矩形喷动床干、湿颗粒混合特性的DEM方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用喷动床技术处理干、湿散体物料时,由于其具有更好的混合效果和气固接触效率等优点,使得喷动床技术被广泛应用于干燥、造粒、燃烧、涂层、煤气化和化学气相沉积等众多过程工业中。离散单元法从单个颗粒尺度上研究颗粒的流动行为,可以提供丰富的颗粒受力、运动方面的信息。因此,离散单元法被广泛应用于研究喷动床内的颗粒流动行为。本文应用三维离散单元法对矩形喷动床内干、湿颗粒的混合特性进行了研究,其中湍流、滚动摩擦和液桥力的影响分别由标准k-ε模型、Beer&Johnson关系式和Mikami模型来进行描述。
     论文的主要工作可总结为以下三个部分:
     第一部分对矩形喷动床DEM模拟的曳力模型选择问题进行了研究。首先,将Arastoopour、Di Felice、Syamlal&O’Brien和Gidaspow模型,这四种被广泛采用的曳力模型应用到了喷动床DEM模拟中,得到了矩形喷动床内颗粒的速度、空隙率和颗粒温度等参数的分布。然后,通过将模拟结果与实验结果进行比较,验证了不同曳力模型的适用性。结果表明:虽然Arastoopour、Di Felice、Syamlal&O’Brien和Gidaspow模型均成功的预测了矩形喷动床内颗粒的流动结构,但Gidaspow模型的预测速度场与实验结果最为接近;
     第二部分,应用三维离散单元法,对干颗粒喷动床内颗粒的混合过程进行了模拟,通过在DEM模拟中引入Ashton&Valentin混合指数,研究了干颗粒喷动床内颗粒的混合特性。首先,模拟了均一颗粒系统内颗粒的轴径向均分混合过程,研究了喷动床内颗粒的混合与流动特性之间的关系,以及喷射区、喷泉区和环隙区内颗粒混合速度和全床混合速度之间的关系。然后,讨论了密度比变化和喷动气速变化对颗粒混合过程和流动特性的影响。结果表明:由于干颗粒喷动床内混合速度最慢的区域均位于环隙区内,这使得矩形喷动床的混合速度由环隙区的混合速度决定;增加密度比会降低床内颗粒混合指数所能达到的最大值;增加喷动气速可以提高床内颗粒的混合速度。
     第三部分对湿颗粒喷动床内颗粒混合过程进行了模拟。采用Mikami模型加入液桥力的影响,对湿颗粒喷动床内的颗粒的流动和混合特性进行了研究。首先,通过对床体内颗粒轴径向均分混合过程的模拟,研究了湿颗粒的流动和混合特性,及两者之间的关系。然后,讨论了颗粒含湿量增加对喷动床内颗粒的混合过程和流动特性的影响。结果表明:与干颗粒喷动床相同,湿颗粒喷动床的混合速度也由环隙区的混合速度决定;增加含湿量会降低床内颗粒的混合速度和程度。
     本文对矩形喷动床内干、湿颗粒混合特性的研究,希望可以为该型喷动床的设计和操作提供指导意义。
Spouted beds have been extensively used in various industrial processes such as drying,granulation, combustion, coating, coal gasification, chemical vapor deposition, etc., in orderto provide good mixing and large gas-solid contact area for dry and wet granular materials.The Discrete Element Method (DEM) resolves particle flow behaviors at an individualparticle level, and it can provide a wealth of information of the particle’s force and motion.Therefore, it has been widely used for studying the particle behavior of spouted bed. The aimof the present paper is to investigate the mixing mechanism and flow behavior of dry and wetparticles in spouted bed by using DEM. In particular, the standard k-ε two-equation model,the Beer&Johnson equation and the Mikami model are adopted to investigate the influenceof turbulence, rolling friction and liquid bridge force.
     This thesis presents three main parts as follows:
     In part one, the research on choosing drag model of rectangle spouted bed is done withDEM. Firstly, the Arastoopour, Di Felice, Syamlal&O’Brien and Gidaspow model, areadopted in DEM simulations to obtain the distributions of particles’ voidage, velocity andgranular temperature in spouted bed. Then, the applicability of different drag models isverified by comparing results between simulation and experiment. The results indicated thatthe Arastoopour, Di Felice, Syamlal&O’Brien and Gidaspow models are able to predict theflow pattern, while the Gidaspow model has the best agreement to the experimental data.
     In part two, numerical simulation of dry particle mixing process in rectangular spoutedbed is carried out with three dimensional discrete element method, and an Ashton&Valentinmixing index is introduced to investigate the characteristics of dynamic mixing process.Firstly, in simulation of the axial and the lateral mixing process, the relationship between theparticle flow behavior and the mixing process, and the mixing rate relationship between thedifferent regions and the whole bed are investigated. Then, the effect of the spouting gasvelocity and the density ratio are discussed. The results indicate that the near tapered wallregion has the slowest mixing rate in the spouted bed. Thus, the mixing rate of annulus plays acritical role in the mixing rate of spouted bed. Increasing spouting gas velocity will increasemixing rate of the whole bed. Furthermore, increasing density ratio will decrease the maximum mixing index.
     In part three, the mixing characteristics and the flow behavior of wet particles in arectangular spouted bed is simulated with a three-dimensional discrete element method. Theinfluence of liquid bridge force is investigated using the Mikami model. First, thecharacteristics and relationship between particle flow behavior and mixing process areinvestigated by simulating the axial and the lateral mixing process. After that, the effect of themoisture content is discussed. The result indicated that the wet particle’s mixing rate inspouted bed is also depends on the mixing rate of the annulus. Moreover, increasing moisturecontent will decrease the mixing rate of spouted bed and the maximum of mixing index.
     It is expected that the investigations on mixing characteristics of dry and wet particle inspouted bed can provide some references for the project designing, manufacture andapplication of the rectangular spouted bed.
引文
[1]金涌,祝京旭,汪展文,等.流态化工程原理.清华大学出版社,2001:2-3页.
    [2] Crowe C, Sommerfeld M S, Tsuji Y. Multiphase flows with droplets and particles. C RC Press,1998:20-21P.
    [3]祝京旭,洪江.喷动床发展与现状.化学反应工程与工艺,1997,13:207-229页.
    [4] Grace J R. Contacting modes and behaviour classification of gas-solid and othertwo-phase suspensions. Canadian journal of chemical engineering.1986,64:353-363P.
    [5]李文曲,叶京生,朱贵凤.喷动床干燥工艺综述.化工装备技术.2000,21(3):10-15页.
    [6]赵杏新,刘伟民,罗惕乾,徐圣言.喷动床技术研究进展.农业机械学报.2006,37(7):190-193页.
    [7] Marmo L. Low temperature drying of pomace in spout and spouted-fluidbeds. Journalof food engineering.2007,79:1179-1190P
    [8]张少峰,赵卷,张占峰等.喷动床技术在烟气脱硫中的应用及最新进展.化工进展.2004,23(2):162-167页.
    [9] Xu G W, Guo Q M, Kaneko T, Kato K. A new semi-dry desulfurization process using apowder-particle spouted bed. Advances in environmental research.2000,4:9-18P
    [10] Peterson W S. Spouted bed drier. Canadian journal of chemical engineering.1962,40:226-230P.
    [11] Robinson T, Waldie B. Dependency of Growth on Granule Size in a Spouted BedGranulator. Transactions of the Institution of Chemical Engineers,1979,57:121-127P.
    [12] Kucharski J, Kmiec A. Kinetics of Granulation Process During Coating of Tablets in aSpouted Bed. Chemical Engineering Science.1989,44:1627-1636P.
    [13] Choi M. Sulphur Coating of Urea in Shallow Spouted Bed, Ph. D. Thesis, University ofBritish Columbia, Vancouver, Canada,1993:15-16P.
    [14] Uemaki O, Fujikawa M, Kugo M. Cracking of Residual Oil by Use of a Dual SpoutedBed Reactor with Three Chambers. Sekiyu Gakkai Shi,1977,20(5):410-415P.
    [15] Epstein N, Grace J R. Spouting of Particulate Solids, Chapter11in Handbook ofPowder Science and Technology(2nd ed.), eds, M E Fayed, and L Otten, Van NostrandReinhold Co., New York.
    [16] Piccinini N. Coated Nuclear Fuel Particles. Advances in Nuclear Science andTechnology.1975,8:255-341P.
    [17] Lim C J, Watkinson A P, Khoe G K, Low S, Epstein N, Grace J R. Spouted, Fluidizedand Spout-Fluid Bed Combustion of Bituminous Coals. Fuel,1988,67:1211-1217P.
    [18] Foong S K, Lim C J, Watkinson A P. Coal Gasification in a Spouted Bed. Canadianjournal of chemical engineering,1980,58:84-91P.
    [19] Balasubramanian M, Meisen A, Mathur K B. Spouted Bed Collection of SolidsAerosols in the Presence of Electrical Effects. Canadian journal of chemicalengineering,1978,56:297-303P.
    [20] Foong S K, Burton R K, Ratcliffe J S. Reduction of Sulphur Dioxide with Carbon in aSpouted Bed. Chemical Engineering in Australia CEI,1/2,1-8, Instn, Engrs. Aust.
    [21] Sun S L. Particle Communition in Spouted Bed, M. A. Sc. Thesis, Univ. of BritishColumbia,Vancouver, Canada Sutanto W, Epstein N, and Grace J R (1985).Hydrodynamics of Spout-Fluid Beds, Powder Technology,1988,44:205-212P.
    [22] Lim C J, Mathur K B. A flow model for gas movement in spouted beds. A. I. Ch. E.Journal,1976,22:674-680P.
    [23] Romankov P C, Rashkovskaya N B. Drying in a Suspended State.2nd ed. Russia:Chemical Publication House,1968:30-31P.
    [24] Mathur K B, Epstein N. Dynamics of Spouted Beds. Advances in ChemicalEngineering,1974,9:111-191P.
    [25] Vukovi D V, Zdanski F K, Vunjak G V, Grbav i B, Littman H. Pressure Drop, BedExpansion and Liquid Holdup in a Three Phase Spouted Bed Contactor. Canadianjournal of chemical engineering,1974,52:180-184P.
    [26] Fan L S, Hwang S J, Matsuura A. Hydrodynamic behaviour of a draft tubegas-liquid-solid spouted bed. Chemical Engineering Science,1984,39:1677-1688P.
    [27] Fan L S. Gas-Liquid-Solid Fluidization Engineering, Chapter5, Butterworths, Boston.
    [28] Foong S K, Barton R K, Ratcliffe J S. Characteristics of multiple spouted beds. Mech.&Chem. Eng. Trans. MCII,1/2,7-12, Instn. Engrs. Aust.
    [29] Yang W C, Keairns D L. Study on the solids circulation rate and gas bypassing inspouted fluid-bed with a draft tube. Canadian journal of chemical engineering,1983,67:349-355P.
    [30] Stocker R K, Eng J H, Svrcek W Y, Behie L A. Ultrapyrolysis of propane in a spoutedbed reactor with a draft tube. A. I. Ch. E. Journal,35:1616-1624P.
    [31] Markowski A S, Kaminski W. Hydrodynamic characteristics of jet-spouted bedCanadian journal of chemical engineering,1983,61:377-381P.
    [32] Markowski A S. Quality interaction in a jet spouted bed bryer for bio-products. Dryingtechnology,1993,11:369-387P.
    [33] Uemaki O, Tsuji T. Particle velocity and solids circulation rate in a jet-spouted bed,Canadian journal of chemical engineering,1992,70:925-929P.
    [34] Littman H, Vukovic D V, Zadanski F K, Grbavcic Z B. Basic relations for the liquidphase spout-fluid bed at the minimum spout flow rates, In: Fluidization Technology, ed.DL Keairns, Vol.1, Hemisphere, Washington, pp.373-386P.
    [35] Milne B J, Berruti F, Behie L A, Brujin T J W. The internally circulating fluidized bed(ICFB): A noval solution to gas bypassing in spouted bed. Canadian journal ofchemical engineering,1992,70:910-915P.
    [36]张翠宣,叶京生,宋继田.喷动床研究与进展.化工进展.2002,21(9):630-632页.
    [37] Murthy D V R, Singh P N. Dynamic of multiple spouted bed, Distributed at Thirdinternational symposium on spouted beds, Vancouver, B. C., Canada.
    [38]朱军.双喷口喷动床流体力学性能的研究.天津大学博士论文.1996:68页
    [39] Hattori H, Takeda K. Side-outlet spouted bed with inner draft-tube for small-sized solidparticles. Journal of chemical engineering Japan,1978,11:125-129P.
    [40] Massarani G, Passos M L, Barreto D W. Production of annatto concentrates in spoutedbeds. Canadian journal of chemical engineering,1992,70:954-959P.
    [41] Mathur K B, Epstein N. Spouted beds, Academic Press, New York
    [42] Claflin J K, Fane A J. Spouting with a porous draft tube. Canadian journal of chemicalengineering,1983,61:356-363P.
    [43] Wurster D E. Air-suspension technique of coating drug particles. Journal of theAmerican Pharmacists Association,1959,48:451-454P.
    [44] Lefroy R, Millington C A, Clift R. A mobile bed process for fibrous materials, In:Fluidization V, eds. K Ostergaard, and Ksorensen, Engineering Foundation, pp.225-232P.
    [45] Shirley F W, Litt R D. Advanced spouted fluidized bed combustion concept.Proceedings9thInternational conference on Fluidized Bed Combustion,1987,2:1066-1073P.
    [46] Kikuchi K, Suzukia A, Mochizukia T, Endoa S, Imaia E, Tanjia Y. Ash-agglomeratinggasification of coal in a spouted bed reactor. Feul,1985,64:368-372P.
    [47] Arnold M S T J, Gale J J, Laughlin M K. The British coal spouted fluidized bedgasification process. Canadian journal of chemical engineering,1992,70:991-997P.
    [48] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granularflow. A. I. Ch. E. Journal,1990,36(4):523-538P.
    [49] Gidaspow D, Syamlal M, Seo Y C. Hydrodynamics of fluidization of single and binarysize particles: supercomputer modeling, in Fluidization V: Proceedings of the5thEngineering Foundation Conference on Fluidization. New York: A. I. Ch. E.Engineering Foundation,1986.
    [50] Gidspow D, Bezbaruah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetictheory approach. in Fluidization VII. O. E. Potter and D. J. Nicklin Eds.1992:75-82P.
    [51] Gidaspow D, Tsuo Y P, Luo K M. Computed and experimental cluster formation andvelocity profiles in circulating fluidized beds. Fluidization VI.1989:81-88P.
    [52] Kuipers J A M, van Swaaij W P M. Simulation of three dimensional riser flow usingthe kinetic theory of granular flow. Proceedings of the6t1' international conference oncirculating fluidized beds, Edited by Joachim Werther,Wurzburg, Germany,1999.
    [53] Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputermodeling. Applied Mechanics Reviews,1986,39:1-23P.
    [54] Enwald H, Feirano E, Almstedt A E. Eulerian two-phase flow theory applied tofluidization. International Journal of Multiphase Flow,1996,22:21-66P.
    [55] Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predictedby numerical simulation (discrete particle model versus two-fluid model). PowderTechnology,1998,95:254-264P.
    [56] Ge W, Li J. On Circulating Fluidized Bed Technology V (eds. KwaukM, Li, J), SciencePress, Beijing,1996,260-266P.
    [57] Anderson T B, Jackson R. A fluid mechanical description of fluidized beds. I&ECFundamentals,1967,6:527-539P.
    [58] Jackson R. The mechanics of fluidized beds. Trans. Inst. Chem. Eng.,1963,41:13-28P.
    [59] Murray J D. On the mathematics of fluidization. Part2. Steady motion of fullydeveloped bubbles. Journal of Fluid Mechanics,1965,22:57-80P.
    [60] Jekins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elasticspherical particle. Journal of Fluid Mechanics,1983,130:197-202P.
    [61] Ding J, Lyczkowski R W. Three dimensional kinetic theory modeling ofHydrodynamics and erosion in fluidized beds. Powder Technology,1992,73:127-138P.
    [62] Lu H L, He Y, Liu W T, Ding J M, Gidaspow D, Bouillard J. Computer simulations ofgas-solid flow in spouted beds using kinetic-frictional stress model of granular flow.Chemical Engineering Science,2004,59:865-878P.
    [63] He Y L, Lim C J, Grace J R, Zhu J X, Qin S Z. Measurements of voidage profiles inspouted beds. Canadian Journal of Chemical Engineering,1994,72,229-234P.
    [64] He Y L, Qin S Z, Lim C J, Grace J R. Particle velocity profiles and solid flow patternsin spouted beds. Canadian Journal of Chemical Engineering,1994,72:561-568P.
    [65] Mazet N, Spinner B,"Modeling of Gas-Solid Reactions.2. Porous Solids".International Chemical Engineering,1992,32:395-408P.
    [66] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theorydescriptions. San Diego: Academic Press,1994.
    [67]孙其诚,李静海.气体“拟颗粒”模型.化工冶金(Engineering Chemistry&Metallurgy),1999,20(3):322-328页.
    [68] Sun Q, Li J H. In Asia-Pacific Chemical Reaction Engineering Symposium "APCRE99", Hong Kong,1999,593-600P.
    [69] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies.Geotechnique,1979,29(1):47-65P.
    [70] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow ofcohesionless particles in a horizontal pipe. Powder Technology,1992,71:239-250P.
    [71] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two dimensionalfluidized bed. Powder Technology,1993,77:79-87P.
    [72] Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y. Quasi-three-dimensional numericalsimulation of spouted beds in cylinder, Powder Technology,2000,109:3-12P.
    [73] Wen C Y, Yu Y H. Mechanics of Fluidization. Chemical Engineering ProgressSymposium Series,1966,62:100-111P.
    [74] Ergun S. Fluid Flow through Packed Columns. Chemical Engineering Progress,1952,48(2):89-94P.
    [75] Roy David, Larachi Faical, Legros Robert, et al. A study of solid behavior in spoutedbeds using3-D particle tracking. Canadian Journal of Chemical Engineering,1994,72(6):945-952P.
    [76] Takeuchi S, Wang S, Rhodes M. Discrete element simulation of a flat-bottomedspouted bed in the3-D cylindrical coordinate system, Chemical Engineering Science,2004,59:3495-3504P.
    [77] Takeuchi S, Wang S, Rhodes M. Discrete element study of particle circulation in a3-Dspouted bed, Chemical Engineering Science2005,60:1267-1276P.
    [78] Takeuchi S, Wang S, Rhodes M, Discrete element method simulation ofthree-dimensional conical-base spouted beds, Powder Technology,2008,184:141-150P.
    [79] Tsuji T, Hirose M, Shibata T, Uemaki O, Itoh H.. Particle flow in annular region of aflat-bottomed spouted bed. Transactions of the Society of Chemical Engineering Japan,1997,23(4):604-605P.
    [80] Kajishima T, Takiguchi S, Hamasaki H, Miyake Y. Turbulence structure ofparticle-laden flow in a vertical plane channel due to vortex shedding. JSMEInternational Journal Series B,2001,44(4):526-535P.
    [81] Swasdisevi T, Tanthapanichakoon W, Charinpanitkul T, Kawaguchi T, Tanaka T, TsujiY. Investigation of fluid and coarse-particle dynamics in a two-dimensional spoutedbed. Chemical Engineering and Technology,2004,27:971-981P.
    [82] Kudra T, Mujumdar A S, Raghavan G S W, Kalwar M I. Proceedings of the8thInternational Drying Symposium,1992,65:83P.
    [83] Kalwar M I. Aerodynamics and drying characteristics of grains in two-dimensionalspouted beds. Ph D Thesis. McGill University,1991:180P.
    [84] Swasdisevi T, Tanthapanichakoon W, Charinpanitkul T, Kawaguchi T, Tanaka T, TsujiY. Prediction of gas-particle dynamics and heat transfer in a two-dimensional spoutedbed. Advanced Powder Technology,2005,16:275–293P.
    [85] Link J M, Cuypers L A, Deen N G., Kuipers J A M. Flow regimes in a spout-fluidbed-a combined experimental and simulation study. Chemical Engineering Science,2005,60:3425-3442P.
    [86] Link J M, Deen N G, Kuipers J A M, Fan X, Ingram A, Parker D J, Wood J, Seville J PK. PEPT and discrete particle simulation study of spout-fluid bed regimes. A. I. Ch. E..Journal,2008,54:1189-1202P.
    [87] Link J M, Godlieb W, Deen N G., Kuipers J A M. Discrete element study of granulationin a spout-fluidized bed. Chemical Engineering Science,2007,62:195–207P.
    [88] Link J M, Godlieb W, Tripp P, Deen N G., Heinrich S, Kuipers J A M. Schonherr M,Peglow M,2008. Comparison of fibre optical measurement sand discrete elementsimulations for the study of granulation in a spout-fluidized bed. Powder Technology,2009,189:202-217P.
    [89] Bacelos M S, Passos M L, Freire J T. Effect of interparticle forces on the conicalspouted bed behavior of wet particles with size distribution. Powder Technology,2007174:114-126P.
    [90] Sakamon D, Mujumdar A S. Some hydrodynamic and mixing characteristics of apulsed spouted bed dryer. Powder Technology,2001,117:189-197P.
    [91] Rhodes M J, Wang X S, Nguyen M, Stewart P, Liffman K. Study of mixing ingas-fluidized beds using a DEM model. Chemical Engineering Science,2001,56:2859-2866P.
    [92] Lacey P M C. Developments in the theory of particle mixing, Journal of appliedchemistry,1954,4:257-268P.
    [93] Rhodes M J, Wang X S, Nguyen M, Stewart P, Liffman K. Use of discrete elementmethod simulation in studying fluidization characteristics, influence of interparticleforce. Chemical Engineering Science,2001,56:69–76P.
    [94] Haghnegahdar M R, Hatamipour M S, Rahimi A. Mathematical modeling of CO2capture in a semi-dry spouted bed reactor. Separation and Purification Technology,2011,80:509–518P.
    [95] Duarte C R, Olazar M, Murata V V, Barrozo M A S. Numerical simulation andexperimental study of fluid–particle flows in a spouted bed. Powder Technology,2009,188:195-205P.
    [96] San José M J, Alvarez S, Ortiz de Salazar A, Olazar M, Bilbao J. Influence of theparticle diameter and density in the gas velocity in jet spouted beds. ChemicalEngineering Process.2005,44:153-157P.
    [97] Liu G Q, Li S Q, Zhao X L, Yao Q. Experimental studies of particle flow dynamics in atwo-dimensional spouted bed, Chemical Engineering Science,2008,63:1131-1141P.
    [98] Shi H X. Experimental research of flow structure in a gas-solid circulating fluidizedbed riser by PIV. Journal of Hydrodynamics, Ser. B.2007,19:712-719P.
    [99] Zhao X L, Li S Q, Liu G Q, Yao Q, Marshall J S. DEM simulation of the particledynamics in two-dimensional spouted beds. Powder Technology,2008,184:205-213P.
    [100] Zhao X L, Li S Q, Liu G Q, Song Q, Yao Q. Flow patterns of solids in atwo-dimensional spouted bed with draft plates: PIV measurement and DEMsimulations. Powder Technology,2008,183:79-87P.
    [101] Tao M, Jin B S, Zhong W Q, Yang Y P. Analysis of pressure fluctuation signals in theunderfeed circulating spouted bed. Chemical Engineering and Processing2010,49:340-347P.
    [102] Zhong W Q, Zhang M Y, Jin B S, Zhang Y, Xiao R, Huang Y J. Experimental andmodel investigations on gas mixing behaviors of spout-fluid beds. ChemicalEngineering and Processing,2007,46:990-995P.
    [103] Zhang Y, Jin B S, Zhong W Q. Experiment on particle mixing in flat-bottom spout–fluid bed. Chemical Engineering and Processing,2009,48:126-134P.
    [104] Zhang Y, Jin B S, Zhong W Q, Ren B, Xiao R. DEM simulation of particle mixing inflat-bottom spout-fluid bed, Chemical Engineering Research and Design,2010,88:757-771P.
    [105] Zhang Y, Zhong W Q, Jin B S. New method for the investigation of particle mixingdynamic in a spout-fluid bed. Powder Technology,2011,208:702-712P.
    [106] Zhong W Q, Xiong Y Q, Yuan Z L, Zhang M Y. DEM simulation of gas-solid flowbehaviors in spout-fluid bed, Chemical Engineering Science,2006,61:1571-1584P.
    [107] Zhong W Q, Li Q J, Zhang M Y, Jin B S, Xiao R, Huang Y J, Shi A Y. Spoutcharacteristics of a cylindrical spout-fluid bed with elevated pressure. ChemicalEngineering Journal,2008,139:42-47P.
    [108] Zhong W Q, Zhang M Y. Characterization of dynamic behavior of a spout-fluid bedwith Shannon entropy analysis. Powder Technology,2005,159:121-126P.
    [109] Zhong W Q, Chen X P, Zhang M Y. Hydrodynamic characteristics of spout-fluid bed:Pressure drop and minimum spouting/spout-fluidizing velocity. Chemical EngineeringJournal,2006,118:37-46P.
    [110] Zhong W Q, Zhang M Y, Jin B S, Chen X P. Flow pattern and transition of rectangularspout-fluid bed. Chemical Engineering and Processing,2006,45:734-746P.
    [111] Zhong W Q, Zhang M Y. Jet penetration depth in a two-dimensional spout–fluid bed.Chemical Engineering Science,2005,60:315-327P.
    [112] Zhong W Q, Zhang M Y, Jin B S. Maximum spoutable bed height of spout-fluid bed.Chemical Engineering Journal,2006,124:55-62P.
    [113]张少峰,王淑华,赵斌,刘燕,赵剑波.双喷嘴矩形导流管喷动床喷动压降.化工学报,2006,57:1142-1146页.
    [114]胡国新,陆晓玲,龚希武,李艳红,胡美群.新颖环形喷动床颗粒喷动特性实验研究.高校化学工程学报,2007,21:936-941页.
    [115]龚希武,胡国新,丁卫华,李艳红.新型环形喷动床的喷动机制与喷动特性.燃烧科学与技术,2007,14:328-332页.
    [116]黄浩,吴中华,胡国新.环形喷动床颗粒混合特性实验研究.上海交通大学学报,2007,3:397-397页.
    [117] Huang H, Hu G X, Wang F C. Experimental study on particles mixing in an annularspouted bed. Energy Conversion and Management,2008,49:257-266P.
    [118]魏炳南,胡国新,龚希武,李艳红.细颗粒环形气/固喷动床的压力波动分析.上海交通大学学报,2009,43:851-856页.
    [119]李响,孙丹,于龙,何玉荣,杨仲明,陆慧林.基于摩擦-动力应力模型模拟喷动床气固流动.工程热物理学报,2010,31:68-71页.
    [120]李奥博,周勇,朱家骅.导向管喷动床电极处理低浓度含铜废水的研究.四川有色金属,2011,2:44-48页.
    [121] Campbell C S, Brennen C E. Chute flows of granular material some computersimulation. Transactions of ASME Journal of Applied Mechanics,1985,52:172-178P.
    [122] Campbell C S, Gong A. The stress tensor in a two-dimensional granular shear flow.Journal of Fluid Mechanics,1986,164:107-125P.
    [123] Walton Q R, Braun R L. Stress calculations for assemblies of inelastic spheres inuniform shear. Acta Mechanica.,1986,63:73-86P.
    [124] Walton Q R. Particle-dynamics calculation of shear flow, in Mechanics of GranularMaterials: New Models and Constitutive Relations, ed. by Jenkins J T and Satake M.Amsterdam: Elsevier,1983,327-338P.
    [125] Wang Y, Mason M T. Two-dimensional rigid-body collisions with friction. Transactionsof ASME Journal of Applied Mechanics,1992,59:635-642P.
    [126] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation ofbubble and slug formation in a two dimensional gas fluidized bed: a hard sphereapproach. Chemical Engineering Science,1996,51(1):99-118P.
    [127] Singhal A K, Spalding D B. Prediction of two-dimensional boundary layers with theaid of the k-ε model of turbulence. Computational Methods in Applied MechanicalEngineering,1981,25:365–383P.
    [128]陶文铨.数值传热学.西安交通大学出版社,2001:349页.
    [129]哈尔滨工业大学理论力学教研室.理论力学.高等教育出版社,2002:119-123页.
    [130] Zhou Y C, Wright B D, Yang R Y, et al. Rolling friction in the dynamic simulation ofsandpile formation. Physica A-Statistical Mechanics and Its Applications,1999,269(2-4):536-553P.
    [131] Mikami T, Kamiya H, Horio M. Numerical simulation of cohesive powder behavior ina fluidized bed, Chemical Engineering Science,1998,53:1927-1940P.
    [132] Richardson JR, Zaki W N. Sedimentation and fluidization: part I. Transactions ofInstitute of Chemical Engineering,1954,32(1):35-53P.
    [133] Di Felice R. The voidage functions for fluid-particle interaction system. InternationalJournal of Multiphase Flow,1994,20(1):153–159P.
    [134] Syamlal M, O’Brien. Simulation of granular layer inversion in liquid fluidized beds.International Journal of Multiphase Flow,1988,14(4):473-481P.
    [135] Arastoopour H, Pakdel P, Adewumi M. Hydrodynamic analysis of dilute gas–solidsflow in a vertical pipe. Powder Technology,1990:62(2):163-170P.
    [136] Louge M Y, Mastorakos E, Jenkins J K. The role of particle collisions in pneumatictransport. Journal of Fluid Mechanics,1991,231:345-359P.
    [137] Gibilaro L G., Di Felice R, Waldram S P. Generalized friction factor and dragcoefficient correlations for fluid-particle interactions. Chemical Engineering Science,1985,40(10):1817-1823P.
    [138] Koch D L, Hill R J. Inertial effects in suspension and porous-media flows. AnnualReviews Fluid Mechanics,2001,33:619P.
    [139] Koch D L, Sangani A S. Particle pressure and marginal stability limits for ahomogeneous mono-disperse gas fluidized bed: Kinetic theory and numericalsimulations. Journal of Fluid Mechanics,1999,400:229P.
    [140] Du W, Bao X J. Computational fluid dynamics (CFD) modeling of spouted bed:Assessment of drag coefficient correlations. Chemical Engineering Science,2006,61(5):1401-1420P.
    [141] Li J, Kuipers J A M. Gas-particle interactions in dense gas-fluidized beds. ChemicalEngineering Science,2003,58:711-718P.
    [142] Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phaseolefin polymerization. Chemical Engineering Science,1999,54:5809-5821P.
    [143]田凤国,章明川,齐永锋.流化床轴径向混合特性的数值研究.中国电机工程学报,2006,26(21):119-124页.
    [144] Hsiau S S, Yang S C. Numerical simulation of self-diffusion and mixing in a vibratedgranular bed with the cohesive effect of liquid bridges. Chemical Engineering Science,2003,58:339-351P.
    [145]赵永志,程易,金涌.提升管与下行床颗粒团聚行为的离散颗粒模拟.化工学报,2007,58:44-53页.
    [146] Silbert L, Ertas D, Grest G., Halsey T, Levine D, Plimpton S. Granular flow down aninclined plane: Bagnold scaling and rheology. Physical Review E,2001,64(5):51302-51315P.
    [147] Zhou Y C, Xu B H, Yu A B, et al. An experimental and numerical study of the angle ofrepose of coarse spheres. Powder Technology,2002,125(1):45-54P.
    [148] Ridgway, Tarbuck E J. The random packing of particles, British Chemical Engineering,1967,12:384-388P.
    [149] Bernal J D, Mason J. Packing of Spheres: Co-ordination of Randomly Packed Spheres.Nature,1960,186:910-911.
    [150] Orpe A, Kharkar D V. Scaling relations for granular flow in quasi-two dimensionalrotating cylinders. Physical Review. E, Statistical Physics, Plasmas, Fluids, and RelatedInterdisciplinary Topics,2001,64:031302P.
    [151] Dogan O M, Freitas L A P, Lim C J, Grace J R, Luo B. Hydrodynamics and stability ofslot-rectangular spouted beds. Part I: thinbed. Chemical Engineering Communication,2000,181:225-242P.
    [152]朱卫兵,朱润孺,邢力超,孙巧群.喷动床DEM模拟曳力模型评价.哈尔滨工程大学学报,2011,32(5):581-588页.
    [153] San Jose M J, Olazar M, Alvarez S, et al. Solid cross-flow into the spout and particletrajectories in conical spouted beds. Chemical Engineering Science,1998,53(20):3561-3570P.
    [154] Olazar M, San Jose M J, Alvarez S, et al. Measurement of particle velocities in conicalspouted beds using an optical fiber probe. Industrial and Engineering ChemistryResearch,1998,37:4520-4527P.
    [155] H. Zhou, G. Flamant, D. Gauthier, DEM-LES of coal combustion in a bubblingfluidized bed Part1: gas–solid turbulent flow structure, Chemical Engineering Science,2004,59:4193-4213P.
    [156] Poole K R, Taylor R F, Wall G P. Mixing powders to fine scale homogeneity: studies ofbatch mixing, Transactions of the Institution of Chemical Engineers,1964,42:305-315P.
    [157] Ashton M D, Valentin F H H. The mixing powders and particles in industrial mixers,Transactions of the institution of chemical engineers,1966,44a:166-188P.
    [158] Westmacott M H, Linehan P A. Measurement of uniformity in seed bulks. Int. SeedTesting Assoc. Proc,1960,25:151P.
    [159] Derrick K R, Donna L F, Duane L J. A superior approach to indices in determiningmixture segregation, Powder Technology,1995,84:277-282P.
    [160] Tian F G, Zhang M C, Fan H J, Gu M Y, Wang L, Qi Y F. Numerical study onmicroscopic mixing characteristics in fluidized beds via DEM. Fuel ProcessingTechnology,2007,88:187-198P.
    [161]田凤国,章明川,齐永锋.流化床轴径向混合特性的数值研究.中国电机工程学报,2006,26(21):119-124页.
    [162] Alberto D R, Francesco P D M, Rossella G, Brunello F. DEM simulation of the mixingequilibrium in fluidized beds of two solids differing in density. Powder Technology,2008,184:214-223P.
    [163]张勇,金保升,钟文琪.基于颗粒尺度DEM直接数值模拟的喷动流化床颗粒运动特性.东南大学学报(自然科学版),2008,38:110-115页.
    [164] Lian G., Thornton C, Adams M J. Discrete particle simulation of agglomerate impactcoalescence. Chemical Engineering Science,1998,53:3381-3391P.
    [165] Erle M A, Dyson D C, Morrow N R. Liquid bridges between cyclinders, in a torus andbetween spheres, A. I. Ch. E. Journal,1971,17:115-121P.
    [166] Fisher R A. On the capillary forces in an ideal soil: correction of formulae given by W.B. Haines. Journal of Agricultural Science,1926,16:492-505P.
    [167] Bisschop F R E De, Rigole W J L. A physical model for liquid capillary bridgesbetween adsorptive solid spheres: The nodoid of plateau. Journal of Colloid andInterface Science,1982,88:117-128P.
    [168] Lian G., Adams M J, Thornton C. Elastohydrodynamic collision of solid spheres,Journal of Fluid Mechanics,1996,311:141-152P.
    [169] Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a planewall. I. motion through a quiescent fluid. Chemical Engineering Science,1967,22:637-651P.
    [170] Mazzone D N, Tardos G L, Pfeffer R. The effect of gravity on the shape and strength ofa liquid bridge between two spheres. Journal of Colloid and Interface Science,1986,113:544-556P.
    [171] Lian G., Thornton C, Adams M J. A theoretical study of the liquid bridge forcesbetween two rigid spherical bodies, Journal of Colloid and Interface Science,1993,161:138-147P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700