塔纳2000GSI型轿车配置电喷LPG系统的开发与研究[J].内燃机工程,2001,22(1):70~72.
    [23]朱义伦,何方正.低排放LPG发动机控制系统开发研究[J].内燃机工程,2000,(4):48~52.
    [24]赵新顺,霍天强等. LPG-汽油双燃料发动机试验研究[J].小型内燃机与摩托车. 2002,31(3):38~40.
    [25]朱义伦,何方正等.电控液化石油气发动机排放试验[J].上海交通大学学报. 2001,35(5):746~749.
    [26]邓宝清,李理光等.混合式液化石油气小型发动机排放性能的研究[J].内燃机学报. 2002,20(4):287~291.
    [27]顾善愚,赵奎翰等.汽油/液化石油气(LPG)两用燃料发动机的研究[J].内燃机学报. 2001,19(4):323~326.
    [28]黄振洲,马凡华等. LPG/汽油双燃料发动机排放规律的试验研究[J].内燃机工程. 2001,22(2):58~60.
    [29]陈宗明.液化石油气汽车发展动向.环境导报,2000年第2期.
    [30]俊藤新一等. LPガスェソツソの研究开发动向.自动车技术会,No.9804ツソポヅウム(1998,6).
    [31]日本LPガス协会. LPガス自动车の排出ガスぉょび噪音测定试验报告书(1999,12).
    [32]韩国エネルギ-经济研究院. LPG车辆の普及ぉょび规制改善に关すゐ研究(1999,12).
    [33]魏明.天然气/液化石油气汽车的现状和发展前景.中国农业大学学报,2000,5(6):102~106
    [34] John P. Conversion of Two Small Utility Engine to LPG Fuel. SAE Paper932447.
    [35] David Checkel. Performance and Emissions of a Converted RABA 2356 Bus Engine in Diesel and Dual Fuel Diesel/Natural Gas Operation. SAE Paper 931823
    [36] Klaus Kunberger. Spark-Ignited Lean Burn Gas Engine Launched. DIESEL & GAS TURBINE WORLDWIDE,1995(4)
    [37] Mike Brezonick. Cumminus Announced Significant Gas Engine Expansion with Electronic Natural Gas Engine B,L10G Improved DIESEL PROGRESS (INTERNATIONALED.),1994(12).
    [38] Jone Kane. Conoco Natural Gas Engine Oil Passes 7000 Hours Field Test in Lean Burn Engine. DIESEL PROGRESS(INTERNATIONALED.), 1994(10).
    [39] Doherty K, Blair G P, Douglas R. The Initial Development of a Two Stroke Cycle Biogas Engine. SAE Paper 932398.
    [40] LPGガス自动车普及促进协议会. LPG先进型ェソツソ普及促进检讨委员会(主查:俊藤新一):LPG自动车の普及に向けての提言(2000,7).
    [41]クリ-ンカ-としてのLPG车の国际的动向,财团法人ェルピ-ガス振兴セソタ-(2000,12).
    [42]后藤新一,若狭良治,Lee D. LPG燃料发动机系统的研究方向.国外内燃机,2002年第一期.
    [43]樊晶明. LPG/汽油两用燃料发动机燃烧特性研究[J].汽车运输研究,1996(12):19~24.
    [44]陈勇,熊树生等. CA6102汽油/LPG双燃料发动机动力性能的研究[J].内燃机工程,2001,22(4):29~32.
    [45]朱义伦,周校平等.电控液化石油气发动机动力性能研究[J].车用发动机,2000,4:13~14.
    [46]詹樟松,熊树生.柴油/LPG双燃料发动机工作性能的实验研究,内燃机工程,2001,Vol.22(4):6~11.
    [47]周俊杰,李锋等. LPG/柴油双燃料发动机燃烧特性的研究,内燃机工程,2001,Vol.22(3):57~63.
    [48]马征等.电控双燃料发动机排放性能的试验研究,内燃机学报,2001,Vol.19(6).
    [49]张新塘,高孝洪等.柴油-LPG双燃料发动机排放性能研究,2001,Vol.25(2):205~208.
    [50]邵千钧.点燃式发动机燃用LPG电控喷射研究:硕士学位论文[D].杭州:浙江大学,2000.
    [51] O’Rourke P J,Bracco F V. Modeling of Drop Interactions in Thick Sprays and Comparisons with Experiments,Proc. I.Mech, Eng.1980-9,1980,101~116
    [52] O’Rourke P J. Collective Drop Effects on Vaporizing Liquid Sprays, Los Alamos Scientific Laboratory Report:LA-9069,1981.
    [53] Fath, A., Fettes, C., Leipertz, A. Investigation of the diesel spray breakup close to nozzle at different injection conditions. 4th International Symposium COMIDIA 98, Kyoto, Japan, 1998.
    [54] Zhu G S, R D. Engine droplet high-pressure vaporization modeling. ASME J Eng Gas Turbine and Power, 2001,123:412~418.
    [55] Torres D J, et al. A discrete multi-component fuel model. Atomization and sprays, 2003,13:131~172.
    [56] Pelloin, P, Bianchi G M. Modeling the Diesel Fuel Spray Break-up by Using A Hybrid Model. SAE Technical Paper 1999-01-0226,1999.
    [57] Amsden A A, et al. KIVA: A Computer Program for 2 and 3 Dimensional Fluid Flows with Chemical Reaction and Fuel Sprays, LASL Report : LA-10245-MS,1985.
    [58] Amsden A A, et al. KIVA-Ⅱ: A Computer Program for Chemically Reactive Flows with Sprays, LASL Report : LA-11560-MS,1989.
    [59] Amsden A A . KIVA–3 : A KIVA Program with Block-structured Mesh for Complex Geometries, LASL Report : LA-12503-MS,1993.
    [60] Han Z, Reitz R D. Turbulence Modeling of Internal Combustion Engines Using RNG k ?εModels. Combustion Sci. Tech, 1994.
    [61] Launder B E, Spadling D B. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, Vol. 1974(3), pp.269~289.
    [62] Townsend A A. The Structure of Turbulent Shear Flow. London: CambridgeUniversity Press, 1976.
    [63] Jennings M J, Morel T. Observations on the Application of the k ?εModel to Internal Combustion Engine Flows, Combust. Sci. and Tech. 1988,58:177-193.
    [64] Hirt C W, et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J. Comp. Phys. ,1974,14:227~253.
    [65] Butler T D, et al. CONCHAS: An ALE Computer Code for Multi-component Chemically Reactive Flow at All Speeds, Los Alamos Scientific Laboratory (LASAL) Report: LA-8129-MS,1979.
    [66] Cloutman L D, et al. CONCHAS-SPRAY: A Computer Code for Reactive Flows With Fuel Sprays, LASL Report: LA-9294-MS,1982.
    [67] Liu, A.B., Mather, D., Reitz, R.D. Modeling the effects of drop drag and breakup on fuel sprays. SAE paper 930072,1993.
    [68] .Goto, S., Shakal, J. and Daigo, H.,“LPG Engine Research and Development in Japan”, International Congress on Transportation Electronics (Convergence’96), (1996).
    [69] Lee, D., Shakal, J., Goto, S., Ishikawa, H., Ueno, H. and Harayama, N.,“Observation of Flame Propagation in an LPG Lean Burn SI Engine”, SAE paper 1999-01-0570(1999).
    [70] Goto, S., Lee, D., Shakal, J., Harayama, N., Honjyo, F. and Ueno, H., "Performance and emissions of an LPG leanburn engine for heavy duty vehicles", SAE paper 1999-01-1513(1999)
    [71] Goto, s., Lee, D., Wakao, Y., Honma, H., Mori, M., Akasaka, Y., Hashimoto, K., Motohashi, M., and Konno, M., "Development of an LPG Di Diesel Engine using Cetane Number Enhancing Additives", SAE paper 1999-01- 3602 (1999).
    [72] Wilk, R. D., Green R. M., Pitz, W.J., Westbrook, C.K., Addagarla, S., Miller, D. L., and Cernansky, N.P., "An Experimental and Kinetic Modeling Study of the Combustion of n-Butane and Isobutane in an Internal Combustion Engine", SAE paper 900028 (1990).
    [73] Yang, J. and Anderson, R.W.“Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct Injection SI Engine,”SAE Paper 980495 (1998).
    [74] Noma, K., Iwamoto, Y., Murakami, N., Iida, K., and Nakayama, O.“OptimizedGasoline Direct Injection Engine for the European Market,”SAE Paper 980150(1998).
    [75] Harada, A., Shimazaki, N., Sasaki, S., Miyamoto, T., Akagawa, H. and Tsujimura, K., The Effects of Mixture Formation on Premixed Lean Diesel Combustion, SAE 980533, 1998.
    [76] Hiroyasu, H., Kadota, T.“Fuel droplet size distribution in Diesel combustion chamber.”, SAE Paper 740715, 1974.
    [77] VanDerWege, B.A. and Hochgreb, S.“Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines: (1) Imaging Investigation”, SAE Paper 2000-01-0535 (2000).
    [78] VanDerWege, B.A. and Hochgreb, S.“Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines: (2) PDPA Investigation”, SAE Paper 2000-01-0536 (2000).
    [79] Shakal, J.S., Hong, S.T., Goto, S., Koo and J.Y., Transient Injection Characteristics of a Pintle-Type Injector for Direct Injection of LPG, Proceedings of ILASS-97, Aug.18-22,1997.
    [80] Ranz, W.E.,“Some experiments on orifice sprays.”, Canad. J. Chem. Engng. Vol. 36, p. 175, 1958.
    [81] Dent, J.C.,“A basis for the comparison of various experimental methods for studying spray penetration”, SAE paper 710571, 1971.
    [82] VanDerWege, B.A., Hochgreb, S.“The Effect of Fuel Volatility on Sprays from High-Pressure Swirl Injectors.”Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PP. 1865-71(1998).
    [83] Vargaftik, N.B.,“Tables on the thermo-physical properties of liquids and gases”, 2nd edition, Hemisphere, 1975
    [84] J.M. Desantes, J. Arrègle, J.V. Pastor,“Influence of the fuel characteristics on the injection process in a D.I. Diesel engine.”, SAE Paper 980802, 1998.
    [85] Kuniyoshi, H., Tanable, H., Takeshi Sato, G., Fujimoto, H.“Investigation on the characteristics of Diesel fuel spray.”, SAE Paper 800968, 1981.
    [86] Payri, F., J.M. Desantes, J. Arrègle,“Characterization of D.I. Diesel sprays in high density conditions”, SAE Paper 960774, 1996.
    [87] Hiroyasu, H.,Kadota,T. and Arai, M.Fuel Spray Characterization in Diesel Engines. Combustion Modeling in Reciprocating Engines, Plenum Publisher, New York,1980, PP.369~408.
    [88] Lee, J.-H., Goto, S., Tsurushima, T., Miyamoto, T. and Wakisaka, T., Effects of Injection Conditions on the Mixture Formation Process in a Premixed Compression Ignition Engine, SAE 2000-01-1831.
    [89] Jean Arrègle, JoséV. Pastor and Santiago Ruiz., The Influence of Injection Parameters on Diesel Spray Characteristics, SAE Paper 1999-01-0200.
    [90] Minani, T., Yamaguchi, I., Shintani, M., Tsujimura, K., Suzuki, T.“Analysis of fuel spray characteristics and combustion phenomena under high pressure fuel injection.”, SAE Paper 900438.
    [91] Reitz, R.D., Bracco, F.V.“On the dependence of the spray cone angle and other spray parameters on nozzle design and operating conditions”, SAE paper 790494, 1979.
    [92] Tomohisa Dan, Takehiro Yamamoto, Jiro Senda, and Hajime Fujimoto.“Effect of nozzle configurations for characteristics of non-reacting Diesel fuel spray”, SAE Paper 970355, 1997.
    [93] Wu, K.J.; Su, C.C.; Steinberger, R.L.; Santavicca, D.A. & Bracco, F.V.“Measurements of the spray cone angle of atomizing jets”. J. Fluids Eng. WA/FE-10. 1983.
    [94] Patterson, M.A., Reitz, R.D., Modeling the Effects of Fuel Spray Characteristics on Diesel Engine combustion and Emission, SAE Paper 980131, 1998.
    [95] Xu, M., Nishida, M. and Hiroyasu, H.,“A practical calculation Method for Injection Pressure and Spray Penetration in Diesel Engines”, SAE Paper No.920624, 1992.
    [96] Brad A. VanDerWege,Todd H. Lounsberry.“Numerical Modeling of Fuel Sprays in DISI Engines Under Early-Injection Operating Conditions”, SAE Paper 2000-01-0273.
    [97] Miyamoto, T., Hayashi, A.K., Harada, A., Sasaki, S., Akagawa, H. and Tsujimura, K., A computational Investigation of Premixed Lean Diesel Combustion -Characteristics of fuel-air mixture formation, combustion and emissions, SAE Paper 1999-01-0229, 1999.
    [98] Hou, Z.-X. and Siebers, D.L.,“Three-Dimensional Computations of Diesel Sprays ina Very High Pressure Chamber”, SAE Paper 941896, 1994.
    [99] Yang, X., Takamoto, Y., Okajima, A., Obokata, T. and long, W., Comparison of Computed and Measured High Pressure Conical Diesel Sprays, SAE Paper 2000-01-0951.
    [100] Lee, J.-H., Goto, S., Tsurushima, T., Miyamoto, T. and Wakisaka, T., Effects of injection Conditions on the Mixture Formation Process in a Premixed Compression Ignition Engine, SAE 2000-01-1831.
    [101] Hou, Z.-X., Abraham, J. and Siebers, D.L., Modeling of Diesel Sprays in a Very High Pressure Chamber, PartⅡ: Effects of Combustion, SAE Paper 950603.
    [102] Reitz RD. Atomization Spray Technol 1987;3:309-37.
    [103] Reitz RD, Diwakar R. SAE Paper, 1987;870598
    [104] Bellman R, Pennington RH. Quart Appl Math 1953;12:151-62.
    [105] Je-Hyung Lee,Shinichi Goto.“Comparison of Spray Characteristics in Butane and Diesel Fuels by Numerical Analysis”, SAE Paper 2000-01-2941(2000).
    [106] Park, J., Hyun, G.S., Lee, D. and Goto, S.,“Simultaneous Observation of Droplets and Evaporated State of Liquid Butane and DME at Low Injection Pressure”, The eights Symposium (ILASS-Japan) on Atomization, 1999, 12.20.
    [107] Wakuri, Y., Fujii M., Amitani, T. and Tsuneya, R.“Studies of the penetration of a fuel spray in a Diesel engine”. Bull. J.S.M.E. 3(9), pp 123-130, 1960.
    [108] Kato S. Mixture Formation Technology of Direct Fuel Injection Stratified Charge SI Engine(OSKA)-Test Result with Gasoline Fuel. SAE Paper 881241,1988.
    [109] Sakata I, Ishisaka k. Development of TOYOTA Reflex Burn(TRB) System in D.I. Diesel Engine. SAE Paper 900658,1990.
    [110]刘育才,舒国才,杨长林等.低散热发动机缓燃现象浅析.内燃机工程,1994.
    [111] Kroger C A. A Neat Methanol Direct Injection Combustion System for Heavy Duty Application. SAE. Paper 861169,1986.
    [112] Bai C, Gosman A D. Development of Methodology for Spray Impingement Simulation. SAE Paper 950283,1995.
    [113] Wachters L H J, Westerling N A J. The Heat Transfer From a Hot Wall to Impinging Water Drops In the Spherical State. Chem. Engng. sci, Vol.1966(21),pp.1047~1056.
    [114] Naber J D, Reitz R D. Modeling Engine Spray/Wall Impingement. SAE Paper881316,1988.
    [115] Amsden A A. Kiva-Ⅱ: A computer program for Chemically Reactive Flows with Sprays. Los Alamos:LA-11560-MS,1989.
    [116] Lippert A M, Stanton D W, Reitz R D, et al. Investigating the Effect of Spray Targeting and Impingement on Diesel Engine Cold Start. SAE Technical Paper 2000-01-0269,2000.
    [117] Mundo Chr, Sommerfeld M, Tropea C. Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process. Int. J. Multiphase Flow, Vol. 21(2),pp.151~173,1995.
    [118] Yarin A L, Weiss D A . Impact of Drops on solid surfaces: Self-similar Capillary Waves, and splashing as a new type of kinetic discontinuity. J. Fluid Mech, Vol. 1995(283),pp.141~173.
    [119] Williams F A. Combustion Theory. 2nd ed.: The Benjamin/Cummings Publishing Company,1985.
    [120] Nabor J D,Reitz R D. Modeling Engine spray/wall Impingement. SAE Paper 880107,1988.
    [121]贺萍.直喷式柴油机喷雾碰壁混合三维数值模拟及实验研究.华中科技大学博士论文,1996.
    [122] Kijitani,S., Chen, C.l., oguma, M., Alam, M. and Rhee, K, T., Direct Injection diesel engine operated with propane-Dme blended fuel, SAE Paper 982536(1998).
    [123] Shinichi Goto, Daeyup Lee and el. At., Development of an LPG DI Diesel Engine using Cetane number Enhancing Additives, SAE 1999-01-3602.
    [124] K. A. Whitney and B.K. Balley, Determination of Combustion Products from Alternative Fuels-Part 1: LPG and CNG combustion products, SAE 941903,1994.
    [125] J. H. Poulsen and J. S. Wallace, Operating parameter Effects on the speciated Hydrocarbon Emission from a Natural Gas Fuel Engine, SAE 942007,1994.
    [126] E. W. Kaiser W. G.. Rothschild and G . A . Lawoie, The Effect of Fuel and operating variables on Hydrocarbon Species Distributions in the Exhaust from a multi-cylinder Engine, Combustion Science and Technology, Vol,32 pp.245-265,1993.
    [127] Wilk , R. D., Green R. M., Pitz, and et. Al., An Experimental and kinetic modeling study of the combustion of n-Butane and Iso-butane in an internal Combustion Engine,SAE. Paper 9000028(1990).
    [128] Ando, H., Combustion Control Technologies for Gasoline Engine, IMECHE Seminar Publication 1996-20(1996).
    [129] Kajitani, S.,Chen, Z. L., Konno, M., and Rhee, K. T., Engine Performance and Exhaust Characteristics of Direct-Injection Diesel Engine operated with DME, SAE Paper 972973(1997).
    [130] M. P. P. oonia, Investigation on combustion and performance optimization of a dual fuel engine using LPG and diesel, Ph.D thesis, Indian Institute of Technology Delhi, 1996.
    [131] Karim, G . A ., Ito, K., Abraham, M., and Jenson, L., An Examination of the Role of Formaldehyde in the Ignition Processes of a Dual Fuel Engine, SAE Transactions, 912367,1991.
    [132] Goto, S., Shakal, J . and Daigo, H., LPG Engine Research and Development in Japan, International Congress on Transportation Electronics (Convergence 96)(1996).
    [133] Goto, S., Lee, D., Shakal , J., Harayama, N., Honjyo, F. and Veno, H., Performance and emissions of an LPG Lean-burn engine for heavy duty vehicles, SAE. Paper 1999-01-1513.
    [134] Sorenson, S. C. and Mikkelsen, S.E., Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine fuelled with Neat Dimethyl Ether, SAE Paper 950064(1995).
    [135] D.J. Rickeard, N.D. Thompson, A Review of the potential for Bio-Fuels as Transportation Fuels, SAE Paper 932778.
    [136] M. P. Poonia, A . Ramesh ,et al., Experimental Investigation of the Factors Affecting the Performance of a LPG-Diesel Dual Fuel Engine, SAE Paper 1999-01-1123.
    [137] Karin, G . A ., A Review of Combustion Process in the Dual Fuel Engine, the Gas Diesel Engine, Progress in Energy Combustion Science, Vol. 6, P. 277-285, Pergamon Press Ltd., 1980.
    [138] Karim,G . A ., Zahoda, Y ., Modeling of the combustion process in a Dual Fuel Direct Injection Engine, Transactions of the ASME , Vol. 112, December, 1990.
    [139] Mariusz Ziejewski and Hans J. Goettler, Comparative Analysis of the Exhaust Emission for Vegetable Oil Based Alternative Fuels, SAE Paper 920195.
    [140] Matthews R . D, et al., Texas Project: part 1-Emission and fuel economy of aftermarket CNG and LPG Conversions of light duty vehicles [C] . SAE 962098.
    [141] Chiu J, Matthews R. D. The Texas Project: Part 2: Control System Characteristics of aftermarket CNG and LPG Conversions of Light Duty Vehicles [C]. SAE 962099.
    [142] Wu D. Y. et al., The Texas Project: Part 3: Off-cycle Emissions of Light Duty Vehicles Operating on CNG , LPG, Certification Gasoline[C]. SAE 962100.
    [143] Caton. J. A. et al., Development of a dedicated LPG-fueled spark-ignition engine and vehicles for the 1996 Propane vehicle challenge[C]. SAE 972692.
    [144]周重光,严兆大等.空燃比对LPG发动机排放特性影响的研究.内燃机工程,Vol.23,2002,No.5.
    [145]黄振洲,马凡华等. LPG/汽油双燃料发动机排放规律的试验研究[J].内燃机工程,2001,Vol. 22(2):58~60.
    [146]张新塘,高孝洪等.柴油-LPG双燃料发动机排放性能研究.武汉理工大学学报(交通科学与工程版),2001,Vol. 25(2):205~208.
    [147]周俊杰,李锋. LPG/柴油双燃料发动机燃烧特性的研究.内燃机工程,2001,Vol. 22(3):56~63.
    [148]杜德兴.柴油机复合燃烧的试验研究.内燃机工程2001,Vol. 22(3):51~55.
    [149]向小君等.柴油/DME双燃料发动机供油系统的实验研究[J].武汉理工大学学报,2003(3):33-37.
    [150] Atmel Inc.AT89C52 DATA SHEET,1999:55-63
    [151]刘永长主编.内燃机原理[M].武汉.华中理工大学出版社,1995:202-223
    [152]电磁阀应用手册.余姚市仪表四厂,2004:7-11
    [153] MSIsensors产品应用及选型手册.精量电子有限公司,2005:1-6
    [154]何佳. LPG/柴油双燃料比例电控技术及其在直喷柴油机上的应用研究.华中科技大学能源与动力工程学院硕士论文。
    [155] Onishi S , Jo S H , Shoda K et al . Active thermo atmosphere combustion :A new combustion progress for internal combustion engines[A] . In : SA E Paper[C] . 1979 ,790501.
    [156] Shi Shaoxi. Recent progress in combustion technologies for automotive engines[J ].燃烧科学与技术,2001 ,7 (1) :1—15.
    [157] Aceves Salvador M , Flowers Danie L , Martinez2Frias Joel et al .HCCI combustion :Analysis and experiments [A] . In : SAE Paper[C] . 2001 ,200120122077.
    [158] Chen Zhili , Konno Mitsuru , Oguma Mitsuharu et al . Experimental study of CI natural-gas/ DME homogeneous charge engine [A ] . In :SAE Paper[C] . 2000 ,200020120329.
    [159] Oskley Aaron , Zhao Hua , Ladomatos Nicos et al . Dilution effects on the control auto-ignition combustion of hydrocarbon and alcohol fuels[A] . In : SA E Paper[C] . 2001 ,200120123606.
    [160] Yuki Iwashiro , Tadashi Tsurushima , Yoshiaki Nishijima et al . Fuel consumption improvement and operation range expansion in HCCI by direct water injection [ A ] . In : SA E Paper [ C ] . 2002 , 200220120105.
    [161] Marriott Craig D , Kong Song2charng , Reitz Rolf D. Investigation of hydrocarbon emission from a direct injection gasoline premixed charge compression engine[A] . In : SA E Paper[C] . 2002 ,200220120419.
    [162] Christensen M , Johansson B. Homogeneous charge compression ignition with water injection [ A ] . In : SA E Paper [ C] . 1999 ,19992012 0182. 2003,12.
    [163] Green C J, Cockshutt N A, King L. Dimethylether as a methanol ignition improver substitution requirements and exhaust emissions impact [C]. SAE 902155.
    [164] Japar S M, Wallington T J, Richert J F O, etal. The atmospheric chemistry of oxygenated fuel additives: t-butyl alcohol, dimethylether, and methyl t- butyl ether[J]. Int. J. Chem. Kinetics,1990,22 (12):1257~1269.
    [165] Sehested J,Mogelberg T,Wallingtong T J, etal. Dimethylether oxidation: kinetics and mechanism of the CH3OCH2+O2 reaction at 396K and 0.38~940 Torr total pressure[J]. J. Phys. Chem.,1996,100 (43):17218~17225.
    [166] Sehested J, Sehested K. Oxidation of dimethylether absolute rate of constants for the self-reaction of CH3OCH2 radicals, the reaction of CH3OCH2 radicals with O2, and the thermal decomposition of CH3OCH2 radicals[J]. Int. J . Chem. Kinetics, 1997,29 (8): 627~636.
    [167] Maricq M M, Szente, J J, Hybl J D. Kinetic studied of oxidation of dimethylether and its chain reaction with CI2[J]. J. Phys. Chem. A, 1997,101 (28):5155~5167.
    [168] Thamm J ,Wolff S, Turner W V, et al. Proof of the formation of hydroperoxy methyl formate in the ozonolysis of ethane synthesis and F T J R spectra of the authenticcompound[J]. Chem. Phys. Letter, 1996,258 (1/2):155~158.
    [169] Pfah I U, Fieweger K, Adomeit G. Self-ignition of Diesel relevant hydrocarbon air mixtures under engine conditions[C]. The 26th symposium on Combustion,1996:781~789.
    [170] Currant H J, Pizz W J, Marinov N M, et. al. Wide modeling study of dimethylether oxidation[J]. Int. J. Chem. Kinet., 1998,30(3):229~241.
    [171] Curran H J, Fischer S L, Dryer F L. Reaction kinetics of dimethylether.J J low temperature oxidation in flow reactors[J].Int. J.Chem. kinetics ,2000,32(12):741~759.
    [172] Jekin M E, Hayman G D, Wallington T J, et al. Kinetic and mechanistic study of self-reaction of CH3CH2O2 radicals at room temperature[J]. J. Phys. Chem., 1993,97(45):11712~11723.
    [173] Japar S M, Wallington T J, Richert J F O, et al. The atmospheric chemistry of oxygenated fuel additives: t-butyl alcohol, dimethyle ether, and methyl t-butyl ether[J]. Int. J. Chem. Kinetics, 1990,22(12):1257~1269.
    [174] Hisaka Y , Sato K, Yamane M. High temperature pyrolysis of dimethylether in shock waves[J]. Combustion and Flame, 2000,123(1/2):1~22.
    [175] Fisher S L, Dryer F L, Curran H J. The reaction kinetics of dimethyl rther. J High temperature pyrolysis and oxidation in flow reactors[J]. Int. J. Chem. Kinet., 2000,32(12):713~740.
    [176] Dagaut P, Boettner J C, Cathommet M . Chemical kinetic study of dimethylether oxidation in a jet stirred reactor from 1 to 10 at m experiments and kinetic modeling[C]. The 26th symposium on Combustion, 1996:627~632.
    [177] Fischer S L ,Dryer F L ,Curran H J . The Reaction Kinetics of Dimethylether II : Low 2 Temperature Oxidation in Flow Reactors [J ] . Int J Chem Kinet , 2000 (32) : 741– 759.
    [178] Liu J, Cant N W, Bromly J H, etal. Formate species in the low temperature oxidation[J]. Chemosphere,2001,42(5/7):583~589.
    [179] Irene Liu, Noel W. Cant, John H. Bromly, Fred J. Barnes, Peter F. Nelson , Brian S. Haynes, Formate species in t he low-temperature oxidation[J ] , Chemosphere , 2001 , 42 (5/ 7) :583~589.
    [180] Dagaut P , Daly C , Simmie J M , Cat honnet M. The oxidation and ignition ofdimethylether from low to high temperature (550~1 600 K) experiments and kinetic modeling [C] . The 27th Symposium on Combustion , 1998 :361~369
    [181] Chen, Z.L. et al., Tadanori Yanai, Experimental study of CI natural Gas/DME homogeneous charge engine, SAE Paper 2000-01-0329 (2000).
    [182] Daisho, Y. et al., Controlling combustion and exhaust emissions in a direct-injection diesel engine dual-fueled with natural gas,SAE Paper No. 952436 (1995).
    [183] Kawabata, Y. et al., Operating characteristics of natural gas fueled homogeneous charge compression ignition engine (in Japanese with English summary), JSAE Paper, No. 9932953 (1999).
    [184] Yoshida, K. et al., An experimental study of compression auto-ignition of mixture by high compression engine (in Japanese with English summary), Proc. 13th Internal Combustion Engine Symp., pp. 371–376 (1996).
    [185] Zhili Chen, Mitsuru Konno, et al., Study on homogenous premixed charge CI engine fueled with LPG, JSAE Review 22 (2001) 265–270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700