二甲醚发动机燃烧与排放特性及其性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国汽车工业的发展正面临着日益严峻的能源供应和环境保护双重压力,因此寻找新的发动机代用燃料就成了人们的当务之急。二甲醚(DME)是一种非常适合柴油机使用的优质代用燃料,其应用可以有效缓解我国对石油基燃料的依赖。本文对二甲醚发动机进行了燃烧排放特性及其性能优化的研究。
     本文对一台车用增压柴油机进行改造,根据二甲醚的理化特性,设计了适合二甲醚的燃油系统,进行了燃用二甲醚的试验研究。结果表明,二甲醚发动机在中低转速时,燃油消耗率比柴油低,在中高转速时比柴油机高。在发动机的所有工况范围内,二甲醚发动机的NOx排放比柴油机有明显下降,HC和CO排放处于很低水平,碳烟排放为零,能实现无烟燃烧。
     燃料供给温度升高会造成二甲醚发动机功率下降。结合燃料供给温度变化,对发动机燃料系统结构参数优化的试验结果表明,加大柱塞直径和柱塞有效行程可提高循环供油量,可确保不同燃料状态下发动机的功率输出。相同功率下,采用相同规格喷油泵,当喷油器喷孔孔径减小时,NOx排放升高,燃料经济性较好。综合考虑二甲醚发动机的燃油消耗率与排放,得到两种较为理想的燃料喷射系统技术方案:柱塞直径为13mm、升程为12mm的P7100喷油泵匹配6×0.40mm喷油器和柱塞直径为12mm、升程为14mm的P8500喷油泵匹配6×0.43mm喷油器。采用这两种技术方案,不需废气再循环和氧化后处理,二甲醚发动机的ESC试验循环测试结果均能满足欧Ⅲ排放标准限值。
     采用KIVA-3V对增压二甲醚发动机和柴油机额定功率点的缸内燃烧过程与NOx排放进行了数值模拟研究。耦合到KIVA-3V中的二甲醚化学反应机理包括78个化学组份和336步基元反应;选用正庚烷化学反应机理模拟柴油燃烧,包括65个化学组份,248步基元反应。结果表明,计算所得的缸内压力和放热率与实测值吻合较好。对缸内燃烧的温度计算表明,柴油滞燃期较二甲醚的长,柴油燃烧初期,其高温区分布于喷雾浓侧,且在缸内气流作用下沿垂直于喷雾方向扩散;二甲醚的着火点位于喷嘴附近,在燃烧初始时刻,其喷雾稀薄侧温度明显高于柴油,随喷雾的进行,其燃烧高温区从喷嘴附近延伸到燃烧室壁面,呈现狭长的高温带。与柴油相比,二甲醚发动机缸内燃烧最高温度显著降低,且其温度梯度较小。选用的9步NOx生成机理可较好地预测发动机实际运行中所产的NOx排放水平。
     为了降低二甲醚发动机的排放,本文建立了涡前压后高压引流废气再循环(EGR)系统,进行了EGR和氧化后处理(DOC)降低排放的试验研究。涡前压后高压引流EGR使得进、排气温度和燃油消耗率均升高,进气流量降低。EGR缩短了燃料滞燃期,延长了燃烧持续期,燃烧终点被延迟。EGR降低了NOx排放,但引起CO排放升高,对HC排放影响不明显。通过氧化后处理装置,HC和CO排放大幅度降低。燃油正时优化试验结果表明,在3°CA BTDC供油提前角下,二甲醚发动机ESC试验循环测试结果可满足欧Ⅳ排放标准限值,同时其燃料经济性较原柴油机有优势。
     为了进一步降低NOx排放,搭建了适合增压二甲醚发动机的涡前压前高压引流废气再循环系统,研究了EGR率对燃烧和性能的影响。试验结果表明,与涡前压后高压引流EGR相比,采用涡前压前方式组织废气再循环可获得较大的EGR率,发动机NOx排放下降的幅度更为显著。3°CA BTDC供油提前角下,采用涡前压前高压引流EGR和氧化后处理,二甲醚发动机ESC试验循环测试结果可满足欧Ⅴ排放标准限值。在5°CA BTDC下采用两级冷却EGR技术,与3°CA BTDC时相比,在降低二甲醚发动机NOx排放的同时改善了燃料经济性。
     结合柴油机燃用二甲醚HCCI燃烧与缸内直喷燃烧各自的优点,提出了柴油机燃用二甲醚气道-气缸喷射复合燃烧方式。在一台改造过的2-135直列泵柴油机上,考察了预混合率、直喷供油提前角、进气燃料设计以及进气添加CO2对复合燃烧的影响。结果表明,二甲醚气道-气缸喷射复合燃烧过程包括HCCI燃烧和缸内直喷燃料的预混及扩散燃烧多阶段放热,主要受预混合率和供油提前角的影响而呈现不同的放热特征。采用适当的预混合率和直喷供油提前角,与HCCI燃烧比,复合燃烧在保持NOx基本不变的条件下有效地拓宽了发动机工况范围,同时降低了HC和CO排放。
The development of China’s automotive industry is facing major challenges of energy supply and environmental protection. It is of great importance to develop clean and alternative fuels for internal combustion engines and vehicles. Dimethyl ether (DME) is expected as a promising alternative fuel for its smoke-free combustion and rich resources. Promotion of DME utilization can not only relieve the current crisis of energy, but also effectively reduce air pollution. The study on combustion and performance of DME engine in this dissertation is summarized as follows:
     The DME fuel supply and injection system tailored for DME fuel was developed for a turbocharged diesel engine. An experimental study on performance and emission characteristics was conducted on the engine fueled with DME. The results show that, at full load, the brake specific fuel consumption (BSFC) of DME engine at low engine speed is lower than that of diesel engine, and NOx emissions of the DME engine decrease remarkably. HC emissions reduce while CO emission slightly increases. The combustion of DME engine is free of smoke at all test engine loads.
     Engine power output and torque decrease with increasing DME fuel supply temperature. Through the parameter optimization of DME fuel injection system, it is found that increasing the plunger diameter and effective stroke can ensure the constant engine power output at different fuel temperature. At the same engine load, using a nozzle orifice with a smaller diameter, NOx emission level is higher, and BSFC is lower. Under the required engine power output, a good compromise for DME fuel consumption and NOx emissions can be obtained using P7100 pump with the plunger diameter of 13mm and the stroke of 12mm matched with a injector of 6×0.40mm, or using P8500 pump with the plunger diameter of 12mm and the stroke of 14mm matched with a injector of 6×0.43mm. The results of ESC test show that, by means of optimization of injection system, emissions of DME engine can meet the requirements of EURO-Ⅲwithout employing EGR and aftertreatment.
     Using a CFD KIVA-3V model, combustion process and NOx formation of both diesel fuel and DME on a turbocharged diesel engine at the rated power were investigated. The chemical kinetic mechanism of DME consists of 78 species participating in 336 reactions, and n-heptane mechanism is used to present diesel fuel combustion including 65 species participating in 248 reactions. It is found that the calculated in-cylinder pressure and heat release rate are in good agreement with the measured results for both fuels. The ignition delay period of DME is shorter than that of diesel fuel. At initial period of combustion, the high temperature region locates at rich side of diesel fuel spray and propagates along the direction perpendicular to the spray development under the effect of in-cylinder gas flow. For DME, the ignition position occurs near the nozzle. At initial period of DME combustion, the temperature at lean side of DME spray is higher than that of diesel fuel. With the development of DME spray, the high temperature region appears as a narrow belt along the DME spray from the nozzle to the tip of the spray. In comparison to diesel fuel, the local maximum temperature of DME combustion is lower than that of diesel fuel, and in-cylinder temperature gradient of DME engine is small. The selected mechanism of NOx formation with 9 reactions can well predict NOx emission level of the engine.
     In order to reduce emissions of the DME engine,the high-pressure loop exhaust gas recirculation (HP-EGR) system was developed on a turbocharged DME engine,and the experimental study of emissions reduction was conducted by means of EGR and oxidation catalyst converter (DOC). In this HP-EGR system, exhaust gas before turbine flows through an EGR valve and an EGR cooler, and then enters the air intake pipe after the inter-cooler. The results indicate that,by means of EGR, inlet air temperature, exhaust gas and fuel consumption increase, and the mass air flow decreases. EGR shortens the ignition delay period, and increases the combustion duration. With EGR, a substantial reduction in NOx emissions without smoke is obtained while fuel consumption and CO emission tend towards deterioration, and HC emissions show no remarkable change. HC and CO emissions are significantly reduced by means of DOC. Through the parametric optimization, at the fuel delivery advance angle of 3°CA BTDC, ESC test results show that emissions of DME engine meet the requirements of EURO-IV. Meanwhile, there is a good fuel economy in comparison to the base engine.
     In order to further reduce the NOx emissions, second type of HP-EGR system was developed. In this HP-EGR system, exhaust gas before turbine flows through an EGR valve and EGR coolers, mixing wih fresh air, and then enters into the compressor of turbocharger. The effect of EGR rate on combustion and performance was investigated. The results show that, using this type of HP-EGR, a higher EGR rate can be obtained, and a remarkable reduction in NOx emissions can be observed. The results of ESC emission test show that, at the fuel delivery advance angle of 3°CA BTDC, emissions of DME engine can meet the requirements of EURO-V by means of EGR and DOC. In comparison to fuel delivery advance angle of 3°CA BTDC, a reduction in NOx emissions is obtained while the fuel economy is improved by using two-stage cooling EGR technology at the fuel delivery advance angle of 5°CA BTDC.
     Taking advantage of homogeneous charge compression ignition (HCCI) combustion and in-cylinder direct injection combustion, a new concept combustion system, namely compound charge compression ignition (CCCI) combustion system by port aspiration and direct injection of DME, is proposed. The effect of premixed fuel ratio and fuel delivery advance angle on CCCI combustion was investigated. In order to further reduce emissions and improve the fuel consumption in a CCCI engine, fuel design concept and port aspiration of CO2 were employed. The experimental results show that CCCI combustion exhibits a multi-stage combustion mode including HCCI combustion , pre-mixing combustion and diffusion combustion. The heat release pattern mainly depends on premixed fuel ratio and fuel delivery advance angle. Compared with HCCI combustion mode, CCCI combustion can extend the operating range with little change in NOx emissions and a considerable reduction in HC and CO emissions.
引文
[1] http://energy.people.com.cn/GB/8783475.html.
    [2] http://www.dieselnet.com/standards/eu/hd.php.
    [3]车用压燃式、气体点燃式发动机与汽车排气污染排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)(GB17691—2005),中国环境科学出版社,2005.
    [4]马凤娟.汽车代用燃料及其应用前景,航空技术与民品,1999,(7):29-31.
    [5]刘元鹏.代用燃料汽车的研究与发展,交通部公路科学研究所,汽车研究与开发,2000,(4):15-19.
    [6]张进华.中国代用燃料汽车发展现状和展望.全国清洁汽车行动协调领导小组办公室. 2006.
    [7] Kichiro Kato, Kohei Igarashi, Michihiko Masuda and et al, Development of Engine for Natural Gas Vehicle, SAE 1999-01-0574.
    [8] Insu Kim, Daeyup Lee and Shinichi Goto, Combustion Process Modeling using a Mechanism in an LPG Lean Burn SI Engine, SAE 1999-01-3481.
    [9] Daeyup Lee, Joseph Shakal, Shinichi Goto and et al, Observation of Flame Propagation in an LPG Lean Burn SI Engine, SAE 1999-01-0570.
    [10]降连葆.甲醇燃料汽车的技术发展及在我国富煤省区的示范应用,2003,(7):36-39.
    [11]魏远文,田维,黄海波,等. ZS1100柴油机燃用甲醇—柴油混合燃料的试验研究,小型内燃机与摩托车,2007,36(3):15-18.
    [12] William Judason Mattox, Baton Rough, LR. US 3 036 134. 1965.
    [13] Giovanni Manara, Bruno Notari, Vittorio Fattore. US 4 117 167. 1981.
    [14]周仁智,金正义.气相法合成二甲醚的工艺研究.浙江化工,1997,28(2):25-28.
    [15] Yotaro Ohno, Mamoru Omiya. Coal conversion into dimethyl ether as an innovative clean fuel. 12th ICCS. Nov., 2003.
    [16]林荆,王小勤,陈鹏,等.甲醇在CM-3-1催化剂上脱水生成二甲醚的研究.化工生产与技术,1996,(2):9-12.
    [17] Haldor Topsoe. International patent. WO96/23755.
    [18] John Bogild Hansen, Bodil Voss, Finn Joensen, etc. Large scale manufacture of dimethyl ether– a new alternative diesel fuel from natural gas. SAE Paper 950063.
    [19] Takashi Ogawa, Norio Inoue, Tutomu Shikada, etc. Direct dimethyl ether synthesis. Journal of natural gas chemical, 2003, (12):219-227.
    [20]刘华彦,孙勤,郑建兴,等.二甲醚生产技术与一步气相法新工艺设计方案.化肥设计,2004,42(3):18-21,44.
    [21]白雪松.二甲醚技术进展及发展前景.化工经济技术,2004,22(2):12-20,34.
    [22] Green, C.J.; Cockshutt, N.A.; King, L.: Dimethyl Ether as a Methanol Ignition Improver: Substitution Requirements and Exhaust Emissions Impact, SAE-Paper 902155.
    [23] Karpuk, M.E.; Wright, J.D.; Dippo, J.L.; Jantzen, D.E.: Dimethyl Ether as an Ignition Enhancer for Methanol-Fueled Diesel Engines, SAE-Paper 912420.
    [24] Brook, D.K.; Rallis, C.J.; Lane, N.W.; Cipolat, D.: Methanol with Dimethyl Ether Ignition Promoter as a Fuel for Compression Ignition Engines, SAE-Paper 849083.
    [25] Guo, J.; Chikahisa, T.; Murayama, T.; Miyano, M.: Improvement of Performance and Emissions of a Compression ignition Methanol Engine with Dimethyl Ether, SAE-Paper 941908.
    [26]张光德,黄震,乔信起,等.二甲醚燃料喷射过程的试验研究.内燃机学报,2002,20(5):395-398.
    [27]张光德,黄震,乔信起,等.二甲醚发动机的燃烧与排放研究.汽车工程,2003,25(2):124-127.
    [28] Noboru Miyamoto,Hideyuki Ogawa,Nabi Md Nurun,Ikouichi Obata,Teruyoshi Arima. Smokeless,Low NOx,High Thermal Efficiency,and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel. SAE Paper 980506.
    [29] V I Golovitchev,N Nordin,J Chomiak. Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise? SAE Paper 982537.
    [30] Zhou Longbao, Wang Hewu, Jiang Deming, Huang Zuohua. Study of Performance and Combustion Characteristics of a DME-fueled Light-duty Direct-injection Diesel Engine. SAE Paper 1999-01-3669.
    [31] Alam, M.; Fujita, O.; Ito, K.; Kajitani, S.; Oguma, M.; Machida, M. Performance of NOx Catalyst in a DI Diesel Operated with Neat Dimethyl Ether, SAE Paper 1999-01-3599.
    [32] Ken Friis Hansen,Leo Nielsen,John Bogild Hansen. Demonstration of a DME(Dimethyl Ether)Fuelled City Bus. SAE Paper 2000-01-2005.
    [33] Rolf Egnell. Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel. SAE Paper 2001-01-0651.
    [34] Hu Zhen,Zhang Cuiping,Yang Qingfo. Experimental Investigation on the Dimethyl Ether Fueled ZS195 Diesel Engine. ISAF XIV TECHNICAL PAPERS,Vehicle Technologies Session(3),2002-VT-16.
    [35] Teng, H., McCandless, J. C. and Schneyer, J.B. Compression Ignition Delay (physical + chemical) of Dimethyl Ether–an Alternative Fuel for Compression-Ignition Engine. SAE Paper 2003-01-0759.
    [36] Morsy M H, Ahn D H, Chung S H. Pilot Injection of DME for Ignition of Natural Gas at Dual Duel Engine-like Conditions. International Journal of Automotive Technology, 2006, 7, 1-7.
    [37] Theo Fleisch,Chris McCarthy,Arun Basu,Carl Udovich,Pat Charbonneau,Warren Slodowske,Svend-Erik Mikkelsen,Jim McCandless. Demonstration of ULEV Emission on a Navistar Diesel Engine Fueled with Dimethyl Ether. SAE Paper 950061.
    [38] S C Sorenson,Svend-Erik Mikkelsen. Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fueled with Neat Dimethyl Ether. SAE Paper 950064.
    [39] Paul K, Herwig O. Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethyl Ether. SAE Paper no.950062, 1995.
    [40] S Kajitani,Z L Chen,M Konno,K T Rhee. Engine Performance and Exhaust Characteristics of Direct-injection on Diesel Engine Operated with DME. SAE Paper 972973.
    [41] Ofner H, Gill D W, Krotscheck C. Dimethyl ether as fuel for CI engines―a New Technology and its Environmental Potential. SAE Paper no.981158, 1998.
    [42] Yoshio Sato, Shinya Nozaki, Toshifumi Noda. The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System. SAE Paper 2004-01-1862.
    [43] Mitsuharu Oguma, Shinichi Goto. Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME. SAE Paper 2004-01-1863.
    [44] Shinichi Goto, Mitsuharu Oguma. Research and Development of a Medium Duty DME Truck. SAE Paper 2005-01-2094.
    [45] Mitsuharu Oguma, Hitoshi Shiotani and Shinichi Suzuki.Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine. SAE Paper 2005-01-2202.
    [46] Denis Gill, Herwig Ofner, Eddie Sturman, John Carpenter, Marc Andrew Wolverton. Production Feasible DME Technology for Direct Injection CI Engines. SAE paper 2001-01-2015.
    [47] Denis Gill, Herwig Ofner, Daniel Schwarz, Eddie Sturman, Marc Andrew Wolverton. The Performance of a Heavy Duty Diesel Engine with a Production Feasible DME Injection System. SAE paper 2001-01-3629.
    [48] Ho Teng and Gerhard Regner. Fuel Injection Strategy for Reducing NOx Emissions from Heavy-Duty Diesel Engines Fueled with DME. SAE Paper 2006-01-3324.
    [49] Jun Yu, Jookwang Lee, Choongsik Bae. Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System. SAE paper 2002-01-2898.
    [50] J. S. HWANG, J. S. HA and S. Y. NO. Spray Characteristics of DME in Conditions of Common Rail Injection System (II). International Journal of Automotive Technology, Vol. 4, No. 3, pp. 119?124 (2003).
    [51] Hyun Kyu Suh, Sung Wook Park, and Chang Sik Lee. Atomization Characteristics of Dimethyl Ether Fuel as an Alternative Fuel Injected through a Common-Rail Injection System. Graduate School of Hanyang UniVersity and Department of Mechanical Engineering, Hanyang UniVeristy, Korea ReceiVed December 15, 2005.
    [52] Myung Yoon Kim, Seung Hwan Bang, and Chang Sik Lee. Experimental Investigation of Spray and Combustion Characteristics of Dimethyl Ether in a Common-Rail Diesel Engine. Energy & Fuels, 2007, 21, 793-800.
    [53]吴君华,黄震,乔信起,等.车用增压二甲醚发动机燃烧和排放特性的试验研究.内燃机学报, 2006,24(3):193-199.
    [54]鲁骏,黄震,乔信起,等.直列泵柴油机燃用二甲醚(DME)的燃烧排放特性分析.内燃机工程,2006,27(6):P528-531.
    [55]吴君华,黄震,乔信起,等.废气再循环对增压二甲醚发动机性能和排放影响的试验研究.内燃机学报,2008,26(2):147-152.
    [56]王贺武,周龙保,蒋德明,等.直喷式柴油机燃用二甲醚排放特性的研究.内燃机学报,2000,18(1):006-010.
    [57]王贺武,周龙保,蒋德明.柴油机燃用二甲醚时采用排气再循环降低NOx排放.西安交通大学学报,2000,34(7):9-11,51.
    [58]汪映,何利,郭振祥,等.不同比例润滑添加剂对车用二甲醚发动机性能的影响.内燃机工程,2009,30(3):23-26.
    [59]李君,朱昌吉,马光兴,等.二甲醚发动机性能试验研究.燃烧科学与技术,2003,9(3):200-204.
    [60]尧命发,郑尊清,胡春明,等.高温环境下二甲基醚(DME)喷雾特性的实验研究.内燃机学报,2002,20(1):8-12.
    [61]尧命发,郑尊清,罗毅,等.二甲醚在发动机气缸内喷雾燃烧过程的实验研究.燃烧科学与技术,2003,9(3):251-255.
    [62]张煜盛,徐春,石宇,等.二甲基醚喷雾混合过程的计算研究.华中科技大学学报(自然科学版),2004,32(5):81-83.
    [63]魏明锐,赵卫东,文华,等.二甲基醚喷雾数值模拟与实验研究.燃烧科学与技术,2006,12(5):394-400.
    [64]吴君华.增压二甲醚发动机燃烧和排放控制试验研究. [博士学位论文],上海交通大学,2007.
    [65]郎静,周小松,张煜盛,等.柴油机燃用二甲醚排放实验研究.华中科技大学学报(自然科学版),2006,34(9):78-80.
    [66] Hiromasa Hayashi,Atsushi Todoroki,Ando Yasuto. NKK DME Diesel Vehicle Development and Fleet Test in Japan. ISAF XIV TECHNICAL PAPERS , Vehicle Technologies Session(2),2002-VT-04.
    [67] Naoki Yanagisawa, Takeshi Seto, Takeshi Tokumaru, Kazuhiko Shirota. Development of a City Bus Fueled with DME. ISAF XIV TECHNICAL PAPERS,Vehicle Technologies Session(3),2002-VT-15
    [68]黄震,乔信起,张武高,等.二甲醚发动机与汽车研究.内燃机学报,2008增刊,26:115-125.
    [69] Zhen HUANG, Xinqi QIAO, Wugao ZHANG, Junhua WU, Junjun ZHANG. Dimethyl Ether as Alternative Fuel for CI Engine and Vehicle. Front. Energy Power Eng. China 2009, 3(1):99-108.
    [70] Noboru Noguchi, Hideo Terao. Performance Improvement by Control of Flow Rates and Diesel Injection Timing on Duel-fuel Engine with Ethanol. Bioresource Technology 56(1996)35-39.
    [71] E.A. Ajav, Bachchan Singh. Performance of a Stationary Diesel Engine Using Vapourized Ethanol as Supplementary Fuel. Biomass & bioenergy Vol. 15, No.6, PP. 493-502.1998.
    [72] Hu guodong, New Strategy on Diesel Combustion Development, SAE Paper 900422, 1990.
    [73] Yanagihara, H., Sato, Y. and Mizuta, J.,“A Simultaneous Reduction of NOx and Soot in Diesel Engines under a New Combustion System (Uniform Bulky Combustion System - UNIBUS)”, 17th International Vienna Motor Symposium, (Vienna), pp.303-314, 1996.
    [74] Hrada A. The Effects of Mixture Formation on Premixed Lean Diesel Combustion. SAE Paper 980533.
    [75] Nakagome , K. Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine. SAE Paper 970898.
    [76] Hisashi Akagawa. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE Paper 1999-01-0183.
    [77] Y Takeda,N Keiichi. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Stage Fuel Injection. SAE Paper 961163.
    [78] Gray,A W. Homogeneous Charge Compression Ignition (HCCI) Diesel Fuel. SAE Paper 971676.
    [79] Shuji Kimura, Osamu Aoki. New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines. SAE paper 1999-01-3681.
    [80] Salvador M. Aceves, Daniel L. Flowers. A Multi_zone Model for Prediction of HCCI Combustion and Emissions. SAE paper 2000-01-0327.
    [81] Toshiji Amano, Satoshi Morimoto. Modeling of the Effect of Air/Fuel Ratio and Temperature Distribution on HCCI Engines. SAE paper 2001-01-1024.
    [82] M. Richter, J Engstrom. The Influence of Charge Inhomogeneity on the HCCI Combustion Process. SAE paper 2000-01-2868.
    [83] William L. Easley, Apoorva Agarwal. Modeling of HCCI Combustion and Emissions Using Detailed Chemistry. SAE paper 2001-01-1029.
    [84] Salvador M. Aceves, Daniel L. Flowers. HCCI Combustion: Analysis and Experiments. SAE paper 2001-01-2077.
    [85] Y.K. Wang, G.A. Karim. An Analytical Examination of the Effects of Hydrogen Addition on Cyclic Variations in Homogeneously Charged Compression-ignition Engines. International journal of Hydrogen Energy 25(2000)1217-1224.
    [86] Joel Martinez-Frias, Salvdor M. Aceves. Thermal Charge Conditioning for Optimal HCCI Engine Operation. Journal of Energy Resources Technology, March 2002, Vol.124.
    [87] D. Flowers, S.Aceves. Detailed Chemical Kinetic Siimulation of Natural Gas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies. Journal of Engineering for Gas Turbines and Power, April 2001, Vol.123/433.
    [88] Anders Hultqvist, Ulf Engdar. Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine. SAE paper 2001-01-1032.
    [89] Y Mase,J Kawashima,T Sato. Nissan’s New Multivalve DI Diesel Engine Series. SAE Paper 981039.
    [90] Y Matsui. A New Combustion Concept for Small DI Diesel Engines-1st Report: Introduction of the Basic Technology. JSAE9730416.
    [91] S Kimura. A New Combustion Concept for Small DI Diesel Engines-2nd Report: Effects on Engine Performance. JSAE9735051.
    [92]小型直喷式柴油机的新燃烧概念.小型内燃机,No.3(Vol.27)1998.
    [93] Bauder R。柴油机技术的未来.国外内燃机,1999年第2期.
    [94] Hentschel W, Schindler K P.欧洲联合研究项目(IDEA)的直喷式柴油机试验研究结果.国外内燃机,1997年第6期.
    [95]相吉泽英二.采用MK燃烧概念开发的小型直喷式柴油机.小型内燃机,1999年第1期.
    [96]村中重夫.日产YD25DDT型柴油机的开发--应用MK燃烧的高效率低污染高速直喷式柴油机.国外内燃机,2000年第1期.
    [97]木村修二.小型直喷式柴油机燃烧的新概念第三部分:扩大MK燃烧区域的可能性.国外内燃机,1999年第2期.
    [98]宋钧,黄震,乔信起,等.二甲醚发动机的新型可控预混合燃烧.科学通报,2003,48(6):628-631.
    [99] Takahiro Koseki, Shinichi Tamura and Hideaki Kashiwagi. Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether.SAE Paper 2003-32-0006.
    [100] Hideyuki Ogawa, Noboru Miyamoto, Naoya Kaneko and Hirokazu Ando. Combustion Control and Operating Range Expansion with Direct Injection of Reaction Suppressors in a Premixed DME HCCl Engine. SAE Paper 2003-01-0746.
    [101]李德刚.二甲醚HCCI燃烧研究,,[博士学位论文],上海交通大学,2005.
    [102]李德钢,吕兴才,张武高,等.乙醇混合燃料压燃式发动机的性能研究.农业机械学报,2005,36(2):135-137.
    [103]李德钢,黄震,乔信起,等.压缩比和CO2对二甲醚燃料均质压燃燃烧的影响.上海交通大学学报,2005,39(2):169-172.
    [104] Kengo Kumano and Norimasa Iida. Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement. SAE Paper 2004-01-1902.
    [105]周龙保主编.内燃机学.机械工业出版社,1999(6) .
    [106] Ho Teng, James C,McCandless , et al. Thermodynamic Properties of Dimethyl Ether——An Alternative Fuel for Compression-ignition Engines.SAE Paper 2004-01-0093.
    [107]解茂昭,内燃机计算燃烧学,大连理工大学出版社,1995.
    [108]金国栋,内燃机燃烧学,华中理工大学出版社,1991.
    [109]罗马吉,进气道-气门-缸内系统进气过程三维瞬态模拟研究[博士学位论文],华中科技大学,2002.
    [110] R. D. Reitz, J.Diwakar. Structure of High-pressure Fuel Sprays. SAE Paper 870598.
    [111] A.B.Liu, R.D.Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Paper 930072.
    [112] Laura M. Ricart. An Experimental and Computational Study of Fuel Injection, Mixing and Combustion in Diesel Engines, PH.D Thesis of University of Wisconsin-Madison, 1998.
    [113]文华,刘永长,魏明锐,等.二甲醚和柴油喷雾特性的数值模拟分析.内燃机学报,2003,21(4):199-204.
    [114] Hyun Kyu Suh, Su Han Park, Hyung Jun Kim, Chang Sik Lee. Influence of Ambient Flow Conditions on the Droplet Atomization Characteristics of Dimethyl Ether (DME). Fuel, 2009, 88:1070-1077.
    [115] Golovitchev, V.I., Nordin, N., Jarnicki, R., and Chomiak,J.. 3-D Diesel Spray Simulations Using a New Detailed Chemical Turbulent Combustion Model. SAE Paper 2000-01-1891.
    [116] V. I. Golovitchev, F. Tao, J. Chomiak, Numerical Evaluation of Soot Formation Control at Diesel-like Conditions by Reducing Fuel Injection Timing. SAE Paper 1999-01-3552.
    [117] H. J. Curran, E. M. Fisher, P. A. Glaude, N. M. Marinov, Detailed Chemical Kinetic Modelingof Diesel Combustion with Oxygenated Fuels. SAE Paper 2001-01-0653.
    [118] H.J. Curran, Pitz W.J., Westbrook C.k., ex al, A Wide Range Modeling Study of Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 1991, 30: 229-241.
    [119] Yudai Yamasaki, Shinya Takabashi and Norimasa Iida, Auto-Ignition and Combustion Analysis of DME Air HCCI Engine by Chemiluminescence Measurement and Numerical Calculation, International Symposium on Alcohol Fuels Conference & Exhibition, 2002.
    [120] Feng Tao. Numerical modeling of soot and NOx Formation in Non-stationary Diesel Flames with Complex Chemistry, PH.D Thesis of Chalmers University of Technology, G?teborg Sweden 2003.
    [121] Susumu Kohtetsu, EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine. SAE paper 970340.
    [122] Baert, R.S.G, Beckman, D.E., and Verbeek, R.V., New EGR Technology Retains HD Diesel Economy with 21st Century Emissions. SAE Paper 960848.
    [123]魏名山,马朝臣.柴油机排气微粒控制技术的发展.汽车技术,2001,(10):4-8.
    [124]邱卓丹,张洪涛.柴油机微粒排放后处理技术的研究现状及发展趋势.小型内燃机和摩托车,2005,34(1):24-27.
    [125]李德钢,黄震,乔信起,等.二甲醚燃料均质压燃燃烧研究.内燃机学报,2005,23(2):193-198.
    [126] Song Jun, Huang Zhen, Qiao Xinqi. Performance of a Controllable Premixed Combustion Engine Fueled with Dimethyl Ether. Energy Conversion and Management, 2004, 45:2223-2232.
    [127]方俊华,黄震,乔信起. DMM燃料柴油机可控预混合燃烧的研究.工程热物理学报, 2004, 25(4):0699-0702.
    [128]吉丽斌,吕兴才,马骏骏,等.异辛烷/柴油双燃料分层充质压缩着火燃烧和排放特性.上海交通大学学报,2008,42(3):375-380.
    [129]金萍,尧命发,许斯都. DME作为柴油机引燃剂的试验研究.河北工业大学学报,2000,29(1):49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700