Cr_2O_3/Al_2O_3阻氢渗透涂层制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在储氢、太阳能、核聚变等涉氢领域中,不锈钢是一种常见的结构材料。在使用过程中,不锈钢常与高温、高压氢或其同位素直接接触,同时,氢及其同位素在不锈钢中以间隙原子形式扩散,具有较高的渗透率,会造成诸如氢脆、放射性污染等危害。为了降低氢及其同位素的渗透率,在结构材料表面制备金属陶瓷阻氢渗透涂层是一种行之有效的解决方案。本课题提出利用MOCVD (Metal-oganic Chemical Vapor Deposition,有机金属化学气相沉积)在316L奥氏体不锈钢表面制备Cr203/A1203陶瓷梯度阻氢渗透涂层,通过梯度涂层的制备,可以有效缓解涂层与基底间的热膨胀系数失配,提高涂层高温稳定性。为了更好地研究Cr203/A1203涂层,首先优化了MOCVD工艺,并对A1203和Cr203单层涂层进行了氢渗透方面的研究,重点探讨了诸如基底粗糙度、热膨胀系数失配、基底析出相、涂层微观结构以及涂层生长取向等因素对涂层阻氢渗透性能的影响规律。在此基础上,研究了Cr203/Al203涂层中出现的热膨胀系数梯度、界面效应、晶格诱导效应、晶型转变以及结晶质量等因素对复合涂层阻氢渗透性能的影响规律。获得如下研究成果:
     (1)利用MOCVD制备氧化铝涂层,详细研究了气体组分、沉积时间、沉积温度、反应源温度、热处理等因素对涂层微观结构及成分的影响规律。结果表明,使用H2载水沉积A1203涂层可以有效去除涂层中的C元素;涂层微观结构与沉积温度密切相关,由于反应源分子的吸附和脱附,在基底表面迁移和成核等步骤会受到基底温度的显著影响,因此随着沉积温度升高(400℃至600℃),涂层表面开始出现越来越明显的3D岛形貌,沉积温度过高时(高于600℃)涂层表面出现裂纹甚至疏松;在沉积时间1h-8h之内,涂层厚度与沉积时间之间满足线性关系d=-19.4+5.5t,厚度过高会导致涂层结构不稳定、致密度变差;反应源温度提高导致沉积速率加快,过快的沉积速率会导致涂层结构变得不稳定,使得涂层表面致密度下降;涂层物相与退火温度有关,非晶相氧化铝经过700℃退火后为非晶氧化铝,900℃退火后由非晶和γ-A12O3构成,1100℃退火后由γ-Al2O3.θ-A1203和α-Al203构成。900℃以上的高温退火导致氧化铝涂层发生开裂,这与退火过程中产生的热应力和氧化铝晶型转变造成的体积收缩有关。
     (2)在316L基底表面制备厚度为243nm的非晶相氧化铝涂层,涂层在600℃-700℃下的表观氢渗透率为P=8.68x10-7exp(.107606/RT)mol/m·s·Pa05,对316L不锈钢的渗透阻挡因子(Pemeation Reduction Factors,PRF)为42.0-75.8,在一定程度上提高了基底的阻氢渗透性能。
     (3)基底粗糙度以及热冲击影响涂层的阻氢渗透性能。基底粗糙度由8.71nm升高至65.3nm,涂层PRF由41-106降低至23-45。同时,较高的基底粗糙度导致涂层在受到700℃/30次热冲击之后性能出现更加明显的降低。
     (4)涂层经过900℃退火之后由非晶相转变为γ相氧化铝,表面出现大量呈网状分布的MnCr2O4尖晶石结构。MnCr2O4尖晶石造成的“短路效应”和热膨胀系数失配导致的涂层剥落造成涂层阻氢渗透性能大幅降低,涂层经过900℃退火后PRF由65.3-138.7降低至5.6-11.1。
     (5)利用MOCVD制备了沿(110)择优取向的六方结构结晶态Cr2O3涂层,涂层满足化学计量比,厚度均匀,无缺陷。厚度为366nm的Cr2O3涂层在550℃-700℃的表观氢渗透率为P=2.66x1O-6exp(-113522/RT) mol/m·s·pa0.5,对316L不锈钢的PRF为24-117。
     (6)氧化铬涂层厚度由222nm增加至904nm,涂层PRF由13.1-36.1增加至42.2-165.4,涂层的阻氢渗透性能随厚度增加而增大。但是,涂层厚度过高会导致其内应力过高,在高温测试时涂层会出现裂纹、剥落等失效行为,厚度为1820nm的涂层650℃-700℃的PRF仅为3.1-4.6。
     (7)择优取向生长的氧化铬涂层在600℃,650℃和700℃的PRF分别为38.2、21.1和13.1,而随机取向生长的氧化铬涂层仅为2.6、1.9和1.5,PRF低于前者约10倍。择优取向生长的涂层,由于晶粒排列规则有序,可以形成较为致密的结构;而随机取向生长的涂层,由于晶粒杂乱无序排列,易在涂层中产生大量通孔等缺陷,导致涂层阻氢渗透性能严重下降。
     (8)制备了Cr2O3/Al2O3复合涂层,550℃-700℃的PRF为229.8-543.5,远高于同等厚度的Al2O3(94.7-246.9)和Cr2O3(24.1-116.5)。原因有三点:①通过Cr2O3缓冲层的加入,形成热膨胀系数梯度结构,降低了涂层中的内应力,使得涂层的高温稳定性得到提升。②内应力降低使得涂层致密度得到提升,通过折光率计算得到的单层Al2O3和复合层中Al2O3的相对致密度分别为88.7%和94.3%。③复合涂层的制备引入了Cr2O3-Al2O3界面,复合陶瓷界面层降低了可供与H原子键合的O原子活性,降低了H在陶瓷界面的扩散迁移率。三因素综合作用,使得Cr2O3/Al2O3复合涂层的阻氢渗透性能得到显著提升。
     (9)Cr2O3缓冲层的加入形成了热膨胀系数梯度结构复合涂层,缓解了Al2O3在900℃退火时的体积收缩和高应力,避免了非晶相Al2O3转变为γ-Al2O3时的失效行为。此外,由于晶格诱导效应,在Cr2O3和Al2O3界面处出现了少量α-Al2O3.但是与非晶相Al2O3复合涂层相比,结晶态Al2O3复合涂层的阻氢渗透性能没有提高,反而出现小幅下降,非晶相Al2O3复合涂层与结晶态Al2O3复合涂层的PRF分别为108.1-389.1和130.9-208.3。研究表明,较差的结晶质量导致涂层中微裂纹数量增加是氢渗透降低的主要原因。
Stainless steel is a common structural material in fields of hydrogen storage, vacuum solar receivers and fusion reactors etc. Stainless steel has a high hydrogen permeation rate at elevated temperatures and pressure, because hydrogen permeates through steel in the form of interstitial atom which would resulted in hydrogen embrittlement and radiological hazards. It is widely recognized that a thin ceramic coating on stainless steel could efficiently suppress the hydrogen permeation. In this study, Cr2O3/Al2O3gradient coating was prepared by MOCVD (Metal-oganic Chemical Vapor Deposition) on the surface of stainless steel to reduce the mismatch of the coefficient of thermal expansion (CTE) and improve the high temperature stability. We first optimized the technology of MOCVD and studied the hydrogen permeation resistance performance of Al2O3and Cr2O3coating respectively. Then the influences of the substrate roughness, mismatch of the CTE, precipitated phase, microstructure and the growth orientation on the hydrogen permeation resistance performance of the coatings were discussed. After that, influences of the CTE gradient, interfacial effect, lattice induced effect, crystal transition and the crystallization quality on the hydrogen permeation resistance performance of the Cr2O3/Al2O3coatings were studied. The research findings were reported below.
     (1) The influences of the gas composition, deposition time, deposition temperature, precursor temperature and thermal treatment on the microstructure and composition of the Al2O3coating prepared by MOCVD were studied. The results suggest that, the carbon could be effectively eliminated by using water vapor as the reaction gas. The coating microstructure was related to deposition temperature, the migration and nucleation of the precursor molecule on the substrate surface were remarkable influenced by the deposition temperature due to the adsorption and desorption of the precursor molecule. Therefore, as the deposition temperature rise (400℃-600℃), the3D island morphology on the surface of the coating was increasingly obvious. When the deposition temperature was above600℃, crack was found on the coating. In the deposition time1h-8h, the relationship of the coating thickness and deposition time exhibited a linear relationship following the equation d=-19.4+5.5t. Excessive thickness could cause a structural instability and depravation of the coating compactness. The deposition rate was accelerated as the precursor temperature increase, excessive growth rate could also cause a structural instability and depravation of the coating compactness. The crystalline phase of the coating was related to the annealing temperature. The Al2O3was amorphous after700℃annealing, amorphous and γ-Al2O3after900℃annealing, y-A12O3、θ-Al2O3and α-Al2O3after1100℃annealing. Cracks were observed on the Al2O3coating after annealing above900℃, which was attributed to the thermal stress and volume shrinkage in the crystal transition process.
     (2) Amorphous Al2O3coating with243nm thickness was prepared on316L substrate, the apparent hydrogen permeability of the coating was P=8.68x10-7exp(-107606/RT) mol/m·s·Pa05at600℃-700℃and the PRF (Permeation Reduction Factors) of the coating was42.0-75.8. The alumina coating has offered a certain extent hydrogen permeation suppression performance.
     (3) The hydrogen permeation performance could be affected by the substrate roughness and thermal shock test. The PRF of the coating was reduced from41-106to23-45as the substrate roughness raised from8.71nm to65.3nm. Meanwhile, a higher substrate roughness could lead to a more reduction extent after700℃/30time thermal shock tests.
     (4) The Al2O3transformed from amorphous to y-phase. Besides, spinel MnCr2O4was observed and it formed a network on the coating surface.'Short-circuiting effect'caused by the spinel MnCr2O4and coating spalling due to the CTE mismatch resulted in a sharply reduction of the hydrogen permeation performance. The PRF of the900℃annealed coating was reduced from65.3-138.7to5.6-11.1.
     (5) The Cr2O3coating on316L was prepared via MOCVD route. The coating has a corundum structure with strong preferred orientation of (110). The coating was corresponds well with the stoichiometric Cr2O3and was dense, crack-free. The apparent hydrogen permeability of Cr2O3coating with a thickness of366nm was P=2.66x10-6exp(-113522/RT) mol/m·s·Pa05and the PRF of the coating was24-117.
     (6) The PRF of the Cr2O3coating raised from13.1-36.1to42.2-165.4as the thickness raised from222nm to904nm. The hydrogen permeation performance increased as the thickness of the coating increase. However, excessive thickness causes an excessive inner stress. This could result in failure behaviors such as crack or spalling of the coating. The PRF of a1820nm thick Cr2O3coating was only3.1-4.6at650℃-700℃.
     (7) The PRF of the Cr2O3coating with preferred orientation was38.2,21.1and13.1at600℃,650℃and700℃, respectively, while the random orientation coating was only2.6,1.9and1.5,10times lower than the former one. The crystalline grain of the preferred orientation coating was regularly arranged, so the structure of the coating was compact. Whereas the random orientation coating possesses a crystalline grain of messy arrangement, defects like through-hole were easily generated in the coating resulted in a serious decline of the hydrogen permeation performance.
     (8) Cr2O3/Al2O3composit coating was prepared on316L. The PRF of the coating was 229.8-543.5at550℃-700℃, much higher than the A12O3coating and Cr2O3coating with similar thickness which PRF were94.7-246.9and24.1-116.5respectively. There were three reasons for it. Firstly, preparation of the Cr2O3buffer layer has formed a CTE gradient structure, reduced the inner stress and improved the high temperature stability of the coating. Secondly, the compactness of the coating was improved as the inner stress reduced. The relative density of the Al2O3coating and Al2O3in Cr2O3/Al2O3composit coating was88.7%and94.3respectively. Thirdly, preparation of the Cr2O3/Al2O3composit coating generated a Cr2O3-Al2O3interface. The migration rate of the hydrogen atom was low at the interface due to the low activity of the oxygen atom. For the above reasons, the hydrogen permeation performance of the Cr2O3/Al2O3composit coating has been significantly improved.
     (9) Preparation of the Cr2O3buffer layer has formed a CTE gradient structure, reduced the inner stress and volume shrinkage of the Al2O3coating when annealed at900℃. Therefore, invalidation behavior of the Al2O3coating was avoided when it transformed from amorphous to γ-Al2O3. Moreover, due to the'lattice induced effect', a little α-Al2O3emerged in the interface of Cr2P3and Al2O3. However, compared with the amorphous Al2O3in Cr2O3/Al2O3coating, the hydrogen permeation performance of the crystalline Al2O3in Cr2O3/Al2O3coating has not been improved, but slightly decreased. The PRF of amorphous and crystalline Al2O3in Cr2O3/Al2O3coating was108.1-389.1and130.9-208.3respectively.The studies have shown that, the increase of the micro-crack numbers caused by the poor crystallization quality was the main reasons for the high permeability.
引文
[1]史永谦.核能发电的优点及世界核电发展动向[J].能源工程,2007,1(1):1-6.
    [2]吴守鑫,何建坤,韦志洪.2050年中国能源要求[J].原子能科学技术,1998,22(4):233-237.
    [3]苏永杰,姜维国,邵海江,等.核能利用与环境保护[J].能源环境保护,2006,20(4):16-19.
    [4]Haq R.U., Pandey A., Bohigas O. Fluctuation properties of nuclear energy levels:Do theory and experiment agree?[J]. Physical Review Letters,1982,48(16):1086.
    [5]Weinberg A.M. Social institutions and nuclear energy[J]. Science,1972,177(4043): 27-34.
    [6]Bowman C.D., Arthur E.D., Lisowski P.W., et al. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1992,320(1):336-367.
    [7]Yildiz B., Kazimi M.S.. Efficiency of hydrogen production systems using alternative nuclear energy technologies[J]. International Journal of Hydrogen Energy,2006, 31(1):77-92.
    [8]Souers P.C.. Hydrogen properties for fusion energy[M]. University of California Pr, 1986:101-105.
    [9]Moir R.W., Bieri R.L., Chen X.M., et al. HYLIFE-II:a molten-salt inertial fusion energy power plant design--final report[J]. Fusion Technology,1994,25(1):5-25.
    [10]Freidberg J.P.. Plasma physics and fusion energy[M]. Cambridge University Press, 2007:68-70.
    [11]Key M.H.. Fast track to fusion energy [J]. Nature,2001,412(6849):775-776.
    [12]Chen F.F., Lieberman M.A.. Introduction to plasma physics and controlled fusion/Francis F[M]. Plenum Press, New York,1984:289-293.
    [13]Hawryluk R.J, Adler H., Alling P., et al. Confinement and heating of a deuterium-tritium plasma[J]. Physical review letters,1994,72:3530-3533.
    [14]李强.HL-2A托卡马克装置的工程和实验概况[J].原子能科学技术,2009,43(z1):204-209.
    [15]Gasparotto M., Boccaccini L.V., Giancarli L., et al. Demo blanket technology R&D results in EU[J]. Fusion engineering and design,2002,61:263-271.
    [16]许增裕.聚变材料研究的现状和展望[J].原子能科学技术,2003,37(z1):105-109.
    [17]Quick N.R., Johnson H.H.. Permeation and Diffusion of Hydrogen and Deuterium in 310 Stainless Steel,472 K to 779 K[J]. Metallurgical Transactions A,1979,10(1): 67-70.
    [18]Gromov A.I., Kovneristyi Yu.K.. Permeability, diffusion, and solubility of hydrogen in Cr-Ni and Cr-Mn austenitic steels[J]. Metal Science and Heat Treatment,1980,22(5):321-324.
    [19]Shiraishi T., Nishikawa M., Yamaguchi T., et al. Permeation of multi-component hydrogen isotopes through austenitic stainless steels[J]. Journal of NuclearMaterials, 1999,273:60-65.
    [20]Yao Z.Y., Hao J.K., Zhou C.S., et al. The permeation of tritium through 316L stainless steel with multiple coatings[J]. Journal of Nuclear Materials,2000,283-287: 1287-1291.
    [21]姚振宇,郝嘉琨,周长善,等.复合膜对316L不锈钢氚渗透性能的影响[J].原子能科学技术,2000,34(1):65-70.
    [22]Chikada T., Suzuki A., Yao Z.Y., et al. Deuterium permeation behavior of erbium oxide coating on austenitic,ferritic, and ferritic/martensitic steels[J]. Fusion Engineering and Design,2009,84:590-592.
    \23^ Mine Y., Narazaki C., Murakami K.. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth[J]. International Journal of Hydrogen Energy,2009,34:1097-1107. [24] Tsuchiyama T., Takebe H., Tsuboi K., et al. Surface-layer microstructure control for metastable austenitic stainless steel to prevent hydrogen permeation[J]. Scripta Materialia,2010,62(10):731-734. [25] Barabash V., Peacock A., Fabritsiev S., et al. Materials challenges for ITER-Current status and future activities[J]. Journal of Nuclear Materials,2007,367:21-32. [26] Matsui H., Fukumotoa K., Smith D.L., et al. Status of vanadium alloys for fusion reactors[J]. Journal of Nuclear Materials,1996,233-237(1):92-99. [27] Shkolnik I.V., Kulsartov T.V., Tazhibaeva I.L., et al. Investigation of the surface element composition influence on hydrogen permeability through vanadium alloy VCr4Ti4[J]. Fusion technology,1998,34(3):868-871. [28]Romanenko O.G., Tazhibaeva I.L., Shestakov V.P., et al. Hydrogen gas driven permeation through vanadium alloy VCr6Ti5[J]. Journal of nuclear materials,1996, 233:376-380. [29] Mattas R.F., Loomis B.A., Smith D.L.. Vanadium alloys for fusion reactor applications[J]. JOM,1992,44:26-29. [30] Chen J.M., Chernov V.M., Kurtz R.J., et al. Overview of the vanadium alloy researches for fusion reactors[J]. Journal of Nuclear Materials,2011,417(1): 289-294.
    [31]Loomis B.A., Smith D.L.. Vanadium alloys for structural applications in fusion systems:a review of vanadium alloy mechanical and physical properties[J]. Journal of nuclear materials,1992,191:84-91.
    [32]Smith D.L., Chung H.M., Loomis B.A., et al. Reference vanadium alloy V4Cr4Ti for fusion application[J]. Journal of nuclear materials,1996,233:356-363.
    [33]Smith D.L., Chung H.M., Matsui H., et al. Progress in vanadium alloy development for fusion applications [J]. Fusion Engineering and design,1998,41(1):7-14.
    [34]Causey R.A., Wampler W.R.. The use of silicon carbide as a tritium permeation barrier[J]. Journal of Nuclear Materials,1995,220-222:823-826.
    [35]Chou I.A., Chan H.M., Harmer M.P.. Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of Silicon Carbide-Reinforced Alumina Nanocomposites[J]. Journal of the American Ceramic Society,1998,81(5): 1203-1208.
    [36]Wang P.X., Liu J., Wang Y., et al. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation[J]. Surface and Coatings Technology,2000,128-129:99-104.
    [37]Chikada T., Suzuki A., Terai T.. Deuterium permeation and thermal behaviors of amorphous silicon carbide coatings on steels[J]. Fusion Engineering and Design, 2011,86(9-11):2192-2195.
    [38]Han G., He J., Fukuyama S., et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta materialia,1998,46(13):4559-4570.
    [39]Wong C.P.C., Chernov V., Kimura A., et al. ITER-Test blanket module functional materials[J]. Journal of Nuclear Materials,2007,367:1287-1292.
    [40]ITER Joint Central Team. The impact of materials selection on the design of the International Thermonuclear Experimental Reactor (ITER)[J]. Journal of Nuclear Materials,1994,212-215(2):3-10.
    [41]冯开明.ITER实验包层计划综述[J].核聚变与等离子体物理,2006,26(5):161-169.
    [42]Hirose T., Shiba K., Sawai T., et al. Effects of heat treatment process for blanket fabrication on mechanical properties of F82H[J]. Journal of Nuclear Materials,2004, 329-333(Al):324-327.
    [43]Wakai E., Kikuchi K., Yamamoto S., et al. Swelling behavior of F82H steel irradiated by triple/dual ion beams[J]. Journal of Nuclear Materials,2003,318(15):267-273.
    [44]Serra E., Perujo A., Benamati G., et al. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman[J]. Journal of Nuclear Materials,1997,245(2-3):108-114.
    [45]Jitsukawa S., Tamura M., van der Schaaf B., et al. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H[J]. Journal of Nuclear Materials,2002,307-311(1):179-186.
    [46]Glasbrenner H., Wedemeyer O.. Comparison of hot dip aluminised F82H-mod. steel after different subsequent heat treatments[J]. Journal of NuclearMaterials,1998,257: 274-281.
    [47]Kondo M., Nagasaka T., Xu Q., et al. Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92Cr-2W) in molten salts Flibe and Flinak[J]. Fusion Engineering and Design,2009,84(7-11):1081-1085.
    [48]Nishimura A., Inoue N., Muroga T.. Fracture toughness of low activation ferritic steel (JLF-1) weld joint at room temperature[J]. Journal of Nuclear Materials,1998, 258-263(2):1242-1247.
    [49]Ono H., Kasada R., Kimura A.. Specimen size effects on fracture toughness of JLF-1 reduced-activation ferritic steel[J]. Journal of Nuclear Materials,2004,329-333(B1): 1117-1121.
    [50]Lucon E.. Mechanical tests on two batches of oxide dispersion strengthened RAFM steel (EUROFER97)[J]. Fusion Engineering and Design,2002,61-62:683-689.
    [51]Ruan Y., Spatig F., Victoria M.. Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests[J]. Journal of Nuclear Materials,2002,307-311(1):236-239.
    [52]Lucon E., Chaouadi R., Decreton M.. Mechanical properties of the European reference RAFM steel (EUROFER97) before and after irradiation at 300℃[J]. Journal of Nuclear Materials,2004,329-333(B1):1078-1082.
    [53]Rensman J., Hofmans H.E., Schuring E.W., et al. Characteristics of unirradiated and 60℃,2.7 dpa irradiated Eurofer97[J]. Journal of Nuclear Materials,2002, 307-311(1):250-255.
    [54]Klueh R.L., Alexander D.J., Rieth M.. The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel[J]. Journal of Nuclear Materials, 1999,273(2):146-154.
    [55]Huang Q., Li C., Li Y., et al. Progress in development of China Low Activation Martensitic steel for fusion application[J]. Journal of Nuclear Materials,2007, 367-370:142-146.
    [56]黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1):56-64.
    [57]Yu J., Huang Q., Wan F.. Research and development on the China low activation martensitic steel (CLAM)[J]. Journal of Nuclear Materials,2007,367:97-101.
    [58]Li Y, Huang Q., Wu Y, et al. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1[J]. Journal of Nuclear Materials,2007,367:117-121.
    [59]Huang Q., Li J., Chen Y.. Study of irradiation effects in China low activation martensitic steel CLAM[J]. Journal of nuclear materials,2004,329:268-272.
    [60]Zhao F., Qiao J., Huang Y., et al. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)[J]. Materials Characterization, 2008,59(3):344-347.
    [61]Li C., Huang Q., Wu Y, et al. Preliminary study on hot isostatic pressing diffusion welding for China low activation martensitic (CLAM) steel [J]. Chinese Journal of Nuclear Science and Engineering,2007,1:10.
    [62]王佩璇,宋家树.材料中的氦及氚渗透[M].国防工业出版社,2002:63-69.
    [63]Sabbioni A., Laidani N., Miotelloa A., et al. Deuterium permeation through TiN and TiN-TiC coating deposited on F82H steel[J]. Fusion Technology,1997,2(1-2): 1447-1450.
    [64]Perujo A. and Forcey K.S.. Tritium permeation barriers for fusion technology [J]. Fusion Engineering and Design,1995,28(2):252-257.
    [65]山常起,郝嘉琨,陈庆旺,等.抗等离子体辐照的防氚渗透材料的研究[J].核聚变与等离子体物理,1997,17(3):61-64.
    [66]Racault C., Serra E., Fenici P.. Formation of permeation barriers on ceramic SiC/SiC composites [J]. Journal of nuclear materials,1996,233:1262-1265.
    [67]Forcey K.S., Ross D.K., Wu C.H.. The formation of hydrogen permeation barriers on steels by aluminising[J]. Journal of nuclear materials,1991,182:36-51.
    [68]Kalin B.A., Yakushin V.L., Fomina E.P.. Tritium barrier development for austenitic stainless steel by its aluminizing in a lithium melt[J]. Fusion engineering and design, 1998,41(1):119-127.
    [69]Fazio C., Stein-Fechner K., Serra E., et al. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier [J]. Journal of nuclear materials,1999,273(3):233-238.
    [70]Terai T., Yoneoka T., Tanaka H., et al. Tritium permeation through austenitic stainless steel with chemically densified coating as a tritium permeation barrier[J]. Journal of nuclear materials,1994,212:976-980.
    [71]Kulsartov T.V., Hayashi K., Nakamichi M., et al. Investigation of hydrogen isotope permeation through F82H steel with and without a ceramic coating of Cr2O3-SiO2 including CrPO4 (out-of-pile tests)[J]. Fusion Engineering and Design,2006,81(1): 701-705.
    [72]黄秋荣,毛欧.不锈钢及其镀膜复合材料气相氢渗透研究[J].真空科学与技术,1994,14(6):418-425.
    [73]Levchuk D., Koch F., Maier H., et al. Deuterium permeation through Eurofer and a-alumina coated Eurofer[J]. Journal of nuclear materials,2004,328(2):103-106.
    [74]Serra E., Kelly P.J., Ross D.K., et al. Alumina sputtered on MANET as an effective deuterium permeation barrier[J]. Journal of nuclear materials,1998,257(2):194-198.
    [75]Serra E., Glasbrenner H., Perujo A.. Hot-dip aluminium deposit as a permeation barrier for MANET steel[J]. Fusion engineering and design,1998,41(1):149-155.
    [76]郝嘉琨,山常起.316L不锈钢表面A1203镀层中氚的扩散渗透行为[J].核聚变与等离子体物理,1996,16(2):62-64.
    [77]Sedano L.A., Conrad R., Futterer M.A., et al. LIBRETTO-3:Modelling tritium extraction/permeation and evaluation of permeation barriers under irradiation[J]. Journal of nuclear materials,1996,233:1411-1415.
    [78]沈嘉年,李凌峰,张玉娟,等.不锈钢表面包埋渗铝热氧化处理制备氧化铝膜及其对氢渗透的影响[J].原子能科学技术,2005,39(B07):73-78.
    [79]Muhlratzer A., Esser H.G., Zelinger H.. Development of protective coatings to reduce hydrogen and tritium permeation[J]. Nuclear Technology,1984,66(2): 602-608.
    [80]Matsuyama M., Takeuchi T.. Trap and Release of Tritium Formed in Silica and Alumina[J]. Journal of Nuclear Science and Technology,1981,18(1):15-20.
    [81]刘兴钊,黄秋荣,杜家驹,等.HR-1型奥氏体不锈钢镀Cr203及TiN膜复合材料的气相氢渗透研究[J].核科学与工程,1997,17(3):281-284.
    [82]刘庆生,秦丽娟,常英,等.CO2反应法制备氢化锆表面氢渗透阻挡层的研究[J].表面技术,2005,34(2):32-34.
    [83]蔡勇,邵旭敏,沈嘉平,等RGB-LED背光系统的散热研究[J].照明工程学报,2011,(4):79-84.
    [84]刘红兵.等离子复合渗技术制备氧化物阻氚涂层及其性能研究[D].南京:南京航空航天大学,2010.
    [85]吴朝军,曾克里,王全胜.热喷涂技术与应用[M].机械工业出版社,2006:39.
    [86]邓新建,张东辉.真空等离子喷涂及其在表面技术中的应用[J].表面技术,1996,25(2):33.
    [87]Shaw L.L., Goberman D., Ren R., et al. The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions[J]. Surface and coatings technology,2000,130(1):1-8.
    [88]Fauchais P.. Understanding plasma spraying[J]. Journal of Physics D:Applied Physics,2004,37(9):86.
    [89]De Groot K., Geesink R., Klein C., et al. Plasma sprayed coatings of hydroxylapatite[J]. Journal of biomedical materials research,1987,21(12): 1375-1381.
    [90]Manasevit H.M.. Single-Crystal Gallium Arsenide on Insulating Substrates[J]. Applied Physics Letters,1968,12(4):156-159.
    [91]Aiello A., Ciampichetti A., Benamati G.. An overview on tritium permeation barrier development for WCLL blanket concept[J]. Journal of nuclear materials,2004,329: 1398-1402.
    [92]丁庆如.碳钢的三种渗铝工艺及其优缺点[J].石油机械,1999,27(7):51-54.
    [93]Chikada T., Suzuki A., Kobayashi T., et al. Microstructure change and deuterium permeation behavior of erbium oxide coating[J]. Journal of Nuclear Materials,2011, 417(1):1241-1244.
    [94]Aiello A., Ricapito I., Benamati G., et al. Qualification of tritium permeation barriers in liquid Pb-17Li[J]. Fusion engineering and design,2003,69(1):245-252.
    [95]宋文海,杜家驹.陶瓷-金属复合体系氢同位素渗透模型[J].核聚变与等离子体物理,1998,18(3):9-17.
    [96]Smith D.L., Park J.H., Lyublinski I., et al. Progress in coating development for fusion systems[J]. Fusion engineering and design,2002,61:629-641.
    [97]昝育德,王俊,韩秀峰,等y-Al2O3/Si(100)薄膜高真空MOCVD异质外延生长[J].半导体学报,1998,19(12):886-889.
    [98]李新梅,李银锁,憨勇.钛表面阴极微弧电沉积制备氧化铝涂层[J].无机材料学报,2005,20(6):1493-1 499.
    [99]雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积A1203薄膜研究[J].无机材料学报,2002,17(4):887-890.
    [100]丁雷,王乐,滕蛟,等.A1203层对超薄各向异性磁电阻薄膜性能影响的研究[J].稀有金属,2009,33(1):26-29.
    [101]黄美东,张琳琳,王丽格,等.基底温度对反应磁控溅射氮化铝薄膜的影响[J].稀有金属,2011,35(5):715-718.
    [102]汤梅,李弢,古宏伟,等.不锈钢基体上制备A1203涂层的研究[J].稀有金属,2008,32(5):593-597.
    [103]Pflitsch C., Muhsin A., Bergmann U., et al. Growth of thin aluminium oxide films on stainless steel by MOCVD at ambient pressure and by using a hot-wall CVD-setup[J]. Surface and Coatings Technology,2006,201(1):73-81.
    [104]邓伯权,黄秋荣,彭利林,等.氢在不锈钢及氧化铬膜复合体中的稳态渗透研究[J].核聚变与等离子体物理,1994,4(4):39.
    [105]华中一,罗维昂.表面分析[M].复旦大学出版社,1989:435-439.
    [106]Bose O., Kemnitz E., Lippitz A., et al. C ls and Au 4f7/2 referenced XPS binding energy data obtained with different aluminium oxides,-hydroxides and -fluorides[J]. Fresenius'journal of analytical chemistry,1997,358(1-2):175-179.
    [107]Kloprogge J.T., Duong L.V., Wood B.J., et al. XPS study of the major minerals in bauxite:gibbsite, bayerite and (pseudo-) boehmite[J]. Journal of colloid and interface Science,2006,296(2):572-576.
    [108]傅广生,于威,王淑芳,等.辉光放电等离子体辅助XeC1准分子激光溅射沉积碳氮薄膜[J].2001,50(11):2263-2267.
    [109]Kim J.S., Marzouk H.A., Reucroft P.J., et al. Effect of water vapor on the growth of aluminum oxide films by low pressure chemical vapor deposition[J]. Thin Solid Films,1993,230(2):156-159.
    [110]Haanappel V.A.C., Rem J.B., Van Corbach H.D., et al. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in the presence of small amounts of water[J]. Surface and Coatings Technology,1995, 72(1):1-12.
    [111]于永琴.MOCVD生长AlGalnP和InGaAs/GaAsP应变补偿多量子阱及其器件研究[D].山东:山东大学,2003.
    [112]孟广耀.化学气相沉积与无机新材料[M].北京:科学出版社,1984:44-50.
    [113]Hwang G.S., Giapis K.P.. Charging damage during residual metal overetching[J]. Applied physics letters,1999,74(7):932-934.
    [114]Danzinger M., Haubner R., Lux B.. Preparation of Al2O3 coatings by pyrolysis of Al-acetylacetonate in Ar-atmosphere[J]. International Journal of Refractory Metals and Hard Materials,1996,14(1):59-67.
    [115]Singh M.P., Shivashankar S.A.. Low-pressure MOCVD of Al2O3 films using aluminium acetylacetonate as precursor:nucleation and growth[J]. Surface and Coatings Technology,2002,161(2):135-143.
    [116]姚然.MOCVD异质外延硅基ZnO和SiC薄膜及其特性研究[D].北京:中国科学技术大学,2007.
    [117]陈新亮.MOCVD技术生长的ZnO薄膜及其在太阳电池上的应用研究[D].天津:南开大学,2007.
    [118]罗小秋,温吉利,刘炯,等.常压下MOCVD法制备A1203薄膜工艺的研究[J].2007,20(3):47-50.
    [119]NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology[EB/OL], http://srdata.nist.gov/xps,2000-06-06/2012-09-15.
    [120]Yan Y.L., Helfand M.A., Clayton C.R.. Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS[J]. Applied surface science,1989,37(4):395-405.
    [121]Turner N.H., Single A.M.. Determination of peak positions and areas from wide-scan XPS spectra[J]. Surface and Interface Analysis,1990,15(3):215-222.
    [122]Wagner C.D., Passoja D.E., Hillery H.F., et al. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds[J]. Journal of Vacuum Science and Technology,1982,21(4):933-944.
    [123]Taylor J.A.. An XPS study of the oxidation of AlAs thin films grown by MBE[J]. Journal of Vacuum Science and Technology,1982,20(3):751-755.
    [124]Haanappel V.A.C., vd Vendel D., Van Corbach H.D., et al. The effect of thermal annealing on the adherence of Al2O3-films deposited by low-pressure, metal-organic, chemical-vapor deposition on AISI 304[J]. Oxidation of metals,1995,43(5-6): 459-478.
    [125]Gleizes A.N., Vahlas C, Sovar M.M., et al. CVD-Fabricated Aluminum Oxide Coatings from Aluminum tri-iso-propoxide:Correlation Between Processing Conditions and Composition[J]. Chemical Vapor Deposition,2007,13(1):23-29.
    [126]Gitzen W.H.. Alumina as a Ceramic Material[R]. Columbus:American Ceramic Society,1970.
    [127]Levin I., Brandon D.. Metastable alumina polymorphs:crystal structures and transition sequences[J]. Journal of the American Ceramic Society,1998,81(8): 1995-2012.
    [128]Belonoshko A.B., Ahuja R., Johansson B.. Mechanism for the K-Al2O3 to the α-Al2O3 transition and the stability of K-Al2O3 under volume expansion[J]. Physical Review B, 2000,61(5):3131.
    [129]Pflitsch C., Viefhaus D., Bergmann U., et al. Organometallic vapour deposition of crystalline aluminium oxide films on stainless steel substrates[J]. Thin solid films, 2007,515(7):3653-3660.
    [130]Ito A., Tu R., Goto T.. Amorphous-like nanocrystalline γ-Al2O3 films prepared by MOCVD[J]. Surface and Coatings Technology,2010,204(14):2170-2174.
    [131]Pradhan S.K., Reucroft P.J., Ko Y.. Crystallinity of A12O3 films deposited by metalorganic chemical vapor deposition[J]. Surface and Coatings Technology,2004, 176(3):382-384.
    [132]Levchuk D., Koch F., Maier H., et al. Gas-driven deuterium permeation through Al2O3 coated samples[J]. Physica Scripta,2004,2004(T108):119.
    [133]Katsuta H., Furukawa K.. Hydrogen and deuterium transport through type 304 stainless steel at elevated temperatures [J]. Journal of Nuclear Science and Technology,1981,18(2):143-151.
    [134]Morreale B.D., Ciocco M.V., Enick R.M., et al. The permeability of hydrogen in bulk palladium at elevated temperatures and pressures[J]. Journal of Membrane Science, 2003,212(1):87-97.
    [135]Peachey N.M., Snow R.C., Dye R.C.. Composite PdTa metal membranes for hydrogen separation[J]. Journal of Membrane Science,1996,111(1):123-133.
    [136]Forcey K.S., Ross D.K., Simpson J.C.B., et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications[J]. Journal of Nuclear Materials,1988,160(2):117-124.
    [137]Le Claire A.D.. Permeation of hydrogen isotopes in structural alloys[J]. Journal of Nuclear Materials,1984,123(1):1558-1559.
    [138]Sieverts A.. Palladium und Wasserstoff II[J]. Z. Phys. Chem,1914,88:451-478.
    [139]Chikada T., Suzuki A., Adelhelm C, et al. Surface behaviour in deuterium permeation through erbium oxide coatings [J]. Nuclear Fusion,2011,51(6):063023.
    [140]馬来,木下.真空蒸着膜④内部応力[J].応用物理,1966,35(4):283.
    [141]Engberg C.J., Zehms E.H.. Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000℃[J]. Journal of the American Ceramic Society,1959,42(6): 300-305.
    [142]Miao X.. Observation of microcracks formed in HA-316L composites[J]. Materials Letters,2003,57(12):1848-1853.
    [143]Dushman S., Lafferty J.M., Pasternak R.A.. Scientific foundations of vacuum technique[J]. Physics Today,1962,15:53.
    [144]Serra E., Calza B.A., Cosoli G., et al. Hydrogen permeation measurements on alumina[J]. Journal of the American Ceramic Society,2005,88(1):15-18.
    [145]Hatano Y., Zhang K., Hashizume K.. Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier[J]. Physica Scripta,2011,2011(T145):014044.
    [146]麻莳立男.薄膜制备技术基础[M].北京:化学工业出版社,2009:203-279.
    [147]McGuiness P.J., Cekada M., Nemanic V., et al. Hydrogen permeation through TiA1N-coated Eurofer'97 steel[J]. Surface and Coatings Technology,2011,205(8): 2709-2713.
    [148]Zhang G., Li J., Chen C., et al. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process [J]. Journal of Nuclear Materials,2011,417(1):1245-1248.
    [149]Yao Z., Suzuki A., Levchuk D., et al. Hydrogen permeation through steel coated with erbium oxide by sol-gel method[J]. Journal of Nuclear Materials,2009,386: 700-702.
    [150]Marchi C.S., Somerday B.P., Robinson S.L.. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures[J]. International Journal of Hydrogen Energy,2007,32(1):100-116.
    [151]Smith D.L., Konys J., Muroga T., et al. Development of coatings for fusion power applications[J]. Journal of nuclear materials,2002,307:1314-1322.
    [152]Pisarev A., Shestakov V., Kulsartov S., et al. Surface effects in diffusion measurements:deuterium permeation through Martensitic steel [J]. Physica Scripta, 2001,2001(T94):121.
    [153]Choo W.Y., Lee J.Y.. Effect of cold working on the hydrogen trapping phenomena in pure iron[J]. Metallurgical Transactions A,1983,14(7):1299-1305.
    [154]Pressouyre G.M., Bernstein I.M.. A quantitative analysis of hydrogen trapping[J]. Metallurgical transactions A,1978,9(11):1571-1580.
    [155]Quick N.R., Johnson H.H.. Hydrogen and deuterium in iron,49-506℃[J]. Acta Metallurgica 1978,26(6):903-907.
    [156]Darken L.S., Smith R.P.. Behavior of hydrogen in steel during and after immersion in acid[J]. Corrosion,1949,5:1-16.
    [157]Belonoshko A.B., Rosengren A., Dong Q., et al. First-principles study of hydrogen diffusion in a-Al2O3 and liquid alumina[J]. Physical Review B,2004,69(2):024302.
    [158]Lee R.W., Frank R.C., Swets D.E.. Diffusion of hydrogen and deuterium in fused quartz[J]. The Journal of Chemical Physics,1962,36:1062.
    [159]Zhang G., Wang X., Yang F., et al. Energetics and diffusion of hydrogen in hydrogen permeation barrier of a-Al2O3/FeAl with two different interfaces[J]. International journal of hydrogen energy,2013,38:7550-7560.
    [160]李国栋,郑湘林,熊翔,等.氢气浓度对常压化学气相沉积ZrC涂层的影响[J].中国有色金属学报,2010,20(9):1795-1801.
    [161]Rausch N., Burte E.P.. Thin high-dielectric TiO2 films prepared by low pressure MOCVD[J]. Microelectronic Engineering,1992,19(1):725-728.
    [162]Chen Z.F., Wu W.P., Wang L.B., et al. Microstructure and analytic equation of conical aggregate in iridium coating prepared by double glow plasma[J]. Surface Engineering,2011,27(4):242-245.
    [163]Ousi-Benomar W., Xue S.S., Lessard R.A., et al. Structural and optical characterization of BaTiO3 thin films prepared by metal-organic deposition from barium 2-ethylhexanoate and titanium dimethoxy dineodecanoate[J]. Journal of materials research,1994,9(04):970-979.
    [164]Phillips C.E., Heywood R.B.. The size effect in fatigue of plain and notched steel specimens loaded under reversed direct stress[J]. Proceedings of the Institution of Mechanical Engineers,1951,165(1):113-124.
    [165]Bittner H.F., Bell J.T., Redman J.D., et al. Analysis of oxide coatings on steam-oxidized incoloy 800[J]. Metallurgical Transactions A,1980,11(5):783-790.
    [166]Fedorov V.V.. Hydrogen permeability of reactor steels[J]. Materials Science,2011, 47(2):201-210.
    [167]Jian P., Jian L., Bing H., et al. Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere[J]. Journal of Power Sources,2006, 158(1):354-360.
    [168]Wilson P.R., Chen Z.. The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip[J]. Corrosion science,2007,49(3):1305-1320.
    [169]Giraldez Pizarro L.. Effect of Relative Humidity in High Temperature Oxidation of Ceria Nanoparticles Coating on 316L Austenitic Stainless Steel[D]. USA:University of Wisconsin Milwaukee,2013.
    [170]Peng X., Yan J., Zhou Y., et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air[J]. Acta Materialia,2005,53(19): 5079-5088.
    [171]王迎军,赵子衷,宁成云,等.生物活性梯度涂层的显微结构与附着强度[J].材料研究学报,2009,13(1):103-106.
    [172]常程康,丁传贤.氧化锆基羟基磷灰石梯度涂层材料的研究[J].无机材料学报,1994,13(1):71-77.
    [173]卢国辉,曾鹏,黄惠平.爆炸喷涂Al2O3陶瓷梯度涂层的组织与性能[J].材料工程,2000,4:30-33.
    [174]周张健,葛昌纯,李江涛.熔渗-焊接法制备W/Cu功能梯度材料的研究[J].金属学报,2000,36(6):655-658.
    [175]张景德,尹衍升,张虹,等.Fe3Al-Al2O3陶瓷梯度涂层性能研究[J].材料工程,2003.4:6-9.
    [176]Ishikawa Y., Yoshimura T., Arai M.. Effect of surface oxides on the permeation of deuterium through stainless steel[J]. Vacuum,1996,47(6):701-704.
    [177]Yu Q., Hao L., Li S., et al. Microstructure and deuterium permeation resistance of the oxide scale prepared by initial oxidation method on vacuum solar receiver[J]. Solid State Ionics,2013,231:5-10.
    [178]Nakamichi M., Kawamura H., Teratani T.. Characterization of chemical densified coating as tritium permeation barrier[J]. Journal of Nuclear Science and technology, 2001,38(11):1007-1013.
    [179]Michler T., Lee Y., Gangloff R.P., et al. Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel[J]. International Journal of Hydrogen Energy,2009,34(7):3201-3209.
    [180]Zuttel A.. Materials for hydrogen storage[J]. Materials today,2003,6(9):24-33.
    [181]Genma R., Uchida H.H., Okada N., et al. Hydrogen reactivity of Li-containing hydrogen storage materials[J]. Journal of alloys and compounds,2003,356:358-362.
    [182]Carta G., Natali M., Rossetto G., et al. A comparative study of Cr2O3 thin films obtained by MOCVD using three different precursors[J]. Chemical Vapor Deposition, 2005,11(8-9):375-380.
    [183]Boorse R.S., Burlitch J.M.. MOCVD Route to Stable, Oxygen-Rich, Chromium Oxide Films and Their Conversion to Epitaxial Cr2O3[J], Chemistry of materials, 1994,6(9):1509-1515.
    [184]Cheng C.S., Gomi H., Sakata H.. Electrical and optical properties of Cr2O3 films prepared by chemical vapour deposition[J]. Physica Status Solidi (a),1996,155(2): 417-425.
    [185]Xomeritakis G., Gouzinis A., Nair S., et al. Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth[J]. Chemical Engineering Science,1999,54(15):3521-3531.
    [186]Wagner C.D.. Handbook of x-ray photoelectron spectroscopy:a reference book of standard data for use in x-ray photoelectron spectroscopy[M]. Physical Electronics Division. Perkin-Elmer Corp.,1979:558-569.
    [187]Halawy S.A., Fouad N.E., Mohamed M.A., et al. Kinetic and thermodynamic parameters of the decomposition of chromium chromate in different gas atmospheres[J]. Journal of thermal analysis and calorimetry,2001,65(1):167-176.
    [188]Hopfner C., Ellmer K., Ennaoui A., et al. Stoichiometry-, phase-and orientation-controlled growth of polycrystalline pyrite (FeS2) thin films by MOCVD[J]. Journal of crystal growth,1995,151(3):325-334.
    [189]Fujii E., Tomozawa A., Torii H., et al. Preferred orientations and microstructure of
    MgO films prepared by plasma-enhanced metalorganic chemical vapor deposition[J]. Thin Solid Films,1999,352(1):85-90.
    [190]Pflitsch C, Nebatti A., Brors G., et al. MOCVD-growth of thin zinc oxide films from zinc acetylacetonate and air[J]. Journal of Crystal Growth,2012,348(1):5-9.
    [191]Pedersen K., Bottiger J., Sridharan M., et al. Texture and microstructure of Cr2O3 and (Cr, A1)2O3 thin films deposited by reactive inductively coupled plasma magnetron sputtering[J]. Thin Solid Films,2010,518(15):4294-4298.
    [192]Ji A.L., Wang W., Song G.H., et al. Microstructures and mechanical properties of chromium oxide films by arc ion plating[J]. Materials Letters,2004,58(14): 1993-1998.
    [193]纪爱玲,汪伟,宋贵宏,等.电弧离子镀氧化铬涂层的组织结构及硬度[J].金属学报,2003,39(9):979-983.
    [1941 Bi Z.H., Zhu J.H., Du S.W., et al. Effect of Alloy Composition on the Oxide Scale Formation and Electrical Conductivity Behavior of Co-plated Ferritic Alloys[J]. Surface and Coatings Technology,2013,228(15):124-131.
    [195]Andersson J.M., Czigany Z., Jin P., et al. Microstructure of alpha-alumina thin films deposited at low temperatures on chromia template layers [J]. Journal of Vacuum Science & Technology A,2004,22(1):117-121.
    [196]Andersson J.M., Wallin E., Helmersson, et al. Phase control of Al2O3 thin films grown at low temperatures[J]. Thin Solid Films,2006,513(1):57-59.
    [197]Huber K.P., Herzberg G.. Constants of diatomic molecules[M]. New York:Van Nostrand Reinhold,1979:367-375.
    [198]Clemmer D.E., Weber M.E., Armentrout P.B.. Reactions of A1+(1S) with NO2, N2O, and CO2:Thermochemistry of AlO and AlO+[J]. Journal of Physical and Chemical, 1992,96:10888-10893.
    [199]Naulin C., Costes M., Dorthe G.. C2 Radicals in a supersonic molecular beam. Radiative lifetime of the d 3Πg state measured by laser-induced fluorescence [J]. Chemical physics letters,1988,143(5):496-500.
    [200]Hedgecock I.M., Naulin C., Costes M. Crossed molecular beam study of the Cr (a7S3)+O2(X3∑g-)→CrO(X5ΠΩ)+O(3PJ) reaction[J]. Chemical physics,1996,207(2): 379-387.
    [201]Stecura S.. Two-layer thermal barrier coatings I:Effects of composition and temperature on oxidation behavior and failure[J]. Thin Solid Films,1989,182(1): 121-140.
    [202]陈昌麟.材料学科中的固体力学[M].北京航空航天大学出版社,1994:55-60.
    [203]Hsueh C.H.. Thermal stresses in elastic multilayer systems[J]. Thin solid films,2002, 418(2):182-188.
    [204]Nakajima K.. Calculation of stresses in InxGa1-xAs/InP strained multilayer heterostructures[J]. Journal of applied physics,1992,72(11):5213-5219.
    [205]王生钊,张丹.薄膜应力测量方法进展[J].南阳理工学院学报,2012,4(4):67-72.
    [206]王迎军,马利泰.等离子喷涂生物活性梯度涂层的残余应力与结合强度[J].无机材料学报,1998,13(4):529-533.
    [207]张显程,徐滨士,王海斗,等.功能梯度涂层热残余应力[J].机械工程学报,2006,42(1):18-22.
    [208]Yang B., Chen X.M.. Alumina ceramics toughened by a piezoelectric secondary phase[J]. Journal of the European Ceramic Society,2000,20(11):1687-1690.
    [209]Pang X., Gao K., Yang H., et al. Interfacial microstructure of chromium oxide coatings[J]. Advanced Engineering Materials,2007,9(7):594-599.
    [210]Ayrault D., Bonaventure A., Asserin O., et al. Numerical and Experimental Evaluation of Residual Stresses in Dissimilar Weld Joints[A]. ASME 2011 Pressure Vessels and Piping Conference[C]. American Society of Mechanical Engineers,2011: 1515.1522.
    [211]Song W.H.,Du J.J..A model for hydrogen isotope permeation through metals with ceramic film barriers[J].Nuclear Fusion and Plasma Physics,1998,18(3):9-17.
    [212]朱明伟,黄辉,宫骏,等.稳定剂对溶胶凝胶制备的氧化锌薄膜致密度的影响[J]. 中国表面工程,2008,20(6):1-4.
    [213]Este G.,Westwood W.D-Reactive deposition of low loss A1203 optical waveguides by modified dc planar magnetron sputtering[J].Journal of Vacuum Science & Technology A,1984,2(3):1238-1247.
    [214]Multone X.,Hoffmann P..High vacuum chemical vapor deposition(HV-CVD)of alumina thin films[J].2009:101-106.
    [215]魏晋云,刘滔.低真空射频反应溅射A1203薄膜[J].光电子技术,1998,18(2): 166-168.
    [216]Pollnau M.,Bradley J.D.,Yang J.,et a1.Rare-earth-ion doped waveguide amplifiers and lasers in alumina and polymers[A].Frontiers in Optics[C].Optical Society of America.2010:5-6.
    [217]雷明凯,袁力江.等离子体源增强磁控溅射沉积A1203薄膜研究[J].无机材料学报,2002,17(4):887-890.
    [218]Otani Y,Kuwagaito T.,Mizutani Y.Surface profile detection with nanostructures using a Mueller matrix polarimeter[A]. Optical Engineering Applications[C]. International Society for Optics and Photonics,2008:70630-70638.
    [219]罗超.等离子喷涂制备功能梯度涂层的研究[D].沈阳:沈阳工业大学,2009.
    [220]王玉林,郑雪帆,陈效建.低应力PECVD氮化硅薄膜工艺探讨[J].固体电子学研究与进展,1999,19(4):448-452.
    [221]张文,曹兴进.薄膜应力测定研究现状[J].现代制造工程,2005(4):127-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700