镧对UV-B辐射胁迫下大豆幼苗内源激素与类黄酮代谢影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧层衰减诱发UV-B辐射抵达地球表面增加,对陆生植物的影响引起世人广泛关注。探讨稀土对UV-B辐射胁迫伤害植物的影响与机理,是稀土环境植物学研究的拓展和延伸,其结果可为减轻UV-B辐射伤害植物的防护对策提供参考。本文采用水培方法,以油料作物大豆(Glycine max)为实验材料,以生理学、生物化学及物理化学方法为研究手段;以La(III)对UV-B辐射胁迫下大豆幼苗生长、内源激素与芳香族氨基酸含量、类黄酮代谢关键酶的影响与机理为内容;从环境生态角度,生理生化及酶分子水平,揭示La(III)对UV-B辐射胁迫下植物内源激素和类黄酮代谢的影响与机理;为科学评价稀土对UV-B辐射胁迫伤害植物的影响;丰富UV-B辐射生态学理论,提供参考,主要研究
     结果如下:
     (1) UV-B辐射胁迫下,大豆幼苗根系活力下降,抑制了营养元素吸收,破坏叶片形态,降低叶片光合作用,最终导致整个植物干物质累积量降低,此效应随UV-B辐射胁迫剂量增加而加剧。La(III)(20 mg/L)能提高大豆根系活力、叶绿素含量、矿质元素含量,进而促进光合作用,提高叶片叶面积及大豆幼苗鲜(干)重,促进大豆幼苗的生长。La(III)(20 mg/L)的介入使逆境中的大豆幼苗也能尽量维持对光能的吸收和利用,从而满足植物自身恢复所需的能量和物质,缓解UV-B辐射对叶片损伤。高剂量La(III)(60 mg/L)降低大豆根系活力、叶绿素含量、矿质元素含量,进而抑制光合作用,降低叶片叶面积及大豆幼苗鲜(干)重,抑制大豆幼苗的生长。La(III)(60 mg/L)+UV-B辐射胁迫处理对大豆幼苗起到了协同抑制作用。La(III)(60 mg/L)的介入加剧了植物自身恢复所需能量和物质的减少,使逆境中的大豆幼苗表现出受到复合胁迫伤害的作用。适量La(III)可缓解UV-B辐射胁迫对大豆生长的抑制作用,而高剂量La(III)可加剧UV-B辐射胁迫对大豆生长的抑制作用。
     (2) UV-B辐射胁迫下,大豆幼苗IAA、GA和CTK含量下降,ABA、ETH含量和IAAO活性增加,器官生长发育减缓、形态结构改变、生物量下降,此效应随UV-B辐射胁迫剂量增加而加剧。La(III)(20 mg/L)能提高UV-B辐射胁迫下大豆幼苗IAA、GA和CTK含量、降低ABA含量、IAAO活性和乙烯含量,减轻UV-B辐射胁迫对植物生长的抑制,缓解植株生长与类黄酮合成的矛盾,减缓UV-B辐射对植株伤害。La(III)(20 mg/L)对植物的影响,可能与La(III)(20 mg/L)增加类黄酮含量,减轻UV-B辐射胁迫伤害,稳定细胞膜结构,维持植物水势,降低植物对胁迫的应激反应强度有关。La(III)(60 mg/L)能降低UV-B辐射胁迫下大豆幼苗IAA、GA和CTK含量、促进ABA含量、IAAO活性升高,加剧UV-B辐射胁迫对植物生长的抑制,进而加剧UV-B辐射胁迫对植株伤害。复合胁迫使细胞增殖与生长、器官生长发育减缓、形态结构改变,生物量下降。大豆幼苗内源乙烯释放量在La(III)(20 mg/L)和UV-B辐射胁迫共同作用下降低,源于1-氨基环丙烷-1-羧酸(ACC)含量和氨基环丙烷羧酸合酶活性的减少。La(III)(20 mg/L)通过加速大豆幼苗中自由基的清除,提高细胞膜保护系统活性和保持细胞膜透性来抑制乙烯的生成。La(III)(60 mg/L)表现出相反的结果。
     (3) UV-B辐射胁迫下,大豆幼苗Trp含量下降,Phe、Tyr含量,DAHPS活性升高。其结果导致植物自身IAA含量下降,抑制植物生长。Phe、Tyr含量及DAHPS活性升高,使植物向着类黄酮代谢途径的方向生长,进而竞争性抑制了有机化合物向着植物生长的方向运行;与此同时,植物次生代谢作用被增强(类黄酮含量提高),植物把更多的资源分配于防御机制,从而导致生长减缓,生物量下降。La(III)(20 mg/L)通过提高Trp含量,有利于植物IAA含量的提高,同时通过提高大豆幼苗DAHPS活性及Phe、Tyr含量来促进类黄酮合成。类黄酮含量增加减少了进入植株体内的UV-B辐射净通量,减轻了UV-B辐射胁迫对大豆幼苗的伤害。La(III)(60 mg/L)通过抑制大豆幼苗Trp、Phe、Tyr含量及DAHPS活性进而抑制类黄酮合成。类黄酮含量减少从而加剧了进入植株体内的UV-B辐射净通量,增加了UV-B辐射胁迫对大豆幼苗的伤害。La(III)(60 mg/L)+UV-B辐射胁迫处理对大豆幼苗表现出复合胁迫伤害作用。
     (4) UV-B辐射胁迫下,PAL活性、C4H活性、4CL活性、CHS活性及类黄酮含量升高,但在恢复期急剧下降。La(III)(20 mg/L)的介入有效提高PAL活性、C4H活性、4CL活性、CHS活性及类黄酮含量为植物抵御UV-B辐射胁迫提供屏障。La(III)(60 mg/L)的介入抑制了PAL活性、C4H活性、4CL活性、CHS活性及类黄酮含量,不利于类黄酮的合成,对植物抵御UV-B辐射胁迫起负作用。La(III)(20 mg/L)和UV-B辐射均能促进类黄酮代谢关键酶活性及类黄酮含量升高,但其机理不一致,前者是主动的促进,而后者是植物面对胁迫时的一种应激反应,是被动的提高。La(III)(20 mg/L)对类黄酮代谢关键酶活性及类黄酮含量调控效果与胁迫强度有关,即对低剂量UV-B辐射胁迫的缓解效果优于高剂量。
     (5)通过分子动力学模拟计算,发现CHS蛋白表面存在大量负电荷集中区。根据化学原则,La(III)易与CHS蛋白相互作用,导致CHS蛋白结构发生改变。UV-B辐射导致Tyr和Trp残基的荧光同时被淬灭,CHS肽链上的酰氨基吸收峰及芳香氨基酸(Tyr和Trp)残基带的紫外吸收峰值下降,从而改变了分子的空间结构,降低CHS活性。低剂量La(III)与CHS肽链中的酰氨基团上的O或N原子及CHS肽链上的芳香氨基酸(Tyr和Trp)残基发生作用后,能导致CHS发生微结构的变化,稳定CHS酶结构,从而对活性中心产生微扰作用,进而影响CHS活性,促进类黄酮的合成,降低UV-B辐射诱导自由基的产生。高剂量La(III)直接伤害CHS酶结构,影响活性中心,导致CHS酶活性降低。
Atmospheric pollutants such as chlorofluorocarbons have caused severe depletion of stratospheric ozone, particularly in the Antarctic, where the Springtime“Ozone Hole”has greatly increased the amounts of damaging ultraviolet-B radiation reaching the Earth’s surface. This study used the method of water culture, and oil-bearing crops of soybean (Glycine max), as the test material, to explore the effect of La(III) and UV-B radiation on endogenous hormones and flavonoids metabolism and mechanism within the seedlings. Research methods used involve physiology, biochemistry, molecular spectroscopy technology and simulation technology. This study investigated the effects of La(III) on the content of endogenous hormones and aromatic amino acids, mechanism of key enzymes of flavonoid metabolism in soybean seedlings under UV-B radiation stress. It revealed the effects and mechanism of La(III) on endogenous hormones and metabolism of flavonoids in plants under UV-B radiation stress from an environmental and ecological perspective, physiological, biochemical and enzyme conformation levels.
     The main research results of this dissertation were shown as follows:
     (1) UV-B radiation stress effected grouth in soybean seedlings.The lack of green areas on leaf surfaces and rate of leaf folding were increased, leaf area, chlorophyll content, mineral elements, root activity, root length, fresh(dry) weight were decreased in soybean seedlings under UV-B radiation stress. This decline is related with UV-B radiation dosage. La(III)(20 mg/L) could increase soybean root activity, chlorophyll content, mineral elements, in order to promote photosynthesis; increased leaf area and fresh (dry) weight of leaves of soybean seedling promotes growth. seedlings was able to maintain absorption and utilization of light energy to meet the energy demand and materials needed for plant self-repair, to alleviate UV-B radiation on leaf damage after La(III)(20 mg/L) intervention. High doses of La (III)(60 mg/L)could reduce soybean root activity, chlorophyll content, mineral elements, thereby inhibiting photosynthesis; and lower leaf area and fresh (dry) weight of leaves in soybean seedling, thus inhibiting the growth of soybean seedlings. La(III)(20 mg/L) could alleviate the UV-B radiation stress on plant growth inhibition, La(III)(20 mg/L) could increase inhibition of UV-B radiation stress on plant growth.
     (2) UV-B radiation stress causes a decrease in IAA, GA and CTK content and increased ABA content, IAAO activity and ETH content, plant growth, organ growth and development of mitigation, change in morphology, decrease in biomass, and thus harming the plants. La(III)(20 mg/L) in plants exposed to UV-B radiation stress can increase IAA, GA and CTK content and reduce ABA content, IAAO activity and ETH content, reduced inhibition caused by UV-B radiation on plant growth, and to plant growth and ease the contradiction of flavonoid synthesis, reduce UV-B radiation on plant injury. The effect of La(III)(20 mg/L) on plants may be related to La(III)(20 mg/L) causing an increase in flavonoids, reducing damage caused by UV-B radiation, stability of membrane structure, maintenance of plant water potential, and a lower intensity of stress response in plants. La(III)(60 mg/L) in soybean seedlings exposed to UV-B radiation stress, showed an decrease in IAA, GA and CTK content, increase in ABA content and IAAO activity, thus increasing plant injury caused by UV-B radiation. Combined stress leads to decreased cell proliferation and growth, organ growth and development of mitigation, morphology change, and a decrease in biomass. Endogenous ETH productionwas reduced in soybean seedlings under the action of La(III)(20 mg/L)+UV-B radiation stress, showed a decrease in 1-amino-cyclopropane-1-carboxylic acid (ACC) content and that of amino-cyclopropane carboxyl acid synthase activity, which reduces the amount of ethylene converted from 1-aminocyclopropane-1-carboxylic acid (ACC). La(III)(20 mg/L) accelerates the removal of free radicals to increase cell membrane protection system activity and maintain cell membrane permeability to inhibit ethylene production. However, La(III)(60 mg/L) shows opposite results.
     (3) Trp content in soybean seedlings decreased, while Phe, Tyr, and DAHPS activity increased in soybean seadlinngs under UV-B stress. As a result, IAA content in plants was decreased and plant growth was inhibited. La(III)(20 mg/L) increases Trp, Phe, Tyr content and DAHPS activity, is beneficial for increasing plant IAA content, while by increasing the activity of soybean seedlings DAHPS and Phe, Tyr content to promote the synthesis of flavonoids. Increase of flavonoids would reduce the amount of UV-B radiation absorbed by the plant, thus reducing damage caused by UV-B radiation on soybean seedling. La(III)(60 mg/L) of soybean seedlings inhibited flavonoids synthesis by inhibiting Trp, Phe, Tyr content and DAHPS activity. This decrease in flavonoids thus increased the amount of UV-B radiation absorbed in the plant and damage on soybean seedling was increased.
     (4) The PAL activity, C4H activity, 4CL activity, CHS activity and flavonoid content were increased in soybean seedlings under UV-B radiation stress, but declined sharply in the recovery period. La(III)(20 mg/L) effectively enhanced PAL activity, C4H activity, 4CL activity, CHS activity and flavonoid content to provide barriers against UV-B radiation stress in plants. La(III)(60 mg/L) inhibited PAL activity, C4H activity, 4CL activity, CHS activity and flavonoid content, and played a negative role under UV-B radiation stress of the plants. La(III)(20 mg/L) and UV-B radiation could promote the activities of key enzymes of flavonoid metabolism, and increased flavonoid content, but the mechanism was inconsistent, the former is a stress response by the plants, which has a passive increase.
     (5) The method of physical chemistry, molecular dynamics simulation was used in the in vitro experiments. It showed that changes in molecular structure of CHS under UV-B radiation stress is UV-B radiation reduced the molecular basis of CHS activity; it was found that a large number of negative charge clusters on CHS protein surface, indicating that La(III) may be a relationship directly with the CHS proteins. La(III) acted with acylamino group O, or N atom on CHS peptide chain directly, which lead to change CHS micro structure, increase/decrease CHS activity, promote/inhibit the synthesis of flavonoids.
引文
[1] Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis [J]. Plant Biol, 2005, 7: 581-591
    [2] Paoletti E. UV-B and Mediterranean forest species: Direct effects and ecological consequences [J]. Environ Pollut, 2005, 137: 372-379
    [3] Day T A, Neale P J. Effects of UV-B radiation on terrestrialand aquatic primary producers [J]. Annu Rev Ecol Syst, 2002, 33: 371-396
    [4] Caldwell M M, Flint S D, Ryel R J. Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies [J]. AFM, 2005, 120: 177 -189
    [5] Bassman J H. Ecosystem consequences of enhanced solar ultraviolet radiation: Secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities [J]. Photochem Photobiol, 2004, 79: 382-398
    [6]彭祺,周青.植物次生代谢相应UV-B辐射胁迫的生态学意义[J].中国生态农业学报,2009, 17: 610-615
    [7] Max L B, Darren M J S, Colleen M P. Ecosystem response to solar ultraviolet-B radiation: Influence of trophic-level interactions [J]. Science 1994, 265:97-100
    [8] Wang X, Man W, Feng Z, et al. Ground-level ozone in China: Distribution and effects on crop yields [J]. Environ Pollut, 2006, 147: 394-400
    [9] Jansen M A K. Ultraviolet-B radiation effects on plants: Induction of morphogenic responses [J]. Physiol Plant, 2002, 116: 423-429
    [10] Gehrke C, Johanson U, Callaghan T V. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in vaccinium leaves from the Subarctic [J]. Oikos, 1995, 72: 213-222
    [11] Searles P S, Caldwell M M, Winter K. The response of five tropical species to solar ultraviolet-B radiation [J]. Am J Bot, 1995, 82: 445-453
    [12] Sullivan J H, Teramura A H, Ziska L H. Variation in UV-B sensitivity in plants from a 3000 m elevational gradient in Hawai, American[J]. J Bot, 1992, 7: 737-743
    [13] Duguay K, Klironomos J. Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi [J]. Appl Soil Ecol, 2000, 14:157 -164
    [14] Rademacher W, Bazzi C, Costa G, et al. Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight [J]. Z Naturforsch, 2003, 58: 765-770
    [15] Robberecht R, Caldwell M M. Protective mechanisms and acclimation to solarultraviolet -B radiation in Oenothera stricta plant [J]. Cell & Environ, 1978, 32: 277 - 287
    [16] Gayler S, Leser C, Priesack E, et al. Modelling the effect of environmental factors on the“trade-off”between growth and defensive compounds in young apple trees [J]. Trees, 2004, 18: 363-371
    [17] Lindroth R L, Hofmann R W. Population differences in Trifolium repens L. response to ultraviolet-B radiation: Foliar chemistry and consequences for two lepidopteran herbivores [J]. Oecologia, 2000, 122: 20-28
    [18] Lois R, Buchanan B B. Severe sensitivity to UV radiation in an arabidopsis mutant deficient in a flavonoid accumulation [J]. Planta, 1994, 194: 504-509
    [19] Fischbach R J, Kossmann B. Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce [Picea abies (L.) Karst] [J]. Plant Cell Environ, 1999, 22:27-37
    [20] Tegelberg R, Julkunen-Tiitto R, Aphalo P J. Red:far-red light ratio and UV-B radiation: Their effects on leaf phenolics and growth of silver birch seedlings [J]. Plant Cell Environ, 2004, 27:1005-1013
    [21] Ju Z, Bramlage W J. Phenolics and lipid-soluble antioxidants in fruit cuticle of apples and their antioxidant activities in model systems [J]. Postharvest Biol Technol, 1999, 16: 107 -118
    [22] Shiozaki N, Hattori I, Gojo R, et al. Activation of growth and nodulation in a symbiotic system between pea plants and legumious bacteria by near-UV radiation[J]. J Photochem Photobiol B, 1999, 50: 33-37
    [23] Reuber S, Bornman J F, Weissenb?ck G. Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale): Light response of their metabolism and the possible role in UV-B protection [J]. Physiol Plant, 1996, 97: 160-168
    [24] Murphy A, Peer W A, Taiz L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids [J]. Planta, 2000, 211: 315-324
    [25] Rozema J, VanDeStaaij J, Bj?rn L O, et al. UV-B as an environmental factor in plant life: Stress and regulation [J]. Tree, 1997, 12: 22-28
    [26] Leonard E, Yan Y J, Mattheos A G. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli [J]. Metab Eng, 2006, 8:172-181
    [27] Jiang P H, Shi M, Qian Z K, et al. Effect of F209S mutation of escherichia coli AroG on resistance to phenylalanine feedback inhibition[J]. Acta Biochim Biophys Sin, 2000, 32: 441-444
    [28] Olsson L C, Veit M, Weissenb?ck G. Differential flavonoid response to enhanced UV-B radiation in Brassica napus [J]. Phytochem, 1998, 49:1021-1028
    [29] Yao Y A, Zu Y Q, Li Y. Effects of quercetin and enhanced UV-B radiation on the soybean (Glycine max) leaves [J]. Acta Physiol Plant, 2006, 28: 49-57
    [30] Wilson D J, Patton S, Florova G, et al. The shikimic acid pathway and polyketide biosynthesis [J]. J Ind Microbiol Biot, 1998, 20: 299-303
    [31]梁滨.镧对UV-B辐射胁迫下大豆幼苗类黄酮的影响[D]:[硕士学位论文].无锡:江南大学环境与土木工程学院,2006
    [32] Kostina E, Anu W, Riitta J T. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field [J]. Trees, 2001, 15: 483-491
    [33] Jansen M, Gaba V, Greenberg B M. Higher plants and UV-B radiation: balancing damage, repair and acclimation [J]. Trends in Plant Science, 1998, 3:131-135
    [34] Mayr U, Treutter D. Flavanols as defence barriers in apple leaves against the apple scab fungus (Venturia inaequalis) [J]. Acta Hort, 1998, 456: 79-82
    [35] Mayr U, Michalek S, Treutter D, et al. Phenolic compounds of apple and their relationship to scab resistance[J]. J Phytopathol, 1997, 145: 69-75
    [36] Tattini M, Guidi L. On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation [J]. New Phytol, 2005, 167: 457-470
    [37] McCloud E S, Berenbaum M R. Stratospheric ozone depletion and plantinsect interactions: Effects of UV-B radiation on foliage quality of Citrus jambhiri for Trichoplusia ni [J]. J Chem Ecol, 1994, 20: 525-539
    [38]薛慧君,岳明. UV-B辐射增强对陆地植物次生代谢的影响[J].西北植物学报, 2004, 24: 1131-1137
    [39] Caldwell M M, BallaréC L, Bornman J F. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors [J]. Photochem Photobiol Sci, 2003, 2:29-38
    [40] Bazzi C, Messina C. Control of pathogen incidence in pome fruits and other horticultural crop plants with prohexadione-Ca [J]. Eur J Hort Sci, 2003, 68: 108-114
    [41] Schnitzler J P, Jungblut T P, Feicht C. UV-B induction of flavonoid biosynthesis in Scots pine (Pinus sylvestris L.) seedlings [J]. Trees, 1997, 11: 162-168
    [42] Yue M, Li Y. Effects of enhanced ultraviolet-B radiation on plant nutrients, decomposition and leaf quality of spring wheat under field conditions [J]. Environ Exp Bot, 1998, 40: 187-196
    [43]安黎哲,冯虎元,王勋陵.增强的紫外线(UV-B)辐射对几种作物和品种生长的影响[J].生态学报, 2001, 21: 249-253
    [44]陈修德. UV-B辐射强度和不同薄膜对设施桃树花果发育特性的影响[D]:[硕士学位论文].山东:山东农业大学, 2006
    [45] Murali N S, Teramura A H. Effect of UV-B irradiance on soybean.ⅥInfluence of phosphorus nutrition on growth and flavonoid content [J]. Plant Physiol, 1985, 63: 413 -417
    [46]王传海,郑有飞,万长建,等.紫外辐射增加对作物种子发芽及幼苗生长的影响[J].中国农业气象, 2000, 21: 33-35
    [47] Ros J, Tevni M. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyls segments of sunflower [J]. Plant Physiol, 1995, 146: 295-302
    [48]杨晖,焦光联,冯虎元,等.紫外-B辐射对番茄幼苗生长、POD和IAA氧化酶活性的影响[J].西北植物学报, 2004, 24: 826-830
    [49] Huang S B, Dai Q J, Peng S B. Influence of supplemental ultraviolet-B on indoleacetic acid and calmodalin in the leaves of rice [J]. Plant Growth Regulation, 1997, 21: 59-64
    [50]黄少白,戴秋杰,刘晓忠,等.紫外光-B辐射增强对水稻叶片内IAA和ABA含量的影响[J].植物学通报, 1998, 15: 87-90
    [51]李卓杰编著.植物激素及其应用[M].广州:中山大学出版社, 1993.18
    [52]陈少裕.植物谷胱甘肽的生理作用及其意义[J].植物生理学通讯, 1993, 29: 210 -214
    [53]吴业飞. UV-B辐射增强对葡萄幼苗内源激素的影响[D]:[硕士学位论文].陕西:西北农林科技大学,2008
    [54]李海涛,董铭,廖迎春,等.模拟UV-B增强胁迫对大田水稻生长及内源激素含量的影响[J].中国农学通报, 2007, 23: 392-397
    [55]董铭,李海涛,廖迎春等.大田条件下模拟UV-B辐射滤减对水稻生长及内源激素含量的影响[J].中国生态农业学报, 2006, 14: 122-125
    [56]杨景宏,陈拓,王勋陵.增强紫外线-B辐射对小麦叶片内源ABA和游离脯氨酸的影响[J].生态学报, 2000, 20: 39-42
    [57] Kramer G F, Krizek D T, Mirecki R M. Influence of photo synthetically active radiation and spectral quality on UV-B induced polyamine accumulation in soybean [J]. Phytochemi, 1992, 31: 1119-1125
    [58] Slocum R D, Kaur-Sawhney R, Galston A W. The physiology and biochemistry of polyamines in plant [J]. Arch Biochem Biophys, 1984, 235: 283-303
    [59] Santos I, Almeida J M, Salema R. Plants of Zea mays L. developed under enhanced UV-B radiation. I: some ultrastructural and biochemical aspects [J]. Plant Physiol, 1993, 141: 450-456
    [60] Barsig M, Malz R. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation [J]. Environ Exp Bot, 2000, 43:121-130
    [61]梁婵娟.稀土铈对UV-B辐射胁迫下植物光合作用光反应的影响研究[D]:[博士学位论文].无锡:江南大学环境与土木工程学院,2006
    [62]郜红建,常江,张自立,等.稀土在植物抗逆中的生理作用[J].中国稀土学报, 2003, 22: 487- 490
    [63] Gao H, Chang J, Zhang Z. L, et al. Physiological effects of rare earth elements on stress resistance in plant [J]. J rare earth, 2003, 22:487- 490
    [64]梁滨,季平扬,唐宋辉,等.镧对UV- B胁迫下大豆幼苗类黄酮含量影响:Ⅰ对类黄酮总量影响[J].农业环境科学学报, 2006, 25: 584- 586
    [65] Liang C J, Huang X H, Zhou Q. Effect of rare earths on plant under supplementary ultraviolet-B radiation: Effect of cerium on growth and photosynthesis in rape seedlings exposed to supplementary ultraviolet-B radiation [J]. J rare earth, 2005, 23: 569-575
    [66] Liang B, Huang X, Zhang G S, et al. Effect of lanthanum on plants under supplementary ultraviolet-B radiation [J]. J rare earth, 2006, 24: 613-616
    [67] Cao R, Huang X H, Zhou Q, et al. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation[J]. J Environ Sci, 2007, 19: 1361- 1366
    [68]宁加贲.稀土对作物增效因子的研究[J].稀土, 1994, 15: 63
    [69]郭伯生.稀土农用大有作为[J].科学中国人, 1995, 4: 35-39
    [70]熊炳昆.稀土生物功能化合物的应用研究[J].中国稀土学报, 1994, 12 : 358-365
    [71]熊炳昆,陈蓬.稀土农林研究与应用[M].北京:冶金工业出版社, 2000. 342-345
    [72]陈远孟,白厚义,李杨瑞.镧在主要农作物上的应用及其生理生化作用[J].广西农业科学, 2003, 6: 15-17
    [73] Diatlof E, Asher C J, Smith F W. Effect of rare earth elements on the growth and mineral nutrition of plants[C]. Rare Earth in agriculture Seminar, 1995: 11-23
    [74]邓国富.富镧稀土对水稻的增产效果及应用前景[J].广西农业科学, 2006, 5: 553- 555
    [75] Ding S M, Liang T, Zhang Z L, et a1. Effect of rare earths on fractionation and transformation of soil available nitrogen [J]. Journal of Rare Earths, 2003, 21: 583-586
    [76] Wang L J, Liang T, Ding S M, et a1. Biogeochemial cycle and residue of extraneous rare earth elements in an agricultural ecosystem [J]. J rare earth, 2004, 22: 701-704
    [77] Qi T P, Liu C. Studies on the absorption, transfer and distribution of rare earth elements in plants [J]. J chin rare earth soc, 1984, 2: 95-98
    [78] Xu X K, Zhu W Z, Wang Z J. Distributions of rare earths and heavy metals in field-grown maize after application of rare earth containing microfertilizer [J]. Sci Total Environt, 2002, 293:97-100
    [79] Wu Z, Tang X, Tsui C. Studies on the effect of rare earth elements on the increasement of yield in agriculture [J]. Sci Total Environ, 1983, 1:70-75
    [80] Xiong B. Application of the rare earths in Chinese agriculture and their perspective development [J]. J Rare Earth, 1995, 21:5-9
    [81] Zhang Y B, Xiong Y, Hu Q et al. Effect of ten-year RE application on content and distribution of rare earth elements in spring wheat [J]. J Rare Earth, 1993, 14:40-44
    [82] Peng A, Wang Z. Research progress in environmental chemistry of rare earth elements [J]. Chin J Environ Chem, 1995, 3: 22-32
    [83] Sun J, Li F. The initial studies on lanthanum distribution in soybean seedling after treating root with rare earth elements [J]. J Rare Earth, 1990, 11:32-34
    [84] Cossa D. Worldwide survey and relationship between seawater and mussel content [J] Marine Environ Res. 1978, 26:265-283
    [85] Scribner B F, Proceedings sixth summer conference on spectroscopy and its application [M]. New York: Technology Press, 1939.10-12
    [86]彭安,朱建国.稀土元素的环境化学及生态效应[M].北京:中国环境科学出版社, 2003
    [87] Thomas W A. Decomposition of loblolly pine needles with and without additions of dogwood leaves [J]. Ecology, 1968, 49: 568-571
    [88] WangY Q, Sun J X, Chen H M, et al. Determination of the contents and distribution characteristics of REE in natural plants by NAA [J]. J Radioanal Nucl Chem, 1997, 219: 99-103
    [89] Ichihashi H, Morita H, Tatsukawa R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils [J]. Environ Pollut, 1992, 76: 157-162
    [90]郭伯生.农业中的稀土[M].北京:中国农业科技出版社.1988
    [91]王凤珍,齐大荃,邵宏翔,等. ICP-AES法测定信阳毛尖茶叶、茶水及茶酒中的稀土元素[J].中国稀土学报, 1988, 6: 81-85
    [92]马玉增,劳秀荣,刘春生,等.浸种花生稀土元素分配规律的研究[J].稀土, 1996, 17: 63-65
    [93]祁俊生.稀土在玉米及水稻中吸收分布与积累规律研究[J].西南农业大学学报, 2000, 22: 545-548
    [94]李德成,王东红.稀土元素在土壤环境和植物中的分布[J].农业环境保护, 2001, 20: 193-195
    [95] Nagahashi G, Thomson W W. The casparian strip as a barrier to the movement of lanthanum in corn roots [J]. Science, 1974, 183:670-671
    [96] Guo X S, Zhou Q, Lu T H. Distribution and Translocation of 141Ce(III) in Horseradish [J]. Ann Bot, 2007, 100: 1459-1465
    [97]董倍,吴兆明,汤锡珂.氯化镧对缺钙黄瓜根系生理的影响[J].中国稀土学报, 1993, 11: 65-68
    [98]刘敏,周世恭.稀土元素镧在植物细胞生理研究中应用的进展[J].植物学通报, 1995, 12: 32-37
    [99]戴浩. Ce(III)对UV-B辐射胁迫下大豆幼苗光呼吸的影响[D]:[硕士学位论文].无锡:江南大学环境与土木工程学院, 2006
    [100]倪嘉缵.稀土生物无机化学[M].北京:科学出版社, 1995. 51-58
    [101] Huang X H, Zhou Q, Zhang G S. Advances on rare earth application in pollution ecology [J]. J Rare Earth, 2005, 23: 5-11
    [102]谢祖彬,朱建国,褚海燕.分根法研究镧对水稻生长及其生理参数的影响[J].中国稀土学报, 2003, 21: 71-76
    [103]吴兆明,汤锡坷,贾志旺,等.稀土元素对农业增产作用的研究:稀土元素对作物某些生理过程的影响[J].中国稀土学报, 1984, 2: 75-80
    [104]彭祺,周青.镧对UV-B胁迫下大豆幼苗类黄酮含量与抗氧化能力影响[J].环境科学, 2008, 29: 2024-2027
    [105]李咏裕,潘腾飞,邱栋梁.稀土元素对植物生理学作用机制的研究进展[J].中国农学通报, 2005, 21: 217-220
    [106] Leonard R T, Nagahashi G, Thomson W W. Effect of lanthanum on ion absorption in corn roots [J].Plant Physiol, 1975, 55: 542-546
    [107] Pantoja O, Gelli A, Blumwald E. Voltage-dependent calcium channels in plant vacuoles [J].Science, 1992, 225: 1567-1570
    [108]廖铁军,黄云,苏彬彦,等.稀土对作物的生物效应研究[J].稀土, 1994, 15: 26– 29
    [109] Sun H, Wang X R, Wang Q, et a1. The efects of chemical species on bioaccumulation of rare earth elements in rice grown in nutrient solution [J]. Toxicol Environ Chem, 1999, 69:75-77
    [110] Zhang Z Y, Li F L, Wang Y Q, et a1. Fractionation of rare earth elements in plant soil system [J]. J Rare Earth, 2002, 20: 94-98
    [111] Yakamaru K, Gami S. Effect of nutrient uptake by plant roots on the fate of REEs in soil [J]. J Alloys Compd, 2006, 408: 413-416
    [112]王为民,镇召国,王志进.稀土在油菜上的施用效果与方法[J].江苏农业科学, 1993, 1:13-14
    [113]杨元根.稀土元素的农业地球化学研究[J].地质地球化学, 1996, 15:39-44
    [114] Wyttenbach A, Furrer V, Schleppi P, et a1. Rare earth elements in soil and in soil-grown plants [J]. P1ant Soil, 1998, 199: 267-269
    [115] Byrne R H, Liu X, Sc f J. The influence of phosphate coprecipitation of rare earth distributions in natural waters [J]. Geochim Cosmochim AC, 1996, 60: 33-41
    [116] Byrne R H, Li B Q. Comparative complexation behavior of the rare earth [J]. Geochim Cosmochim AC, 1995, 59: 4575-4581
    [117] Henderson P. Rare Earth Element Geochemistry [M]. Amsterdam: Elsevier Press. 1984.
    [118] Ding S, Liang T. Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation [J]. J Exp Bot 2005, 56: 2765-2775
    [119]王金胜,郭春绒,程玉香.铈离子清除超氧物自由基的机理[J].中国稀土学报, 1997, 15: 151-154
    [120] Huang Y S, Luo G H, Guan Q W. Peroxidation damage of oxygen free radicals induced by cadmium to plant [J]. Acta Bot Sin, 1997, 39:522-526
    [121] Chang J. Effects of La on cell penetrating and nutrient absorbing in root of rice and wheat [J]. Chin Plant Physiol Commun, 1991, 27:17-21
    [122] Chen Z X, Wang X R, Tian L Q, et al. Simulation study in the effects of acid precipitation on the environmental chemical behavior and plant utility of REEs [J]. Acta Sci Circums, 1995,15: 32-38
    [123] Diatoloff E, Smith F W, Asher C J. Rare earth elements and plant growth: Response of corn and munghean to low concentrations of cerium in dilute, continuously flowing nutrient solutions [J]. J Plant Nutr, 1995, 18: 1999-2003
    [124] Diatoloff E, Smith F W, Asher C J. Rare earth elements and plant growth: Effects oflanthamml and cerium on root elongation of corn and mungbean [J]. J Plant Nutr, 1995a, 18:1963-1976
    [125]里克特(Richter, G).植物代谢:主要代谢的生理和生物化学[M].北京:科学出版社, 1985. 99-100
    [126]朱永懿,陈景坚,刘学莲.富镧稀土对春小麦吸收氮素的影响[J].核农学通报, 1992, 13: 176-178
    [127] Ding S M, Liang T, Wan g L J. Translocation and fractionation of rare earth elements in soil Triticum aestivum system [J]. J Agro-Environ Sci, 2003, 22: 519-520
    [128] Zhou Q, Huang X H, Ye L X, el a1. Effect of cerium on seed germination under acid rain stress [J]. J Rare Earth, 2000, 18: 298-231
    [129]李咏裕,潘腾飞,邱栋梁.稀土元素对植物生理学作用机制的研究进展[J].中国农学通报, 2005, 21: 217-220
    [130]严重玲,洪业汤,林鹏,等.酸雨胁迫下稀土元素对小麦生理生化响应的作用[J].自然科学进展, 2000, 10: 81-83
    [131] Qi P, Qing Z. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress. Biol Trace Elem Res, 2009, 127:69-80
    [132]郭绍芬,郭晓珊,陆天虹,等.稀土离子与辣根过氧化物酶相互作用机理[C].中国化学会第二十五届学术年会论文集.长春:吉林大学出版社2006, 7: 11-14
    [133]沈博礼,戴新宾.稀土对小麦叶绿体光化学反应的效应[J].稀土, 1994, 122:71 -72
    [134] Wang L J, Liang T, Ding S M, et al. Biogeochemical cycle and residue of extraneous rare earth elements in agricultural ecosystem [J]. J Rare Earth, 2004:96-98
    [135]张美萍,江玉珍,于光辉,等.稀土元素对增强UV-B辐照下小麦抗氧化酶的影响[J].核农学报, 2009, 23: 316-319
    [136] Marschner H. Mineral nutrition of higher plants [M]. Cambridge acadimic press, 1995
    [137]潘登魁,郭春绒. Lacl3对油松种子萌发过程酷酶同工酶谱的影响[J].稀土, 1996, 17: 70-72
    [138] Wyttenbach A, Patrik S, Jurg B, et a1. The accumulation of the rare earath elements and of scandium in successive needle age classes of Norway Spruce [J].Biol Trace Elem Res, 1994, 41: 29-31
    [139] Ran Y, Liu Z. Adsorptkm and desorption of rare earth elements on soils arid synthetic oxides [J]. Acta Sci Circumstance, 1993, 15: 57-65
    [140] Ran Y, Liu Z. Adsorption of REEs on soil and oxkles as well as the mechanism [J].Bull Sci, 1992, 18: 1705-1709
    [141] Tang X K, Tong Z. Effects of rare earth elements on plant root growth and activity [J]. Chin Rare Metal, 1988, 5: 22-24
    [142] Smith F W, Asher C J. Rare earth elements and plant growth: I. Effects of lanthanum and cerium on root elongation of corn and mungbean [J]. J Plant Nutr, 1995, 18: 1963-1976
    [143]程驿.具有潜在药用意义的稀土离子生物效应的研究[C]: [北京医科大学博士后研究工作报告].北京:北京医科大学, 2000
    [144]章力干,竺律民,张继棒,等.同位素示踪法测定稀土在土壤中的吸附、解吸和扩散[J].中国稀土学报, 1996, 14: 249-253
    [1] Dai Q, Peng S B, Coronel V P. In-transpacific responses of 188 rice cultivars to enhanced UV-B radiation [J]. Environ Exp Bot, 1994, 34: 433 - 442
    [2] Johanson U, Gehrke C, Bjorn L O, et al. The effects of enhanced UV-B radiation on as subarctic health system [J]. Am biology, 1995, 24:106-111
    [3] Mepsted R, Paul N D, Stephen J, et al. Effects of enhanced UV-B radiation on pea (Pisum sativum L) grown under field condition in the UK [J]. Global Change Biol, 1996, 2:325-334
    [4]高召华,李元,谭玲玲.植物UV-B辐射响应的种内差异及机理探讨[J].农业生态环境, 2002, 18: 50-53
    [5]戴浩. Ce(III)对UV-B辐射胁迫下大豆幼苗光呼吸的影响[D]:[硕士学位论文].无锡:江南大学环境与土木工程学院, 2006
    [6]梁婵娟.稀土铈对UV-B辐射胁迫下植物光合作用光反应的影响研究[D]:[博士学位论文].无锡:江南大学环境与土木工程学院, 2006
    [7]张志良.植物生理学实验指南(第二版)[M].北京:高等教育出版社. 2003. 412-414
    [8]柏军华,王克如,初振东,等.叶面积测定方法的比较研究[J].石河子大学学报, 2005, 2: 56-57
    [9] Bassham J A, Kirk M, Jensen R G. Photosynthesis by Isolated Chloroplasts. I. Diffusion of labeled photosynthetic intermediates between isolated chloroplasts and suspending medium [J]. Biochim Biophy Acta, 1968, 153: 211-212
    [10] Lichtenthaler H K, Buschmann C, Rinderle U, et al. Application of chlorophyll fluorescence in ecophysiology [J]. Radiat Environ Biophys, 1986, 25: 297-308
    [11] Ke L, Wong T W Y, Wong A H, et al. Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings [J]. Chem- osphere, 2003, 52: 1581-1591
    [12] Wang L H, Huang X H, Zhou Q. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish [J]. Chemosphere, 2008, 73: 314-319
    [13] Liang C J, Huang X H, Zhou Q. Effect of rare earths on plant under supplementary ultraviolet-B radiation: Effect of cerium on growth and photosynthesis in rape seedlings exposed to supplementary ultraviolet-B radiation [J]. J Rare Earth, 2005, 23: 569-575.
    [14]李津津,李靖梅,周青,等. Ce(III)对UV-B辐射胁迫下大豆幼苗光化学反应的影响[J].环境科学, 2007, 28: 1388-1391
    [15]王传海,郑有飞,闵锦忠. UV-B增加对几种不同作物影响程度的种间比较[J].农业环境科学报, 2004, 23: 646-648
    [16] Kakam V G, Reddy K R, Sailaja K. Field crop response to ultraviolet-B radiation a review [J] AFM, 2003, 120: 191-218
    [17] Van T K, Garrard L A, West S H. Effects of UV-B radiation on net photosynthesis of some crop plants [J] Crop Sci, 1976, 16: 715-721
    [18]廖铁军,黄云,苏彬彦,等.稀土对作物的生物效应研究[J].稀土, 1994, 15: 26-29
    [19]丁士明,张自立,梁涛,等.外源稀土对根际稀土和重金属地球化学行为的影响[J].农业环境科学学报, 2004, 23: 13-17
    [20] Wang J S, Guo C R, Cheng Y X. Mechanism of cerium ions scavenging superoxide radical [J]. J Rare Earth, 1998, l6: 46-50
    [21] Huang X H, Zhou Q, Zhang G S. Advances on rare earth application in pollution ecology [J]. J Rare Earth, 2005, 23:5-11
    [22]杨志敏,颜景义,郑有飞.紫外辐射增加对大豆光和作用和生长的影响[J].生态学报, 1996, 16:154-159
    [23] Peng, Q, Zhou, Q. Effects of enhanced UV-B radiation on the distribution of mineral elements in soybean (Glycine max) seedlings [J]. Chemosphere, 2010, 78: 859-863
    [1] Wang C Y, Adams D O. Chilling-induced ethylene production in cucumbers (Cucumis sativus L.) [J]. Plant Physiol, 1982, 69: 424-427
    [2] Iwahashi Y, Horigane A K, Yoza K, et al. The study of heat stress in tomato fruits by NMR microimaging [J]. MRI, 1999, 17: 767-772
    [3] Fuhrer J. Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolus vulgaris L.) [J]. Plant Physiol, 1982, 70:162-167
    [4] Cohen E, Kende H. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deep water rice. Enhancement by submergence and low oxygen levels [J]. Plant Physiol, 1987, 84: 282-286
    [5] Bae G Y, Nakajima N, Ishizuka K, et al. The role of ozone phototoxicity of the evolution of ethylene upon induction of 1-aminocyclopropane-1-carboxylic acid synthase by ozone fumigation in tomato plants [J]. Plant Cell Physiol, 1996, 37:129- 134
    [6] Vahala J, Schlagnhaufer C D, Pell E J. Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves [J]. Physiol Plant, 1998, 103: 45-50
    [7]肖关丽,杨清辉.植物组织培养过程中内源激素研究进展[J].云南农业大学学报, 2001, 16: 136-138
    [8] Lachnd R, Baker D A. Stress induction of abscisic acid in maizeroots[J].Plant Physiol, 1986, 68: 215-221
    [9] Tevini M. UV-B effects on plant. In: Agrawal SB, Agrawal Meds. Environmantal Pollution and Plant Responses [M]. Florida: CRC Press LLC, 2000. 83-97
    [10] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants [J]. Plant Physiol, 1984, 35: 155-189
    [11] Jabs, T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals [J]. Biochem Pharmacol, 1999, 57: 231-245
    [12] Pourcel L, Routaboul J M. Cheynier V. Flavonoid oxidation in plants: from biochemical properties to physiological functions [J]. Trends Plant Sci, 2007, 12: 29-36
    [13] Peng Q, Zhou Q. Antioxidant Capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress[J]. Biol Trace Elem Res, 2009, 127: 69-80
    [14] Liang B, Huang X H, Zhang G S, et al. Effect of lanthanum on plants under supplementary ultraviolet-B radiation [J]. J Rare Earth, 2006, 24: 613-616
    [15]曾庆钱,陈厚彬,鲁才浩,等. HPLC测定荔枝不同器官中内源激素流程的优化[J].果树学报, 2006, 23: 145-148
    [16]张志良.植物生理实验指导手册[M].北京:高等教育出版社, 2000
    [17] Langebartels C, Kerner K, Leonardi S K, et al. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco [J]. Plant Physiol, 1991, 95: 882-889
    [18] Lizada M C C, Yang S F. A simple and sensitive assay for 1-aminocyclopropane -1-carboxylic acid [J]. Anal Biochem, 1979, 100: 140-145
    [19] Prasad T K, Cline M G. The role of gravity in apical dominance: effects of clinostating on shoot inversion-induced ethylene production shoot elongation and lateral bud growth [J]. Plant Physiol, 1987, 83: 505-509
    [20] Yu Y B, Adams D O, Yang S F. 1-aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis [J]. Arch Biochem Biophys, 1979, 198:280-286
    [21] Nakajima N, Imaseki H. Purification and properties of 1-aminocyclopropane-1- carboxylate synthase of mesocarp of Cucurbita maxima Duch fruits [J]. Plant Cell Physiol, 1986, 27: 969-980
    [22] Nakajima N, Nakagawa N, Imaseki H. Molecular size of wound-induced 1-aminocyc- lopropane-1-carboxylate synthase from Cucurbita maxima Duch and change of translatable mRNA of the enzyme after wounding[J]. Plant Cell Physiol, 1988, 29: 989- 998
    [23] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding [J]. Anal Biochem, 1976, 72: 248-254
    [24] Jansen M A, Kven T R E, Tanmya P S E, et al. Phenoloxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress [J]. Plant Physiol, 2001, 126: 1012-1023
    [25] Krylov S N, Dun Ford H B. Detailed model of the peroxidase catalyzed oxidation of indo acetic acid at neutral pH [J]. J Phys Chem, 1996, 100: 913-920
    [26]刘冰,梁婵娟,周青. La对Cd胁迫下大豆膜脂过氧化及POD活性的影响[J].农业环境科学学报, 2005, 24: 214-216
    [27]梁婵娟,黄晓华,周青.稀土对UV-B辐射伤害植物的影响:Ⅱ.Ce对UV-B胁迫下油菜幼苗保护酶系统影响[J].中国稀土学报, 2005, 23: 628-630
    [28] Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress [J]. Plant Sci, 1996, 121: 151-159
    [29] Tang Y W, Bonner J. The enzymatic inactivation of indoleacetic acid. Some characterist- ics of the enzyme contained in pea seedlings [J]. Arch biochem Biophys, 1947, 13: 11- 25
    [30] Beffa R, Martin H V, Pilet P E. Invitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots [J]. Plant Physiol, 1990, 94: 485-491
    [31] Caldwell M M, Treamure A H, TevinI M, et al. Effect of increased solar ultraviolet radiation on terrestrial ecosystems [J]. Ambio, 1995, 24:165-172
    [32] Morillon R, Hrispeels M J. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells [J]. Plant Biology, 2001, 8: 4138-4143
    [33]杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响[J].生态学报, 2000, 20: 39-42
    [34]吴耀荣,谢旗. ABA与植物胁迫抗性[J].植物学通报, 2006, 23: 511-518
    [35] Ries G, Heller W, Puchta H, et al. Elevated UV-B radiation reduces genome stability in plants [J]. Nature, 2000, 406: 98-101
    [36]方能虎,洪法水,赵贵文.稀土元素对水稻种子萌发初期的酶活性和内源激素含量的动态影响[J].稀土, 2001, 22: 31-34
    [37]李海涛,庄欠来,沈文清.由臭氧层衰竭导致的UV-B辐射增加对陆生植物的影响[J].世界科技研究与发展, 2001, 23: 63-72
    [38]李元,岳明.紫外辐射生态学.北京:中国环境科学出版社, 2002. 114-116.
    [39] Tevini M, Braum J, Fieser G. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation [J]. Photochemistry and Photobiology, 1991, 53:329-333.
    [40] Wang L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks [J]. Plant Cell, 2002, 14:131-151
    [41] A-H-Mackerness S, Surplus S L, Blake P, et al. Ultraviolet-B-induced stress and chang- es in gene expression in arabidopsis thaliana: role of signaling pathways controlled by jasmonic acid, ethylene and reactive oxygen species [J]. Plant Cell Environ, 1999, 22: 1413-1423
    [42] Kramer G F, Ames B N. Oxidative mechanisms of toxicity of low-intensity near-UV light in salmonella-typhimurium [J]. J Bacteriol, 1987, 169: 2259 -2266
    [43] Takeuchi Y, Fukumoto R, Kasahara H, et al. Peroxidation of lipids and growth inhibition induced by UV-B irradiation [J]. Plant Cell Rep, 1995, 14:566-570
    [44] Dai Q, Yan B, Huang S, et al. Response of oxidative stress defense systems in rice(Oryza sativa) leaves with supplemental UV-B radiation [J]. Physiol Plantarum, 1997, 101:301-308
    [45] Murali N S, Teramura A H, Randall S K. Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities [J]. Photochem Photobiol, 1988, 48:653-657
    [46] Strid . Alteration in expression of defense genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation [J]. Plant Cell Physiol, 1993, 34: 949-953
    [47] Willekens H, Camp W V, Montagu, M V, et al. Ozone, sulphur dioxide and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. [J]. Plant Physiol, 1994, 106: 1007-1014
    [48] Rao M V, Paliyath G, Osmrod D P. Ultraviolet-B and ozoneinduced biochemical changes in antioxidant enzymes in Arabidopsis thaliana [J]. Plant Physiol, 1996, 110: 125-136
    [49] Takeuchi Y, Kubo H, Kasahara H, et al. Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B [J]. J Plant Physiol, 1996, 147: 589-592
    [50] Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection [J]. Plant Physiol, 2003, 133: 1420-1428
    [51] Yan P, JANET F. The Response of bean plants to UV-B radiation under different irradiances of background visiblelight [J]. J Exp Bot, 1990, 41: 1489-1495
    [52] Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiol Plantarum, 1988, 72: 681-689
    [53] Wang Y B, Feng H Y, Qu Y, et al. Effects of reactive oxygen species on UV-B induced ethylene production in leaves of maize seedling [J]. J Plant Ecol, 2007, 31: 946-951
    [1] Amrhein N, Deus B, Gehrke P, et al. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro [J]. Plant Physiol 1980, 66:830-834
    [2] Arnon D I. Copper enzymes in isolated chloroplasts and polyphenol oxidase in Beta vulgaris [J]. Plant Physiol 1949, 24:1-15
    [3] Binarova P M, Cvikrova R, Havlicky J, et al. Changes of shikimate pathway in glyphosate tolerant alfalfa cell lines with reduced embryogenic ability [J]. Biol Plant, 1994, 36: 65-73
    [4] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding [J]. Anal Biochem, 1976, 72: 248-254
    [5] Davis C, Harvey R G. In vitro interactions between amino acids and glyphosate. Proc North Cent [J]. Weed Control Conf, 1976, 31:29
    [6] Devine M, Duke S O, Fedtke C. Inhibition of amino acid biosynthesis. In Physiology of Herbicide Action [M]. Prentice Hall: Englewood Cliffs, NJ. 1993. 13
    [7] Duke, S O. Hoagland R E. Effects of glyphosate on the metabolism of phenolic compounds: VII. Rootfed amino acids and glyphosate toxicity in soybean (Glycine max) seedlings [J]. Weed Sci. 1981, 29: 297-302
    [8] Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem [J]. Biophys, 1957, 67:10-15
    [9] Shaner D L, Lyon J L. Effects of three aromatic amino acids on the transpirational response to glyphosate in bean [J]. Weed Sci Soc Am Abstr. 1979, 97:99-101
    [10] Tymonko J M. Studies on the metabolic sites of action of glyphosate [J]. Dissertation Abstr Int, 1979, 39:3624-3625
    [11] Piper P, Ortiz Calderon C. Hatzixanthis K, et al. Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives [J]. Microbiol, 2001,147, 2635-2642
    [12]梁滨.镧对UV-B辐射胁迫下大豆幼苗类黄酮的影响[D]:[硕士学位论文].无锡:江南大学环境与土木工程学院,2006
    [13]朱霞石,徐素琴.高效液相色谱法直接测定芳香族氨基酸[J].分析化学, 2009, 37: 29 -32
    [14]董新纯. UV胁迫下苦荞类黄酮代谢及其防御机制研究[D]:[博士学位论文].山东:山东农业大学, 2006
    [15] Wu J, Lin L. Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production [J]. Appl Microbiol Biotechnol, 2002, 59: 51-57
    [16] Wu Y Q, Jiang P H, Fan C S, et al. Co-expression of five genes in E.coli for L-phenylalanine in Brevibacterium flavum [J]. World J Gastroenterol, 2003, 9: 342- 346
    [17]熊复生,高煜珠,詹勇昌,等.植物叶蔗糖、淀粉积累与其降解酶活性关系研究[J].作物学报, 1994, 20: 52-58
    [18]李元,岳明.紫外辐射生态学[M].北京:中国环境科学出版社, 2000
    [19]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及调控[J].植物生理学通讯, 1988, 7: 9-16
    [20] Pline, W A, Edmisten K L, Wilcut J W, et al. Glyphosate-induced reductions in pollen viability and seed set in glyphosate-resistant cotton and attempted remediation by gibberillic acid [J]. Weed Sci, 2003, 15: 19-27
    [21] Guo S F, Cao R, Lu A H, et al. One of the possible mechanisms for the inhibition effect of Tb(III)on peroxidase activity in horseradish(Armoracia rusticana)treated with Tb(III) [J]. J Biol Inorg Chem, 2008,13: 587-597
    [22] Duke S O, Hoagland R E. Effect of glyphosate on the metabolism of phenolic compounds: VII. Root-fed amino acids and glyphosate toxicity in soybean (Glycine max) seedlings [J]. Weed Sci, 1981, 29: 297-302
    [1]里克特(Richter, G).植物代谢:主要代谢的生理和生物化学[M].北京:科学出版社, 1985
    [2]藤达,苏庆平,顾秋香,等.稀土尾矿区10种植物对重金属的吸收与富集作用[J].安徽农业科学, 2009, 37: 798-799, 804
    [3]曹睿,黄晓华,周青.稀土离子生态毒性的分子生物标志物研究[J].农业系统科学与综合研究, 2007, 23: 76-77
    [4]李咏裕,潘腾飞,邱栋梁.稀土元素对植物生理学作用机制的研究进展[J].中国农学通报, 2005, 21: 217-220
    [5]董新纯,赵世杰,郭珊珊,等.增强UV-B条件下类黄酮与苦荞逆境伤害和抗氧化酶的关系[J].山东农业大学学报(自然科学版), 2006, 37: 157-162
    [6]梁滨.镧对UV-B辐射胁迫下大豆幼苗类黄酮的影响[D]:[硕士学位论文].无锡:江南大学环境与土木工程学院, 2006
    [7]张志良.植物生理学实验指南(第二版)[M].北京:高等教育出版社, 2003. 412 -414
    [8] Karin W M, Johannes J C, et al. Assay of chalcone synthase activity by high- performance liquid chromatography [J]. Phytochemistry, 1993, 34: 1225-1229.
    [9]彭祺,周青.镧对UV-B胁迫下大豆幼苗类黄酮含量与抗氧化能力影响[J].环境科学, 2008, 29: 2024-2027
    [10] Kusukawa M, Wada N, Hayakawa K, et al. N-Phenyl-N’-alkoxyformamidines and alkanamidines as potent flower-inducing compounds in Asparagus seedlings and their effects on microsomal t-cinnamic acid 4-hydroxylase [J]. Biosci Biotech Biochem, 1994, 58: 2220-2223
    [11] Hipskind J D, Vincent J R, Butler LG, et al. Partial purification and characterization of 4- hydroxycinnamic acid CoA ligase from maize leaves infected with bipolaris maydis [J]. Physiol Mol Plant Pathol, 1993, 43: 365-377
    [12]王毓.抗逆诱导剂IPT和ABA对水稻悬浮细胞PAL、LOX基因表达状况的影响[D]: [硕士学位论文].北京:中国农业大学, 2004
    [13]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节[J].植物学通报, 2000, 17: 443-449
    [14]刘卫红.银杏叶苯丙氨酸解氨酶特性及其对叶黄酮含量调控的研究[D]: [硕士学位论文].武汉:华中农业大学, 2003
    [15] Burbulis I E, Winkel-Shirley B. Interactions among enzymes of the Arabidopsisflavonoid biosynthetic pathway [J]. Proc Natl Acad Sci USA, 1999, 96: 12929-12934
    [16] An J H, Lee G Y, Jung J W, et al. Identification of residues essential for a two-step reaction by malonoyl-CoA synthetase from Rhizobium trifolii[J]. Biochem J, 1999, 344: 159-166
    [17] Brodelius P E, Xue Z T. Isolation and characterization of a cDNA from cell suspension cultures of Vanilla planifolia encoding 4-coumarate: coenzyme A ligase [J]. Plant Physiol Biochem, 1997, 35: 497-506
    [18] Loake G J, Faktor O, Lamb C J, et al. Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid [J]. Proc Natl Acad Sci USA, 1992, 89: 9230 -9234
    [19]李莉,赵越,马君兰.苯丙氨酸代谢途径关键酶: PAL、C4H、4CL研究新进展[J].生物信息学, 2007, 5: 187-189
    [20] Fahrendorf T, Dixon R A. Stress responses in alfalfa (Medicago sativa L.). XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450 [J]. Arch Biochem Biophys, 1993, 305: 509-515
    [21] Mizutani M, Ward E, Ohta D. Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochrom- es P450 [J]. Plant Mol Biol, 1998, 37: 39-52
    [22] Teutsch H G, Hasenfratz M P, Lesot A, et al. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway [J]. Proc Natl Acad Sci USA, 1993, 90: 4102-4107
    [23] Lee D, Meyer K, Chapple C, et al. Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition [J]. Plant Cell, 1997, 9: 1985-1998
    [1] Huang X H, Zhou Q, Zhang G S. Advances on rare earth application in pollution ecology [J]. J Rare Earth, 2005, 23: 5-11
    [2]郜红建,常江,张自立,等.稀土在植物抗逆中的生理作用[J].中国稀土学报, 2003, 22: 487- 490.
    [3]倪嘉缵.稀土生物无机化学[M].北京:科学出版社, 1995, 18-25
    [4] Hu Z, Richter H, Sparovek G, et al. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance:A review[J]. J Plant Nutr, 2004, 27: 183-220
    [5] Liang C J, Huang X H, Zhou Q. Effect of rare earths on plant under supplementary ultraviolet-B radiation:ⅠEffect of cerium on growth and photosynthesis in rape seedlings exposed to supplementary ultraviolet-B radiation [J]. J Rare Earth, 2005, 23: 569-575
    [6] Rayan K G, Swinny E E, Markham K R, et al. Flavonoid gene expression and UV photoprotection in transgenic and mutant petunia leaves [J]. Phytochemistry, 2002, 59: 23-32.
    [7] Scheidt H A, Pampel A, Nissler L, et al. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy [J]. Biochim Biophys Acta, 2004, 1663: 97- 107
    [8]倪嘉缵.稀土生物无机化学[M].北京:科学出版社, 1995, 18-25
    [9] Lefevre-Groboillot D, Dijols S, Boucher J L, et al. N-hydroxyguanidines as new heme ligands UV-Visible, EPR, and resonance raman studies of the interaction of various compounds bearing a C=NOH function with microperoxidase-8[J]. Biochemistry, 2001, 40: 9909-9917
    [10] Cavalli A, Carloni P, Recanatini M. Target-related applications of first principles quantum chemical methods in drug design [J]. Chemical Reviews, 2006, 106: 3497- 3519
    [11] Field M J, Bash P A, Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations [J]. J Computational Chem, 1990, 11: 700-733
    [12] Nguyen H D, Hall C K. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides [J]. Proc Natl Acad Sci U S A, 2004, 101: 161-180
    [13] Guo S F, Zhou Q, Lu T H, et al. Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+ [J]. Spectrochim Acta Part A, 2008, 70:818-823
    [14] Yin W Q, Chen M Q, Lu T H, et al. Properties of complex of Tb(III) and poly (N- isopr- opylacrylamide)-g-poly(N-isopropylacrylamide-co-styrene)core-shell nan- oparticles [J]. J Alloys Compd, 2007, 432: 18-21
    [15] Cheng Y, Lin H k, Xue D, et al. Lanthanide ions induce hydrolysis of hemoglobin- bound 2,3-diphosphoglycerate(2,3-DPG), conformational changes of globin and bidirec- tional changes of 2,3-DPG-hemoglobin's oxygen affinity[J]. Biochim Biophys Acta, 2001, 1535:200-216
    [16]魏晓芳,丁西明,刘会洲. PH诱导牛血清白蛋白芳香族氨基酸残基微环境变化的光谱分析[J].光谱学与光谱分析, 2000, 556-559
    [17]秦身钧,稀土金属离子与血清白蛋白的结合反应研究[D]:[硕士学位论文].河北:河北师范大学, 2003
    [18]肖凤娟,刘德龙,白娟,等.稀土离子Tb3+与拟南芥钙调素相互作用的荧光光谱及分析应用[J].光谱学与光谱分析, 2004, 24: 984-987
    [19]鄢远,刘韬,黄坚锋.溶液中溶菌酶的荧光光谱研究[J].化学学报, 1997, 12: 1214- 1218
    [20]王伟列,涂楚桥,王光辉.稀土离子与酶分子的相互作用研究进展[J].稀土, 1998, 19: 57-65
    [21]李晓晶,王志强,陈继,等.稀土离子(III)与牛血清蛋白作用的紫外光谱[J].应用化学, 1998, 15: 5-8
    [22]杨斌盛.稀土离子与伴清蛋白结合的紫外差光谱研究[J].中国稀土学报, 1999, 17: 284-287
    [23]戴怀成.酶、生物小分子及稀土离子间相互作用及其生物功能的电分析化学研究[D]:[硕士学位论文].北京:北京大学化学与分子工程学院, 2007
    [24]范哲锋,杜黎明,冀向利,等.稀土金属离子与色氨酸相互作用的荧光光谱研究[J].光谱学与光谱分析, 2001, 05: 682-684
    [25]康玉专,沈鹤柏,罗衍庆,等.稀土金属离子和牛血清白蛋白作用的光谱研究[J].稀土, 2002, 32: 22-25
    [26]汪东风,李俊.稀土对茶叶中稀土结合糖蛋白的组成及活性的影响[J].中国稀土学报, 2000, 18: 363-366
    [27]李伟国,祁超,杜丽,等.稀土离子诱导钙调蛋白构象变化的单克隆抗体制备[J].细胞与分子免疫学杂志, 2001, 17:461-463
    [28] Huang X, Guo S, Zhou Q, et al. Effect of La3+ on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution [J]. J Electroanal Chem, 2007, 600: 227-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700