复杂燃烧流场数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着吸气式高超声速飞行器的发展,超声速燃烧冲压发动机的研究得到了世界各国的高度重视。超燃冲压发动机燃烧室工作过程复杂,其内部流场是复杂的三维流动,充满着激波、膨胀波、燃烧波、各种涡系、附面层及其相互之间的干扰,对于液态燃料还包含燃料的雾化、变形、蒸发、碰撞、破碎等复杂的物理过程。作为燃烧室设计的关键技术,复杂燃烧流场数值模拟技术的重要性日益显现。本文结合计算流体力学、燃烧学、传热学、多相流等学科,针对燃烧流场中涉及的化学反应、宽马赫数范围、气液两相流掺混等复杂流动现象,发展了基于非结构/混合网格的全速域高效数值模拟算法及大规模分布式并行计算技术,为先进飞行器推进系统的设计提供了有效手段。
     考虑到在超燃冲压发动机概念设计和初步设计阶段,需要大量分析推进系统的性能,本文发展了一种能够对燃烧室性能进行快速评估的一维流分析方法。对该方法中涉及的控制方程、经验模型、计算方法等方面进行了详细讨论,采用Billig实验模型进行了数值验证,并对一种典型超声速燃烧室几何与燃料喷口参数等对燃烧室性能的影响作了数值分析,分析结果可以给燃烧室的初步设计提供依据。
     针对气态燃料燃烧流场,以多组分N-S方程为基础,利用高阶迎风格式、湍流模型及有限速率化学反应模型等,发展了基于非结构/混合网格的可应用于全速域燃烧流场数值模拟的大规模并行计算方法。空间离散格式包含AUFS、Van Leer、AUSM+和HLLC/E等迎风分裂格式;湍流模型包含S-A一方程、k-εCMOTT和k-ωSST两方程湍流模型。以对称边界为例,讨论了人工边界条件处理方法对计算结果的影响;利用量级分析的方法,研究了在低马赫数情形时采用预处理方法的必要性和有效性;并详细介绍了几种常见通量分裂格式的预处理方法。利用多个经典算例对本文发展的算法进行了分析和验证。计算结果表明,本文发展的算法对无粘流、层流、湍流、反应流、全速域流等都具有较好的计算精度和可靠性。
     针对液态燃料燃烧流场,采用Eulerian-Lagrangian方法,基于随机轨道模型,整合现有的液滴蒸发、变形、二次破碎、碰撞聚合、气液相间作用等模型,在气态燃料燃烧数值模拟算法基础上,发展了基于非结构/混合网格的液态燃料燃烧流场数值模拟的大规模并行计算方法。通过验证算例检验了本文发展的气液两相流算法中各子模型的可靠性和计算精度;最后通过Lin的水横喷实验和结合氢引导火焰与凹腔的煤油超燃算例的分析研究,表明了本文开发的算法对液态燃料燃烧流场的模拟能力。
With the development of the air-breathing hypersonic vehicle, supersonic combustion ramjet (Scramjet in short) has received more and more attention. In the combustor of scramjet, there are complex phenomena, such as shock, combustion, vortex, turbulence, and the interactions between them. If liquid fuels, such as kerosene, the flowfields of combustor will also contain complex droplet acts, such as droplet evaporation, droplet oscillation and distortion, droplet breakup, droplet collision and coalescence. As one of the key methods, numerical methods for simulating complex combustion flowfields are very important. In this dissert, involving many subjects, such as Computational Fluid Dynamics, combustion science, heat transfer theory, multiphase flow, an efficient parallel method based on unstructured/hybrid meshes for simulating combustion problems at all speeds was developed, and used to analyze the complex phenomenon in the combustor of scramjet, which is helpful for the advanced aircraft propulsion design.
     A rapid means of predicting the propulsion system is needed for the concept stage and preliminary stage of the scramjet design, so a quasi-one-dimensional analysis model was developed. The equations, experimental models, numerical methods were discussed in detail. Numerical result was compared with Billig’s experiment, which shows the reliability of this analysis model. Using this model, the effects of the expansion angle and the fuel-injector location on the performance of typical supersonic combustor have been studied.
     Numerical methods for combustion flowlfields of gas fuel were investigated. Based on the multi-component Navier-Stokes equations, an efficient parallel method on the unstructured/hybrid meshes was developed, using higher-order upwind schemes, turbulence models and finite rate chemical reaction model. The equations are solved using the cell-centered finite volume method. Four schemes including AUFS, Van Leer, AUSM+ and HLLC/E can be used for the inviscid flux vector calculation. S-A one-equation turbulence model, k-εCMOTT and k-ωSST two-equation turbulence model are implemented to evaluate the turbulent viscosity. Taking the case of symmetry boundary, the differences between two methods of the boundary were discussed. An order analysis was conducted to search for the convergence characteristics of Euler equations with Weiss-Smith preconditioner in low speed flow. Then several preconditioned upwind schemes were introduced. Many benchmark cases were simulated to validate the capabilities of this numerical method for the invisid, laminar, turbulence, chemical reacting flow, all speeds flow. The results indicate that the numerical method has good resolution and reliability.
     Numerical methods for combustion of liquid fuels were developed with Eulerian-Lagrangian method. A stochastic particle method was used to calculate the liquid sprays with turbulence effects. Many spray models were implemented to control the behavior of the spray droplets, including evaporation, droplet oscillation and distortion, droplet breakup, and droplet collision and coalescence, the interaction between the ambient fluid and the spray. The performance of individual spray submodels has been validated by comparing the numerical results of some benchmark cases to theory and experimental results from the literature. The performance of the complete numerical method has been explored by investigating the flowfield of a kerosene scramjet model with cavity and pilot hydrogen.
引文
[1] William H. Heiser, David T. Pratt. Hypersonic airbreathing propulsion[M]. Washington DC:AIAA, 1994.
    [2] John J. Bertin, Russel M. Cummings. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in aerospace science, 2003, 39:511-536.
    [3]贺武生.超燃冲压发动机研究综述[J].火箭推进,2005,31(1):29-32.
    [4] Kumar A, Drummond J P, McClinton C R, et al. Research in hypersonic airbreathing propulsion at the NASA Langley Research Center[R]. ISABE2001-2007, 2001.
    [5]岳鹏涛.超燃冲压发动机燃烧若干问题的研究[D]. [博士学位论文].合肥:中国科学技术大学,2002.
    [6] Tishkoff J. M. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion[J]. AIAA1997-1017, 1997.
    [7] Schetz J A, Billig F S and Favin S. Analysis of mixing and combustion in a scramjet combustor with a co-axial fuel jet[R]. AIAA1980-1256, 1980.
    [8] Schetz J A, Billig F S. Studies of scramjet flowfield. AIAA1987-2161, 1987.
    [9] Drummond J P, Rogers R C and Evans J S. Combustor modelling for scramjet engines[R]. AGARD-CP-275, 1979.
    [10] Drummond J P, Weidner E H. Numerical study of a scramjet engine flow field[R]. AIAA1981-0816, 1981.
    [11] Jachimowski C J. An Analysis Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion[R], NASA TP-2791, February 1988.
    [12] Shang H M, Chen Y S, Paul Liaw, et al. Investigation of Chemical Kinetics Integration Algorithms for Reacting Flows[R], AIAA1995-0806, 1995.
    [13] Wing T. Heptane combustion database[R], AIAA2004-1324, 2004.
    [14] Christopher J M, Optimized reduced chemical kinetic mechanisms for ethylene and JP-8 combustion[R], AIAA2007-0771, 2007.
    [15] Viswanath R. K. Comparison of chemical-kinetics models for JP-8 fuel in predicting premixed and nonpremixed flames[R], AIAA2006-4745, 2006.
    [16] R.Villasenor, J-Y.chen, and R.W.Pitz. Interaction between chemical reaction and turbulence in supersonic nonpremixed H2-Air combustion[R].AIAA1991-0375, 1991.
    [17] A. Lyubar and T. Sattelmayer.Numerical Investigation of Fuel Mixing, Ignition and Flame Stabilization by a Strut Injector in a Scramjet Combustor[C]. Proceedings. The 11th International Conference on Methods of Aerophysical Research. Novosibirsk:ICMAR, 2002, 2:122-127.
    [18]韩省思,叶桃红,朱明,陈义良,邵文清.应用修正的k-ε模型研究超声速H2/Air燃烧[J],推进技术,2008,29(2):158-162.
    [19]许丁,王春,马晖扬.超声速燃烧的湍流流场数值模拟[J],空气动力学学报,2008,26(1):73-78.
    [20] Azevedo J L F, Figueira da Silva L F. The development of an unstructured grid solver for reactive compressible flow applications[R]. AIAA1997-3239, 1997.
    [21] Shang H M, Chen Y S. Unstructured adaptive grid method for reacting flow computation[R]. AIAA1997-3183, 1997.
    [22]王兰,超燃冲压发动机整机非结构网格并行数值模拟研究[D]. [博士学位论文].绵阳:中国空气动力研究与发展中心,2007.
    [23] Ebrahimi H B, Gaitonde D V. Parametric study of 3-D hydrocarbon scramjet engine with cavity[R], AIAA2007-0645, 2007.
    [24] Ungewitter J, Ott J D, Dash S M. Advance modeling methods for hypersonic scramjet evaluation[R], AIAA2006-4578, 2006.
    [25] Jian L, Fuhua M, Vigor Y, et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine[R], AIAA2007-0836, 2007.
    [26]周建兴,朴英,岂兴明,祝剑虹,陈美宁.两种超声速燃烧室内氢气燃烧的三维数值研究[J],航空动力学报,2008,23(3):470-475.
    [27] Bussing T R A, Murman E M. Unsteady model of dual model scramjet operation[R]. AIAA1983-0422, 1983.
    [28]刘陵,刘敬华,张榛等.超音速燃烧与超音速燃烧冲压发动机[M].西安:西北工业大学出版社,1993.
    [29] Starkey R P, Lewis M J. Sensitivity of Hydrocarbon Combustion Modeling for Hypersonic Missile Design[J]. Journal of Propulsion and Power, 2003, 19(1):89-97.
    [30] Timothy F. O’Brien, Ryan P. Starkey and Mark J. Lewis, Quasi-One-Dimensional High-Speed Engine Model with Finite-Rate Chemistry[J]. Journal of Propulsion and Power, 2001, 17(6):1366-1374.
    [31] Daniel E, Larini M, Loraud J C, et al. A numerical simulation of injection of droplet in a compressible flow[R]. AIAA1992-2929, 1992.
    [32]徐胜利,岳鹏涛,韩肇元,孙英英.雾化燃料在超声速气流中横向喷射混合的数值模拟[J].空气动力学学报,2000,18(1):39-45.
    [33] Kim Y M, Shang H M, Chen C P, et al. Computaional fluid dynamics combustion analysis evaluation [R]. NAS8-36955, April 1992.
    [34] Kim Y M, Chung T J. Effects of turbulence mixing, variable properties, and vaporization on spray droplet combustion[R]. NASA-CR-186463, 1990.
    [35] Chen K H, Shuen J S. A coupled multi-block silution procedure for spray combustion in complex geometries[R]. AIAA1993-0108, 1993.
    [36] Kim S D, Jeung I S. Numerical simulation on a reacting flows of coaxial ramjet dump combustor with liquid fuel injection[R], AIAA2006-4749, 2006.
    [37] Raju M S. Numerical investigation of various atomization models of a spray flame[R], AIAA2006-0176, 2006.
    [38]刘静,王辽,张佳,韦宝禧,徐旭.超声速气流中横向射流雾化实验和数值模拟[J],航空动力学报,2008,23(4):724-729.
    [39] Zhou Q, Leschziner M A. An improved particle-locating algorithm for Eulerian-Lagrangian computations of two-phase flows in general coordinates[J].International Journal of Multiphase flows, 1999, 25(5):813-825.
    [40] Chen X Q, Pereira J C F. A new particle-locating method accounting for source distribution and particle-field interpolation for hybrid modeling of strongly coupled two-phase flows in arbitrary coordinates[J]. Numerical Heat Transfer, 1999, 35(1):41-63.
    [41] Chorda R, Blsco J A, Fueyo N. An efficient particle-locating algorithm for application in arbitrary 2D and 3D grids[J]. International Journal of Multiphase flows, 2002, 28(6):1565-1580.
    [42] Faeth G M. Liquid atomization in multiphase flows: a review[R], AIAA1999-3639, 1999.
    [43] Baifang Z, David L B, Crocker D S. Fuel atomization and drop breakup models for advanced combustion CFD codes[R], AIAA2002-4175, 2002.
    [44] Kyoung S I, Lin K C, Lai M C. Spray atomization of liquid jet in supersonic cross flows[R], AIAA2005-0732, 2005.
    [45]蔡元虎,刘欧子,胡欲立,刘敬华,凌文辉.用不同化学反应模型对煤油超声速燃烧的数值模拟[J],航空动力学报,2006,21(4):642-646.
    [46]刘欧子,蔡元虎,胡欲立,刘敬华,凌文辉.液体煤油超声速燃烧数值分析的湍流模型[J],空气动力学学报,2007,25(3):362-367.
    [47]岳连捷,俞刚.超声速气流中横向煤油射流的数值模拟[J],推进技术,2004,25(1):11-14.
    [48] Chorin A J. A numerical method for solving incompressible viscous flow problem[J]. Journal of Computational Physics, 1997, 135(2):118-125.
    [49] Choi D,Merkle C L.Application of Time-Iteration Scheme to Incompressible Flow[J]. AIAA Journal, 2000, 23(10):581-590.
    [50] Van Leer B,Lee W T,Roe P. Characteristic time-stepping of local preconditioning of the Euler equations[R]. AIAA1991-1552-CP,1991.
    [51] Lyle D , Dailey R, Pletcher H. Evaluation of multigrid acceleration for preconditioned time-accurate Navier-Stokes algorithms[R]. AIAA1995-1668-CP,1995.
    [52] Lee D. Local preconditioning of the Euler and Navier-Stokes equations[D]. The University of Michigan, Michigan, 1996.
    [53] Sesterhenn J, Muller B, Thomann H. On the cancellation problem in calculating compressible low mach number flows[J]. Journal of Computaional Physics, 1999, 151:597-615.
    [54] Lee S H. Cancellation problem of preconditioning method at low Mach numbers[J]. Journal of Computaional Physics, 2007, 225:1199-1210.
    [55] Guillard H, Viozat C. On the behaviour of upwind schemes in the low Mach number limit: II. Godunov type schems[J]. Computers & Fluids, 2004, 33:655-675.
    [56] Edwards J R, Liou M S. Low-diffusion flux-splitting methods for flows at all speeds[J]. AIAA Journal, 1998, 36(9):1610-1617.
    [57] Luo H, Baum J D, Lohner R. Extension of Harten-Lax-van Leer scheme for flows at all speeds[J]. AIAA Journal, 2005, 43(6):1160-1166.
    [58] Park S H, Lee J E, Kwon J H. Preconditioned HLLE Method for flows at all Mach numbers[J]. AIAA Journal, 2006, 44(11):2645-2653.
    [59] Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows[J]. AIAA Journal, 1995, 33(11):2050-2057.
    [60] Edwards J R, Roy C J. Preconditioned multigrid methods for two-dimensional combustion calculations at all speeds[J]. AIAA Journal, 1998, 36(2):185-192.
    [61] Wu J X, Tang L, Luke A, et al. A low Mach number preconditioning scheme of the reactive Roe flux[R]. AIAA2003-0307, 2003.
    [62]廖守亿,王正华,王承尧.预处理方法在低速粘性流动中的应用[J].国防科技大学学报,2000,22(1):89-93.
    [63]潘沙,李桦,范晓樯,田正雨.预处理方法在化学非平衡流场数值模拟中的应用[J].空气动力学学报,2006,24(3):380-384.
    [64] Heiser W H, Pratt D T, Deley D H. Hypersonic airbreathing propulsion[M]. Washington DC:AIAA, 1994.
    [65] Eckert E R G, Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow[J]. Journal of the Aeronautical Science, 1955, 22(8):585-587.
    [66] McBride B J, Heimel S, Ehlers J G, et al, Thermodynamic properties to 6000K for 210 substances involving the first 18 elements[R]. NASA SP-3001, 1963.
    [67] Byne, G D, Hindmarch A C, Brown P N, VODPK: Variable-Coefficient Ordinary Differential Equation Solver with the Proconditioned Krylov Method GMRES for the Solution of Linear Systems[R]. Livermore: Lawrence Livermore National Laboratory, 1997.
    [68] Kee R J, Rupley F M, Miller J A, et al, ChemKin Application Programming Interface Manual[Z]. San Diego:Reaction Design, Inc., 2004.
    [69] Billig F S, Grenleski S E. Heat transfer in supersonic combustion processes[C]. Grigull U, Hahne E, Heat Trasfer 1970, Amsterdam:Elsevier, 1970:1-11.
    [70] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Bok Company, 1988.
    [71] Bird, R B.传递现象[M].北京:化学工业出版社,1990.
    [72]肖中云.旋翼流场数值模拟方法研究[D]. [博士学位论文].绵阳:中国空气动力研究与发展中心, 2007.
    [73] Spalart P R, Allmaras S R. A One-Equation Turbulence Model for Aerodynamic Flow[R]. AIAA1992-0439, 1992.
    [74] Zhu J, Shih T H. CMOTT turbulence module for NPARC[R]. NASA CR-204143, 1997.
    [75] Menter F. R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J. 1994; 32(8): 1598-1605.
    [76] Menter F R, Rumsey L C. Assessment of two-equation turbulence models for transonic flows[R]. AIAA1994-2343, 1994.
    [77] Bradshawm P. Turbulence modeling with application to turbomachinary[J]. Progress in Aerospace Sciences, 1996, 32:575-624.
    [78] Suzen Y B, Hoffmann K A. Investigation of supersonic jet exhaust flow by one-and two-equation turbulence models[R]. AIAA1998-0322, 1998.
    [79]潘勇.高超声速流场磁场干扰效应数值模拟方法研究[D]. [博士学位论文].南京:南京航空航天大学,2007.
    [80] Laney C B. Computational gasdynamics[M]. London: Cambridge University Press, 1998.
    [81] Van Leer B. Towards the ultimate conservative difference Scheme V: A second order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32:101-136.
    [82] Barth T J, Jespersen D C. The design and application upwind schemes on unstructured meshes[R]. AIAA1989-0366, 1989.
    [83] Venkatakrishnan V. On the accuracy of limiters and convergence to steady state solutions[R]. AIAA1993-0880, 1993.
    [84] Blazek J. Computational fluid dynamics: principles and applications[M]. Oxford: Elsevier Science Ltd, 2001.
    [85] Sun M, Takayama K. An artificially upstream flux vector splitting scheme for the Euler equations[J]. Journal of Computational Physics, 2003, 189:305-329.
    [86]刘晨,王江峰,伍贻兆. AUFS格式在多组分反应流场模拟中的应用[J].南京航空航天大学学报,2008,40(2):191-194.
    [87] Van Leer B. Flux-vector splitting for the 1990s[R]. NASA CP-3078, 1991,
    [88] H?nel, D, Schwane R. An implicit flux-vector splitting scheme for the computation of viscous hypersonic flow[R]. AIAA1989-0274, 1989.
    [89] Liou M S. Progress towards an improved CFD method: AUSM+[R]. AIAA1995-1701-CP, 1995.
    [90] Einfeldt B, Munz C D, Roe P L. On Godunov-type methods near low densities[J]. Journal of Computational Physics, 1991, 92:273-295.
    [91] Toro E F. Riemann solvers and numerical methods for fluid dynamics[M]. Berlin: Springer, 1996.
    [92] Pandolfi M, Ambrosio D D. Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2):271-301.
    [93] Quirk J J. A contribution to the great Riemann solver debate[J]. International Journal of Numerical methods in Fluids, 1994, 18:555-574.
    [94]刘学强.基于混合网格和多重网格上的N-S方程的求解及应用研究[D]. [博士学位论文]南京:南京航空航天大学,2001.
    [95]周春华.跨声速欧拉方程有限元解法的研究[D]. [博士学位论文].南京:南京航空航天大学,1993.
    [96] Turkel E, Radespiel K N. Assessment of two preconditioning methods for aerodynamics problems[J]. Computer & Fluids, 1997, 26(6):613-634.
    [97]廖守亿,王承尧.与处理方法求解低马赫数流场的边界条件[J].国防科技大学学报. 2001, 23(2):51-56.
    [98]陈国良.并行计算[M].北京:高等教育出版社,1999.
    [99] Karypis G, Kumar V. METISA: Software package for partitioning unstructuredgraphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, Version 4.0[R], University of Minnesota, Department of Computer Science / Army HPC Research Center,1998.
    [100] White F M. Viscous fluid flow[M]. New York: Mcgraw-Hill, 1974.
    [101] Settles G S, Fitzpatrick T J, Bogdonoff S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585.
    [102]刑建文.化学非平衡假设和火焰面模型在超燃冲压发动机数值模拟中的应用[D]. [博士学位论文].绵阳:中国空气动力研究与发展中心,2007.
    [103] Settles G S, WilliamsD R, Baca B K, et al. Reattachment of a compressible turbulent free shear layer[J]. AIAA Journal, 1982, 20(1)60-67.
    [104] Aso S, Okuyama S, Kawai K, et al. Experimental study on mixing phenomena in supersonic flows with slot injection[R]. AIAA1991-0016, 1991.
    [105] Rogers R C. A study of the mixing of hydrogen injected normal to a supersonic airstream[R]. NASA TND-6114, 1971.
    [106] Lehr H F. Experiments on shock-induced combustion[J]. Astronautica Acta, 1972, 17(4):589-597.
    [107] Soertrisno M, Imay S T. Simulation of the flow field of a ram accelerator[R]. AIAA1991-1915, 1991.
    [108] Yungster S, Eberhardt S, Bruckner A P. Numerical simulation of hypervelocity projectiles in detonable gases[J]. AIAA Journal, 1991, 29(2):187-199.
    [109] Moretti G. A new technique for the numerical analysis of nonequilibrium flows[J]. AIAA Journal, 1965, 3(2):223-229.
    [110] Wilson G J, MacCormack R W. Modeling supersonic combustion using a fully-implicit numerical method[R]. AIAA1990-2307, 1990.
    [111]刘晨,王江峰,伍贻兆.激波诱导燃烧模拟中轴对称边界数值异常研究[J].航空动力学报,已录用。
    [112] Odam J. Scramjet experiments using radical farming[D]. [PhD thesis]. Queensland: The University of Queensland, 2004.
    [113] Komuro T, Masuya K K, Chinzei G, et al. Experiment on a rectangular cross section sramjet combustor[R]. NAL TR-1608, 1990.
    [114] Rodriguez C G, White J A, Riggins D W. Three-dimensional effects in modeling of dual-mode scramjets[R]. AIAA2000-3704, 2000.
    [115] Mohieldin T O, Tiwari S N, Olynciw M J. Asymmetric flow-structures in dual mode scramjet combustion with significant upstream interaction[R]. AIAA2001-3296, 2001.
    [116] Chang C T, Marek C J, Wey C, et al. Comparison of reacting and non-reacting shear layers at a high subsonic Mach number[R]. AIAA1993-2381, 1993.
    [117] Schefer R W, Namazian M, Kelly J. Velocity measurements in a turbulent nonpremixed bluff-body stabilized flame[J]. Combustion Science and Technology, 1987, 56(4):101-138.
    [118] Smooke M D, Mitchell R E, Keyes D E. Numerical solution of two-dimensionalaxisymmetric laminar diffusion flames[J]. Combustion Science and Technology, 1989, 67:85-122.
    [119] Mitchell R E, Sarofim A F, Clomburg L A. Experimenal and numerical investigation of cofined laminar diffusion flames[J]. Combustion and Flame, 1980, 37:227-244.
    [120] Dukowicz J K. A particle fluid numerical model for liquid sprays[J]. Journal of Computational Physics, 1980, 35(2):229-253.
    [121] Crowe. The particle source in cell model for gas droplet flow[R]. ASME 75-WA/H7-25, 1975.
    [122]岳连捷.液体碳氢燃料超燃的数值模拟[R].中国科学院力学研究所博士后出站报告,2003.
    [123]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[D]. [博士学位论文].武汉:华中科技大学,2004.
    [124]金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1988.
    [125] Amsden A A, O’Rourke P J, Butle T D. KIVA-II: A computer program for chemically reactive flows with sprays[R]. Los Alamos National Laboratory LA-11560-MS, May 1989.
    [126]魏明锐.二甲醚发动机喷射雾化的理论和实验研究[D]. [博士学位论文].武汉:华中科技大学,2004.
    [127] O’Rourke P J, Amsden A A. The TAB method for numerical calculation of spray droplet breakup[R]. SAE 872089, 1987.
    [128] Liu A B, Mather D, Reitz R D. Modeling the effect of drop drag and breakup on fuel sprays[R]. SAE 930072, 1993.
    [129] Reitz R D. Modeling atomization processes in high-pressure vaporizing sprays[J]. Atomization and Spray Technology, 1987, 3:309-337.
    [130] Patterson M A. Modeling the effects of fuel injection characteristics on diesel combustion and emissions[D]. [PhD thesis]. Madison: University of Wisconsin-Madison, 1997.
    [131] Taylor G I. The Shape and Acceleration of a drop in a high speed air stream[C]. K. Batchelor, The Scientific Papers of Taylor G I. Cambridge: Cambridge University Press, 1963:457-464.
    [132] Chang S K. Hydrodynamics of liquid jet sprays[D]. [PhD thesis]. Madison: University of Wisconsin-Madison, 1991.
    [133] Patel P D. Hydrodynamic fragmentation of drops[D]. [PhD thesis]. Purdue University, 1978.
    [134] Brazier-Smith P, Jennings S, Latham J. The interaction of falling rain drops: coalescence[J]. Proceedings of the Royal Society of London A, 1972, 326:393-408.
    [135] Orme M E. Experiments on droplet collisions, bounce, coalescence and distribution[J]. Progress in Energy and Combustion Science, 1997, 23:65-79.
    [136] O'Rourke P J. Collective drop effects on vaporizing liquid sprays[D]. [PhD thesis]. Princeton: Princeton University, 1981.
    [137] Schmidt D P, Rutland C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164:62-80.
    [138] Bauman S D. A spray model for an adaptive mesh refinement code[D]. [PhD thesis]. Madison: University of Wisconsin-Madison, 2001.
    [139] Takashi A. Generalized scheme of the no-time-counter scheme for the DSMC in rarefied gas flow analysis[J]. Computer & Fluids, 1993, 22(2-3):253-257.
    [140] Nordin P A N. A complex chemistry modeling of diesel spray combustion[D]. [PhD thesis]. G?teborg: Chalmers University of Technology, 2001.
    [141]徐海涛.直喷式柴油机喷雾混合机理、建模及三维数值模拟[D]. [博士学位论文].武汉:华中理工大学,1998.
    [142] Lin K C, Kennedy P J, Jackson T A. Structures of water jets in a Mach 1.94 supersonic crossflow[R]. AIAA2004-0971.
    [143] Yu G, Li J G, Zhao J R, et al. An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization[J]. Proceedings of the Combustion Institute, 2005, 30:2859-2866.
    [144] Wang T S. Thermophysics characterization of kerosene combustion[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(2):140-147.
    [145] Qian J, Law C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331:58-80.
    [146] Estrade J P, Carentz H, Lavergne G. Experimental investigation of dynamic binary collision of ethanol droplets-a model for droplet coalescence and bouncing. International Journal of Heat and Fluid Flow[J]. 1999, 20:486-491.
    [147] Ashgriz N, Poo J Y. Coalescence and separation in binary collisions of liquid drips[J]. Journal of Fluid Mechanics, 1990, 221:183-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700